Metody návrhu algoritmů, příklady. IB111 Programování a algoritmizace
|
|
- Alžběta Šmídová
- před 6 lety
- Počet zobrazení:
Transkript
1 Metody návrhu algoritmů, příklady IB111 Programování a algoritmizace 2011
2 Návrhu algoritmů vybrané metody: hladové algoritmy dynamické programování rekurze hrubá síla tato přednáška: především ilustrativní ukázky na hrách, log. úlohách,...
3 Rozměňování peněz vstup: částka X výstup: kolik nejméně mincí (bankovek) potřebujeme k vyplacení částky varianty: 1 klasické hodnoty peněz: 1, 2, 5, 10, 20, 50, 100,... 2 libovolné (zadané) hodnoty
4 Rozměňování peněz I hladový algoritmus: použij vždy nejvyšší minci, která je menší než cílová částka funguje pro klasické hodnoty nefunguje pro obecný případ najděte konkrétní příklad
5 Rozměňování peněz II dynamické programování vyplňování tabulky, budujeme řešení od spodu pro hodnoty mincí 1, 3, 4 částka počet mincí
6 Rozměňování peněz II dynamické programování vyplňování tabulky, budujeme řešení od spodu pro hodnoty mincí 1, 3, 4 částka počet mincí
7 Hra Nim máme n sirek (např. 20) povolený tah: odebrat 1, 2 nebo 3 sirky hráči se střídají kdo nemůže táhnout (nejsou žádné sirky), prohrává jaká je vítězná strategie? který hráč si může zaručit vítězství?
8 Hra Nim II varianty: tahy: 1, 3 nebo 4 sirky tahy: 1, 2 nebo 3 sirky; ale zakázáno odebrat tolik, kolik sebral oponent v posledním tahu najděte vítěznou strategii pomocí dynamického programování
9 Nejdelší rostoucí úsek, podposloupnost Nejdelší rostoucí úsek vstup: posloupnost čísel výstup: nejdelší rostoucí úsek (po sobě jdoucí čísla) Nejdelší rostoucí podposloupnost vstup: posloupnost čísel výstup: nejdelší rostoucí podposloupnost (čísla nemusí jít po sobě)
10 Nejdelší rostoucí úsek, podposloupnost příklad: 4, 1, 8, 6, 5, 11, 2, 4, 9, 12, 5, 13, 7, 8, 12, 10, 11
11 Nejdelší rostoucí úsek, podposloupnost příklad: 4, 1, 8, 6, 5, 11, 2, 4, 9, 12, 5, 13, 7, 8, 12, 10, 11 nejdelší rostoucí úsek: 2, 4, 9, 12 nejdelší rostoucí podposloupnost: 1, 2, 4, 5, 7, 8, 10, 11
12 Nejdelší rostoucí úsek řešení jeden průchod pole, lineární složitost O(n) pamatuji si aktuální délku rostoucí podposloupnosti + dosavadní maximum
13 Nejdelší rostoucí podposloupnost naivně vyzkoušet všechny možné podposloupnosti exponenciální časová složitost O(2 n ) dynamické programování pro každou pozici si pamatuji délku nejdelší podposloupnosti končící v tom místě přímočaře: kvadratická složitost O(n 2 ) efektivní implementace O(n log n)
14 Nejdelší společný podřetězec, podposloupnost vstup: dva řetězce s 1, s 2 výstup: nejdelší společný úsek/podposloupnost (rozdíl podobně jako u předchozího) příklad: BDCABA ABCBDAB další podobný problém: editační vzdálenost (Levenshtein distance)
15 Nejdelší společná podposloupnost
16 Nejdelší společná podposloupnost dynamické programování
17 Aplikace společné podposloupnosti, editační vzdálenost variace těchto problémů se vyskytují např: analýzy DNA sekvencí detekce (opravování) překlepů
18 Hrubá síla Vyzkoušej všechny možnosti. kdy použít: problém relativně malý, možností málo i když by to šlo chytřeji, nemá cenu tomu věnovat úsilí (např. Sudoku) nic lepšího prostě neznáme ( NP-úplné problémy )
19 Heuristiky heuristika = přístup, který většinou pomůže, ale nemusí fungovat vždy dobrá heuristika může řádově zlepšit hrubou sílu
20 Prohledávání stavového prostoru připomenutí: stavový prostor = graf použití např.: Good Old-Fashioned Artificial Intelligence (GOFAI) verifikace protokolů
21 Logická úloha: Misionáři a kanibalové 3 misionáři, 3 kanibalové řeka, 1 loďka (max 2 lidé) víc kanibalů jak misionářů na jednom místě problém
22 Vlk, koza, zelí klasická úloha typu převážení přes řeku zakreslit stavový prostor co úloha koza a 2 zelí?
23 Vlk, koza, zelí klasická úloha typu převážení přes řeku zakreslit stavový prostor co úloha koza a 2 zelí? izomorfní úlohy
24 Vlk, koza, zelí
25 Verifikace protokolů
26 Počet stavů zmíněné úlohy mají jen pár stavů lze nakreslit celý stavový prostor i ručně praktické problémy mnoho stavů nelze vygenerovat ani počítačem heuristiky
27 Sokoban
28 Sokoban
29 Základní algoritmus stavový prostor = graf prohledávání grafu pomocí klasických prohledávání: BFS, DFS trochu sofistikovanější prohledávání: IDA iterative deepening obousměrné hledání
30 Praktické poznámky reprezentace co je jeden stav (viz Sokoban) co potřebuji umět: generování následníků stavu ukládání stavů, test na přítomnost stavu (datový typ množina)
31 A* search úprava prohledávání do šířky (BFS) BFS postupuje rovnoměrně (povodeň) A* upřednostňuje nadějnější stavy heuristické ohodnocení stavů
32 Heuristika příklad Sokoban
33 Heuristika příklad Sokoban Vzdálenosti od cílových políček: Ohodnocení: 16 = Ohodnocení: 1 = Ohodnocení: 11 =
34 Heuristika příklad Sokoban příklady: napočítat staticky vzdálenosti jednotlivých políček k cílovým polím, sečíst hledat minimální párování bedna cílové pole brát v potaz polohu beden trade-offÿ přesnost heuristiky a časová náročnost jejího výpočtu
35 Ořezávání neperspektivních stavů dokážu rozhodnout, že ze stavu se nedá dostat do cíle netřeba z tohoto stavu dál prohledávat příklad Sokoban: bedna v rohu bedna u zdi, od které se nemůže dostat
36 Ořezávání neperspektivních stavů
37 Problém splnění podmínek Constraint satisfaction problem (CSP) množina proměnných domény hodnot podmínky
38 Sudoku proměnné: a, b, c, d,... domény hodnot: {1, 2, 3, 4} podmínky (pro j): j b, j h, j i, j k, j 3, j 1
39 Backtracking systematické hledání řešení metodou pokus-omyl začít s prázným přiřazením hodnot proměnným postupně přiřazujeme proměnným hodnoty (systematicky) porušení podmínek vrátit se zpět (backtrack) a zkusit jinou hodnotu podmínky kontrolujeme průběžně prohledávání do hloubky (DFS)
40 Backtracking a Sudoku
41 Heuristiky forward checking, back jumping pořadí výběru proměnných
42 Příklad: dámy na šachovnici rozmístit n dam na šachovnici n n nesmí se vzájemně ohrožovat klasické zadání n = 8 zkuste vyřešit pro n = 4 zakreslete strom prohledání při bactrackingu
43 Čtyři dámy
44 Propagace podmínek pokus o inteligentní řešení množina kandidátů pro každou proměnnou odvozování nutných hodnot efektivnější, ale nezaručuje řešení praxe: kombinace propagace podmínek a backtrackingu
45 Propagace podmínek
46 Další problémy CSP SAT splnitelnost logických formulí obarvení grafu rozvrhování
47 Shrnutí hladový algoritmus dynamické programování vyplňování tabulky hrubá síla prohledávání stavového prostoru, backtracking heuristiky ohodnocení stavů, ořezávání neperspektivních,...
Úloha ve stavovém prostoru SP je <s 0, C>, kde s 0 je počáteční stav C je množina požadovaných cílových stavů
Stavový prostor a jeho prohledávání SP = formalismus k obecnějšímu uchopení a vymezení problému, který spočívá v nalezení posloupnosti akcí vedoucích od počátečního stavu úlohy (zadání) k požadovanému
Základy umělé inteligence
Základy umělé inteligence Automatické řešení úloh Základy umělé inteligence - prohledávání. Vlasta Radová, ZČU, katedra kybernetiky 1 Formalizace úlohy UI chápe řešení úloh jako proces hledání řešení v
Základy umělé inteligence
Základy umělé inteligence Hraní her (pro 2 hráče) Základy umělé inteligence - hraní her. Vlasta Radová, ZČU, katedra kybernetiky 1 Hraní her (pro dva hráče) Hraní her je přirozeně spjato s metodami prohledávání
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Zatím pro nás byl model světa černou skříňkou, ke které přistupujeme pouze přes: funkci následníka
u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming
Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Třídy složitosti P a NP, NP-úplnost
Třídy složitosti P a NP, NP-úplnost Cíle přednášky: 1. Definovat, za jakých okolností můžeme problém považovat za efektivně algoritmicky řešitelný. 2. Charakterizovat určitou skupinu úloh, pro které není
Prohledávání do šířky = algoritmus vlny
Prohledávání do šířky = algoritmus vlny - souběžně zkoušet všechny možné varianty pokračování výpočtu, dokud nenajdeme řešení úlohy průchod stromem všech možných cest výpočtu do šířky, po vrstvách (v každé
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C
Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat
"Agent Hledač" (3. přednáška)
"Agent Hledač" (3. přednáška) Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty Přehled 3. přednášky v této přednášce se budeme zabývat "goal-based" agenty připomeňme, že "goal-based"
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
ALGORITMY A DATOVÉ STRUKTURY
Název tématického celku: Cíl: ALGORITMY A DATOVÉ STRUKTURY Metodický list č. 1 Časová složitost algoritmů Základním cílem tohoto tematického celku je vysvětlení potřebných pojmů a definic nutných k popisu
Obsah: CLP Constraint Logic Programming. u odpovědí typu A, B, C, D, E: jako 0)
Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Průběžná písemná práce Úvod do umělé inteligence 6/12 1 / 17 Průběžná písemná práce Průběžná písemná práce délka pro vypracování: 25
Neinformované metody prohledávání stavového prostoru. Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček Gerstner Laboratory Agent Technology Group, Czech Technical University in Prague http://labe.felk.cvut.cz/~ tkrajnik/kui2/data/k333/1.pdf
bfs, dfs, fronta, zásobník, prioritní fronta, halda
bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší
Hledáme efektivní řešení úloh na grafu
Hledáme efektivní řešení úloh na grafu Mějme dán graf následující úlohy: G = ( V, E), chceme algoritmicky vyřešit Je daný vrchol t dosažitelný z vrcholu s? Pokud ano, jaká nejkratší cesta tyto vrcholy
Dokumentace programu piskvorek
Dokumentace programu piskvorek Zápočtového programu z Programování II PRM045 Ondřej Vostal 20. září 2011, Letní semestr, 2010/2011 1 Stručné zadání Napsat textovou hru piškvorky se soupeřem s umělou inteligencí.
State Space Search Step Run Editace úloh Task1 Task2 Init Clear Node Goal Add Shift Remove Add Node Goal Node Shift Remove, Add Node
State Space Search Po spuštění appletu se na pracovní ploše zobrazí stavový prostor první předpřipravené úlohy: - Zeleným kroužkem je označen počáteční stav úlohy, který nemůže být změněn. - Červeným kroužkem
Obsah: Problém osmi dam
Prohledávání stavového prostoru leš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Problém osmi dam Prohledávání stavového prostoru Neinformované prohledávání Úvod do umělé inteligence
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Sbírka cvičení Domečkologie Zkuste nakreslit domečky na obrázku. Které
Prohledávání do šířky a do hloubky. Jan Hnilica Počítačové modelování 15
Prohledávání do šířky a do hloubky Jan Hnilica Počítačové modelování 15 1 Prohledávací algoritmy Úkol postupně systematicky prohledat vymezený stavový prostor Stavový prostor (SP) možné stavy a varianty
Algoritmizace prostorových úloh
INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Grafové úlohy Daniela Szturcová Tento
NP-ÚPLNÉ PROBLÉMY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
NP-ÚPLNÉ PROBLÉMY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 13 Evropský sociální fond Praha & EU: Investujeme do
Aproximativní algoritmy UIN009 Efektivní algoritmy 1
Aproximativní algoritmy. 14.4.2005 UIN009 Efektivní algoritmy 1 Jak nakládat s NP-těžkými úlohami? Speciální případy Aproximativní algoritmy Pravděpodobnostní algoritmy Exponenciální algoritmy pro data
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2012 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý (je časově
IB111 Úvod do programování skrze Python
Vyhledávání, řazení, složitost IB111 Úvod do programování skrze Python 2014 1 / 48 Otrávené studny 8 studen, jedna z nich je otrávená laboratorní rozbor dokáže rozpoznat přítomnost jedu ve vodě je drahý
A4B33ZUI Základy umělé inteligence
LS 2014 Jméno: A4B33ZUI Základy umělé inteligence 11. 6. 2014 O1 O2 O3 O4 O5 Total (50) Instrukce: Na vypracování máte 150 min, můžete použít vlastní poznámky v podobě ručně popsaného listu A4. Použití
Algoritmizace Dynamické programování. Jiří Vyskočil, Marko Genyg-Berezovskyj 2010
Dynamické programování Jiří Vyskočil, Marko Genyg-Berezovskyj 2010 Rozděl a panuj (divide-and-conquer) Rozděl (Divide): Rozděl problém na několik podproblémů tak, aby tyto podproblémy odpovídaly původnímu
SEMESTRÁLNÍ ÚLOHY S PROGRAMY V PROLOGU (zadání úloh)
Cvičení 7 SEMESTRÁLNÍ ÚLOHY S PROGRAMY V PROLOGU (zadání úloh) 1. Polynomy Návod: Polynomy lze reprezentovat (nejen v Prologu) několika způsoby, které lze rozdělit do následujících skupin: A) podle množství
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
1 / 23 Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 2 / 23 biologové často potřebují najít často se opakující sekvence DNA tyto sekvence bývají relativně krátké,
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Prohledávání stavového prostoru
Prohledávání stavového prostoru State space search Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 2017 1 / 45 Stavový prostor Prohledávání do hloubky Prohledávání do šířky Informované
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Poznámky pro učitele Teorie grafů poznámky pro učitele Tato sbírka
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
bfs, dfs, fronta, zásobník
bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání
Grafové algoritmy. Programovací techniky
Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být
vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí
Rezoluce: další formální systém vhodná pro strojové dokazování (Prolog) metoda založená na vyvracení: dokazuje se nesplnitelnost formulí pracujeme s formulemi v nkf (též klauzulárním tvaru), ale používáme
11. Tabu prohledávání
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
jednoduchá heuristika asymetrické okolí stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy Pokročilé heuristiky
Pokročilé heuristiky jednoduchá heuristika asymetrické stavový prostor, kde nelze zabloudit připustit zhoršují cí tahy pokročilá heuristika symetrické stavový prostor, který vyžaduje řízení 1 2 Paměť pouze
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK. v přírodních vědách a informatice CZ.1.07/1.3.10/
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Teorie grafů Poznámky pro učitele Projekt učitelé Teorie grafů poznámky pro učitele
Seminář z umělé inteligence. Otakar Trunda
Seminář z umělé inteligence Otakar Trunda Plánování Vstup: Satisficing task: počáteční stav, cílové stavy, přípustné akce Optimization task: počáteční stav, cílové stavy, přípustné akce, ceny akcí Výstup:
Časová a prostorová složitost algoritmů
.. Časová a prostorová složitost algoritmů Programovací techniky doc. Ing. Jiří Rybička, Dr. ústav informatiky PEF MENDELU v Brně rybicka@mendelu.cz Hodnocení algoritmů Programovací techniky Časová a prostorová
Rekurze. IB111 Úvod do programování skrze Python
Rekurze IB111 Úvod do programování skrze Python 2015 1 / 64 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 64 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 64 Rekurze použití funkce
Varianty Monte Carlo Tree Search
Varianty Monte Carlo Tree Search tomas.kuca@matfyz.cz Herní algoritmy MFF UK Praha 2011 Témata O čem bude přednáška? Monte Carlo Tree Search od her podobných Go (bez Go) k vzdálenějším rozdíly a rozšíření
Graf. Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd.
Graf 2 0 3 1 4 5 Uzly Lokality, servery Osoby fyzické i právní Informatické objekty... atd. Hrany Cesty, propojení Vztahy Informatické závislosti... atd. Běžné reprezentace grafu Uzly = indexy Stupně uzlů
Anotace. Středník II!! 7. 5. 2010 programování her.
Anotace Středník II!! 7. 5. 2010 programování her. Teorie her Kombinatorická hra je hrou dvou hráčů. Stav hry je určen pozicí nějakých předmětů. Všechny zúčastněné předměty jsou viditelné. Jde o tzv. hru
V ypoˇ cetn ı sloˇ zitost v teorii graf u Martin Doucha
Výpočetní složitost v teorii grafů Martin Doucha Parametrizovaná složitost Nástroj, jak zkrotit výpočetní složitost NP-těžkých problémů Klasický přístup: exponenciála v n Parametrizovaná složitost Nástroj,
Optimalizace & soft omezení: algoritmy
Optimalizace & soft omezení: algoritmy Soft propagace Klasická propagace: eliminace nekonzistentních hodnot z domén proměnných Soft propagace: propagace preferencí (cen) nad k-ticemi hodnot proměnných
Umělá inteligence a rozpoznávání
Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních
Základy informatiky. 07 Teorie grafů. Kačmařík/Szturcová/Děrgel/Rapant
Základy informatiky 07 Teorie grafů Kačmařík/Szturcová/Děrgel/Rapant Obsah přednášky barvení mapy teorie grafů definice uzly a hrany typy grafů cesty, cykly, souvislost grafů Barvení mapy Kolik barev je
Dynamické programování
Dynamické programování prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA)
2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013
2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky
PROBLÉM OSMI DAM II. Problém osmi dam. Obsah:
Úvod do umělé inteligence RÉ S úkol: Rozestavte po šachovnici 8 dam tak, aby se žádné dvě vzájemně neohrožovaly. -mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ bsah: rohledávání do hloubky rohledávání
Dynamické programování
ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,
Složitost her. Herní algoritmy. Otakar Trunda
Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 28. března 2017 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Datové struktury 2: Rozptylovací tabulky
Datové struktury 2: Rozptylovací tabulky prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy
TGH05 - aplikace DFS, průchod do šířky
TGH05 - aplikace DFS, průchod do šířky Jan Březina Technical University of Liberec 31. března 2015 Grafová formulace CPM (critical path method) Orientovaný acyklický graf (DAG) je orientovaný graf neobsahující
Umělá inteligence I. Roman Barták, KTIML.
Umělá inteligence I Roman Barták, KTIML roman.bartak@mff.cuni.cz http://ktiml.mff.cuni.cz/~bartak Na úvod Neinformované (slepé) prohledávání umí najít (optimální) řešení problému, ale ve většině případů
Maturitní témata. IKT, školní rok 2017/18. 1 Struktura osobního počítače. 2 Operační systém. 3 Uživatelský software.
Maturitní témata IKT, školní rok 2017/18 1 Struktura osobního počítače Von Neumannova architektura: zakreslete, vysvětlete její smysl a popište, jakým způsobem se od ní běžné počítače odchylují. Osobní
07 Základní pojmy teorie grafů
07 Základní pojmy teorie grafů (definice grafu, vlastnosti grafu, charakteristiky uzlů, ohodnocené grafy) Definice grafu množina objektů, mezi kterými existují určité vazby spojující tyto objekty. Uspořádaná
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo. Department of Cybernetics Czech Technical University in Prague
Neinformované metody prohledávání stavového prostoru Michal Pěchouček, Milan Rollo Department of Cybernetics Czech Technical University in Prague http://cw.felk.cvut.cz/doku.php/courses/a3b33kui/start
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
7. Heuristické metody
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Vraťme se k základům: DFS = Depth First Search
Prohledávání do hloubky Vraťme se k základům: DFS = Depth First Search DFS Programování s omezujícími podmínkami Roman Barták Katedra teoretické informatiky a matematické logiky roman.bartak@mff.cuni.cz
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem
ČVUT FEL X36PAA - Problémy a algoritmy 3. úloha - problém batohu metodami branch & bound, dynamické programování, heuristika s testem Jméno: Marek Handl Datum: 1. 1. 2009 Cvičení: Pondělí 9:00 Zadání Naprogramujte
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Zadání soutěžních úloh
Zadání soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Úlohy můžete řešit v libovolném pořadí a samozřejmě je nemusíte vyřešit všechny. Za každou
Neuronové časové řady (ANN-TS)
Neuronové časové řady (ANN-TS) Menu: QCExpert Prediktivní metody Neuronové časové řady Tento modul (Artificial Neural Network Time Series ANN-TS) využívá modelovacího potenciálu neuronové sítě k predikci
Algoritmy pro hraní tahových her
Algoritmy pro hraní tahových her Klasické deskové hry pro dva hráče: Šachy Dáma Go Piškvorky Reversi Oba hráči mají úplnou znalost pozice (na rozdíl např. od Pokeru). 1 Základní princip Hraní tahových
Zadání semestrálního projektu Algoritmy I. zimní semestr 2018/2019
Zadání semestrálního projektu Algoritmy I. zimní semestr 08/09 doc. Mgr. Jiří Dvorský, Ph.D. Verze zadání. listopadu 08 První verze Obecné pokyny. Celkem jsou k dispozici tři zadání projektů.. Každý student
Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti.
Seznamy a stromy Cílem kapitoly je seznámit studenta se seznamem a stromem. Jejich konstrukci, užití a základní vlastnosti. Klíčové pojmy: Seznam, spojový seznam, lineární seznam, strom, list, uzel. Úvod
Vysvětlete funkci a popište parametry jednotlivých komponent počítače a periferních zařízení.
1 Struktura osobního počítače Zakreslete základní schéma počítače podle Johna von Neumanna. Popište základní strukturu osobního počítače. Vysvětlete funkci a popište parametry jednotlivých komponent počítače
Hledání správné cesty
Semestrální práce z předmětu A6M33AST Závěrečná zpráva Hledání správné cesty Nela Grimová, Lenka Houdková 2015/2016 1. Zadání Naším úkolem bylo vytvoření úlohy Hledání cesty, kterou by bylo možné použít
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2015/2016 1 / 18 Základní syntax Jazyk Výroková logika je logikou
2. Mřížky / Záplavové vyplňování
2. Mřížky / Záplavové vyplňování BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
10. Složitost a výkon
Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
SEMESTRÁLNÍ ÚLOHY S PROGRAMY V PROLOGU (zadání úloh)
Cvičení 7 SEMESTRÁLNÍ ÚLOHY S PROGRAMY V PROLOGU (zadání úloh) 1. Polynomy Návod: Polynomy lze reprezentovat (nejen v Prologu) několika způsoby, které lze rozdělit do následujících skupin: A) podle množství
PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze
PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Cvičení Programování I. Stručné poznámky ke cvičení ze
Cvičení Programování I Cvičící: Pavel urynek, KIM, pavel.surynek@seznam.cz emestr: Zima 2005/2006 Kroužek: Matematika/59 Rozvrh: Pátek 10:40-12:10 (učebna K2) tručné poznámky ke cvičení ze 14.10.2005 1.
12. Globální metody MI-PAA
Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI
Dynamické programování
Dynamické programování Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 26 Memoizace Dynamické programování 2 / 26 Memoizace (Memoization/caching) Pro dlouhotrvající funkce f (x) Jednou
Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek
Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Rekurze. Jan Hnilica Počítačové modelování 12
Rekurze Jan Hnilica Počítačové modelování 12 1 Rekurzivní charakter úlohy Výpočet faktoriálu faktoriál : n! = n (n - 1) (n - 2)... 2 1 (0! je definován jako 1) můžeme si všimnout, že výpočet n! obsahuje
ČVUT FEL X36PAA - Problémy a algoritmy. 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu
ČVUT FEL X36PAA - Problémy a algoritmy 4. úloha - Experimentální hodnocení algoritmů pro řešení problému batohu Jméno: Marek Handl Datum: 3. 2. 29 Cvičení: Pondělí 9: Zadání Prozkoumejte citlivost metod
Metoda hrubé sily, backtracking a branch-and-bound
Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D. ZS 04 Metoda hrubé sily, backtracking a branch-and-bound Základní princip Metoda hrubé síly se dá popsat jednoduchou větou zkus všechny možnosti.
Hodnocení soutěžních úloh
Terč Koeficient 1 soutěžních úloh Kategorie žáci Soutěž v programování 25. ročník Krajské kolo 2010/2011 15. až 16. dubna 2011 Napište program, který zobrazí střelecký terč dle vzorového obrázku. Jak má
Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy
Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel