Od stavebních bloků k polymerům života aneb prebiotická evoluce
|
|
- Radomír Netrval
- před 6 lety
- Počet zobrazení:
Transkript
1 d stavebních bloků k polymerům života aneb prebiotická evoluce Vladimír Kopecký Jr. Fyzikální ústav niverzity Karlovy v Praze ddělení fyziky biomolekul //atrey.karlin.mff.cuni.cz/~ofb/kopecky.html kopecky@karlov karlov.mff.cuni.czcz Evoluce jak ji známe entrální dogma molekulární biologie 1865 regor Mendel postuluje zákony genetiky 1940 jeden gen jeden enzym (eorge Beadle & Edward Tatum) 1958 Francis rick formuluje ústřední dogma molekulární biologie 1961 aminokyseliny specifikovány třípísmennými kodony (Sidney Brener & Francis rick & eorge amow) 1961 rozluštění prvního kódu (M. irenberg & H. H Matthaei) 1966 finální rozluštění genetického kódu R Transkripce D Replikace Translace??? Protein Počátky života Scénáře vzniku života Proteiny, nikoli nukleové kyseliny koacerváty semipermeabilní membrány, parin (1924) mikrosféry protenoidy (shluky aminokyselin), Fox ukleové kyseliny, nikoli proteiny genová hypotéza ribozymy,, koenzymy, možná afinita k protenoidům (1986) Koexistence proteinů a nukleových kyselin hypercykly teoretický model autoreplikujících se systémů, Eigen (1960) Úplně jiný základ anorganické jíly silikátové shluky, možnost katalýzy, airns-smith (1980) K translace Enzym K translace Vznik proteinů v živých organismech Enzym translace K Enzym translace K Enzym Vznik peptidů Vznik peptidů minokyseliny mohou začít vytvářet peptidy za aktivace v podmínkách horkých vodných roztoků za přítomnosti koloidního (Fe,i)S (Fe,i)S hydrolýza močoviny může být evolučním předchůdcem enzymu i- ureázy Podporuje chemoautotrofní vznik života s primitivním (Fe,i)S metabolismem Schéma -řízeného peptidového cyklu. ) aminokyselina, B) anhydrid -carboxy amonokyseliny, ) série -carboamoyl peptidů, D) série aminokyselin, tj. peptid, E) racemické deriváty hydantoinu, F) deriváty močoviny. Huber et al., Science 301 (2003) Karbonyl sulfid (S), jednoduchý sopečný plyn, katalyzuje reakce vedoucí ke vzniku polypeptidů ve vodných roztocích Reakce probíhá za pokojové teploty s výtěžností 80 % v řádu minut až hodin Přítomnost kovových iontů (ve formě metlosulfidů), oxidačních ( 2 ) a alkylačních (K 3 Fe() 6 ) činidel dramaticky urychluje reakci a zvyšuje její účinnost L. Leman et al., Science 306 (2004)
2 Samosereplikující peptid 32-mer α-helix (coiled-coil) podobný leucinovému zipu autokatalyzuje ve vodném prostředí vznik svého obrazu složením 15- (nukleofilní fragment) ) a 17-meru (elektrofilní fragment) Samosereplikující peptid Elektrofilní fragment atakuje prostřednictvím thiobenzyl esteru SBn terminální SH amino skupinu nukleofilního fragmentu Vznikne cystein thioester intermediát,, který se přemění na termodynamicky favorizovanou peptidovou vazbu a spojí oba fragmenty Katalytická cesta může probíhat: ) prostřednictvím ternárního komplexu B), ) za vzniku binárních komplexů (nízká výtěžnost, problémy s agregací) D) přímou interakcí obou fragmentů, což je v porovnání s autokatalýzu proces s malou výtěžností D. H. Lee et al., ature 382 (1996) D. H. Lee et al., ature 382 (1996) hirální selektivita hirální selektivita Schématické znázornění chiroselektivních replikačních cyklů Homochirální peptidy T DD a T LL jsou produkovány autokatalýzou Heterochirální (T DL a T LD ) peptidy vznikají nekatalyzovanou kondenzací nukleofilního () a elektrofilního (E) peptidu Teplátem řízená ligace homochirálních fragmentů vede k aplifikaci homochirální produktů obecně. Sagatelian et al., ature 409 (2001) Stupeň formování produktu v závislosti na čase Produkce homochirálních produktů (T LL a T DD ) plná kolečka,, a heterochirálních produktů (T LD a T DL ) prázdná kolečka,, je ukázána jako funkce času pro roztok obsahující 100 µm koncentraci L, D, E D a E L Spodní křivka (trojúhelníky, křížky, resp.) je kontrola v přítomnosti 3M ndhl. Sagatelian et al., ature 409 (2001) hirální selektivita. Sagatelian et al., ature 409 (2001) Peptidové nukleové kyseliny (P) Formování coiled-coil struktury a odpovídající HPL retenční časy Příkrá disproporce ukazuje, že vznik coiled- coil helikální struktury je přísně chiroselektivní Stejné mechanismy vedly ke vzniku homochirálního života na Zemi Kostra P je tvořena polymerem -(2 (2- aminoethyl)gylcinem (E) E může snadno nahradit nestabilní cukry P se váží na D formujíce dvoj- či trojšroubovice příbuzné Watson-rickově helixu P mohou být prekurzorem světa R P mají terapeutické využití v antisense strategii a genetické diagnostice K.. anesh and P. E. ielsen, urrent rg. hem.. 4 (2000)
3 Peptidové nukleové kyseliny (P) V P je oproti R nahrazena kostra z ribózy a fosfátu -(2-aminoethyl) glycinem (E) Báze nukleových kyselin jsou připojeny k E pomocí karboxylové skupiny Syntéza P musí probíhat odlišně od proteinů a nukleových kyselin (ale s podobnými stupni reakcí) Peptidové nukleové kyseliny (P) Reakce vedoucí ke vzniku kostry P, tj. k E V prvním kroku vzniká z H a H 4 kyselina 2,3- diaminopropionová a ethylendiamin (probíhá za teplot , v řádech desítek hod.). Jako boční produkt vzniká kyanogen. Ethylendiamin může dále reagovat standardní Steckerovou reakcí za vzniku E K. E. elson at al., Proc. atl. cad. Sci.. S 97 (2000) K. E. elson at al., Proc. atl. cad. Sci.. 97 (2000) Peptidové nukleové kyseliny (P) Předcházely proteiny vznik D? Vznik pyrimidin- 1 -karboxylové kyseliny z kyseliny hydantoinové a kyanoacetaldehydu Vznik purin- 9 -karboxylové kyseliny z H a glycinu K. E. elson at al., Proc. atl. cad. Sci.. 97 (2000) R obsahuje ribonukleotidy, D deoxyribonukleotidy potřeba tvorby deoxyribonukleotidů Tvorby se neúčastn astní R, ale pouze enzym ribonukleotid reduktáza (RR) kazuje se, že e RR je ve všech v organizmech vysoce konzervována na (podařilo se prokázat pro vzdálen lené třídy ) RR I a B) RR I) Proteiny musely být minimáln lně součást stí světa R a předchp edcházet vzniku D S. J. Freeland at al., Science 286 (1999) ukleové kyseliny Struktura nukleových kyselin 1953 objev struktury D (J. Watson,, F. rick obelova cena spolu s M. Wilkinsnem 1962, podíl patří i R. Franklinové) 1958 semikonzervativní replikace D (Messelson, Stahl) D a R jsou polymorfní molekuly Pravotočivá, B Levotočivá Z Vlásenková Triplex -kvadruplex 5'-konec H 2 syn H H 2 H H H - 2 P H 2 H - P H 2 H Směr řetězce H H 2 - P H 2 anti H - P - 3'-konec ukleové kyseliny Replikace D
4 Biochemické epochy světa Biochemické epochy R světa Časová škála událostí na ranné Zemi. dáno v y před současností. Vyznačení událostí je přibližné a R svět je třeba posunout hlouběji do minulosti.. F. Joyce, ature 418 (2002) 214 M. P. Robertson and. D. Ellington, ature 395 (1998) lternativní systémy k R lternativní systémy k R Změť molekul jež byly k dispozici pro tvorbu R světa. Rozdílné barvy udávají čtyři základní komponenty potřebné pro tvorbu R. Seznam možných analogů je udán pod základní složkou. nalogy lze prakticky libovolně kombinovat do funkčních celků, sic!. F. Joyce, ature 418 (2002) 214 Možní kandidáti na předchůdce R v ranné historii Země. a) threosová nukleová kyselina, b) peptidová nukleová kyselina, c) analog nukleové kyseliny odvozený od glycerolu, d) pyranosyl R. B značí nukleotidovou bázi.. F. Joyce, ature 418 (2002) 214 lternativní systémy k R První kroky k replikaci Vzhledem k nestabilitě ribosy je vhodné nahradit cukr za jiný,, např. pyranosu (6) či furanosu (5) T a jiné cukerné modifikace vykazují podobné hybridizační vlastnosti jako R či D a vytváří s nimi i heteroduplexy (viz. teploty tání udané v tabulce), většinou mají větší strukturní flexibilitu minerálně katalyzovaná polymerizace přímé kopírování oddělení vláken vlákna se oddělují a opakovaně se kopírují katalytická R kopíruje vlákna K.-. Schöning et al., Science 290 (2000) L. E. rgel, Sci. m., o. 10 (1994)
5 Kdo je rybozym? R molekula má klíčové postavení v centrálním dogmatu molekulární biologie R s katalytickou funkcí se nazývá ribozym Ribozymy vytvářely primitivní svět života Existovaly R organismy, ale evoluční stopy byly již zahlazeny vzpomínka na R svět ale zůstala Struktura vlásenkového ribozymu.. Důležité nukleotidy účastnící se sestřihu jsou zvýrazněny. (Protein je kokrystalizován.) o všechno umí R? R má stále informační, autokatalytickou a katalytickou funkci (na rozdíl od D) Syntézy telomer telomerová R Přenosu genetické informace mr Přenosu aminokyselin tr Syntézy bílkovin rr Hydrolýzy prekurzorů R Rase P Samosestřihu intronů J.. Doudna & T. R. zech, ature 418 (2002) J.. Doudna & T. R. zech, ature 418 (2002) Viděl někdo rybozym? Thomas ech (obelova cena 1989) objevil samosestřižnost intronů u prvoka Tetrahymena termophyla v roce 1982 skupiny I je sestřih katalyzován TP skupiny je sestřih veden přes 2-2 hydroxylovou skupinu R katalyzovaný samosestřih skupiny provádí např tzv. hammerhead ribozym Evoluce ribozymů polymeráz In vitro evoluce ribozymu R polymerázy. a) ribozym katalyzuje templátem řízené připojení 3 -konce 3 R primeru k 5 -konci 5 ribozymu, b) katalyzuje připojení ppp na 3 -konec 3 R primeru (urychlení ~10 9 ), c) katalyzuje připojení 14 TP k externímu R templátu. J.. Doudna & T. R. zech, ature 418 (2002) F. Joyce, ature 418 (2002) 214 Evoluce ribozymů polymeráz Ribozymy lze vyvíjet uměle in vitro Předchozí fáze jsou známy pro ribozym ligázu třídy I Fáze a) je ~120-mer,, pracující rychlostí 100 reakcí/min Fáze c) je ~200-mer,, který připojí 14 nukleotidů za 24 hod., s přesností 97 % Přesnost kopírování musí být lepší než 1/délka sekvence,, tj. pro 100-mer 99%, pro 40-mer 97,5% - takové ribozymi nejsou dosud známy Pouze malá část variant R má katalytickou funkci! Pro R o délce 100 nukleotidů vychází možných sekvencí seskupení všech takových R má hmotnost ca větší než Země Pro R o délce 40 nukleotidů vychází hmotnost ca. 40 kg. F. Joyce, ature 418 (2002) 214 Metabolické funkce Hypotetická cesta R-katalyzované syntézy R a) aldolová kondenzace glyceraldehydu a glykolaldehydu vedoucí k riose b) přenos karbamoylu z karbamoyl fosfátu na aspartát a cyklizace formující pyrimidin c) pentamerizace H za vniku purinu d) vytvoření nukleosidu e) fosforylace (minerální zdroj) nukleosidu na nukleotid f) aktivace nukleotidu TP g) připojení nukleotidu na 3 -konec 3 R primeru h) prodlužování R (DP je recyklováno v kroku e). F. Joyce, ature 418 (2002) 214
6 Metabolické funkce Jak se staví protein Hypotetická cesta R-katalyzované syntézy proteinů a) aktivace aminokyseliny formování aminoacyl-nukleotid nukleotid anhydridu b) přenos aktivované aminokyseliny na 2 2 (3 )- konec tr (aminokyselina může snadno migrovat mezi oběma pozicemi) c) přenospeptidu vedoucí k formování dipeptidu.. Dvě aminoacyl-tr jsou blízko u sebe vázány na komplementárním tmplátu d) postupné opakovaní cyklu vede k formování polypeptidu. F. Joyce, ature 418 (2002) 214 Pravděpodobnost inkorporace chybné aminokyseliny je 10-4 na kodon Protein o velikosti 40 kda je syntetizován za ca. 10 sekund K čemu je dobrá tr Standardní sada 20 aminokyselin? 21 aminokyselinou je selenocystein (přítomna od rchae po savce) 22 aminokyselinou je pyrrolysine (z r výskyt v rchae a Eubacteria) polární hydrofobní nabité aromatické První pozice Fenylalanin Leucin Izoleucin Metionin Valin Serin Prolin Treonin lanin Tyrosin STP Histidin lutamin sparagin Lysin Kys. asparag. Kys. glutam. ystein STP Tryptofan rginin Serin rginin lycin Třetí pozice Je genetický kód univerzální? Standardní kód je velmi rozšířený, ale ne zcela univerzální! enetický kód mitochondrií a některých nálevníků se liší (objev na základě sekvenačních studií D v roce 1981) V nálevnících specifikují kodony a kyselinu glutamovou a nikoliv Stop Mitochondrie Standardní kód Savčí Pekařské kvasinky eurospora crassa Drosophila Prvoci Rostliny Stop Ile Leu rg rg Trp Met Stop Trp Met Thr? Trp? Trp Met Ser Trp Trp
7 Vznik a vývoj genetického kódu Znázornění biochemických drah syntéz aminokyselin minoacyl-tr synthetasy (aarss)) se podílí na připojení aminokyselin na tr (dělí se na I bíle a třídu - šedě) Vývoj kódu je závislý na Biosyntetické dráze aminokyseliny Relativním obsahu v kodonu Příslušnosti k třídě aarss První kód obsahoval la, ly, Ser, sp, lu,, (Val) důležité při tvorbě β-sheetu L. Klipcan and M. Safro,, J. Theor. Biol (2004) Vznik a vývoj genetického kódu minkys. Třída, kodon,, kodon,,, kodon o. reakcí ly, 1 la, 1 Prům.. 3,2 Pro, 3 rg I, 8 sp 1 sn 1 Thr, R 5 Ser 3 Prům.. 3,8 His 10 Lys +I R 9 lu I R 1 ln I R 2 Phe Y 10 Tyr I Y 10 Trp I 13 Ile I, Y 5 Prům.. 7,3 Leu I R, 8 Val I 4 Met I 7 ys I Y 2 L. Klipcan and M. Safro,, J. Theor. Biol (2004) Prvotní kód obsahoval pouze sekvenci a aminokyseliny důležité při fixaci amoniaku Šipky označují biosyntetické dráhy F T značí průměrnou přenosovou energii, tj. míru hydrofobicity B. K. Davis, Prog. Biophys.. Mol. Biol.. 72 (1999) B. K. Davis, Prog. Biophys.. Mol. Biol.. 72 (1999) B. K. Davis, Prog. Biophys.. Mol. Biol.. 72 (1999) Prvotní kód byl postupně doplňován v závislosti na složitosti syntézy a potřebných vlastnostech Přibyly basické aminokyseliny Jako poslední byly doplněny aminokyseliny s aromatickým postranním řetězcem Šipky označují biosyntetické dráhy F T značí průměrnou přenosovou energii, tj. míru hydrofobicity B. K. Davis, Prog. Biophys.. Mol. Biol.. 72 (1999)
8 D jak ji neznáme Modifikace genetického kódu a aminokyselin Expandovaný genetický kód tr kódující jistou sekvenci je přiřazena nová aminokyselina Inkorporují se modifikace pro biotechnologie v bakteriích i eukaryotech (např. o-methylo methyl- Tyr,, p-benzoylp benzoyl-phe,, p-iodop iodo-tyr) Modifikovaný genetický kód Ke kódu jsou přiřazeny nové vzájemně komplementární báze Počet písmen se tak rozšíří a dále je možno pokračovat via expandovaný genetický kód epřirozené párování x-y x y a x-s, x a v důsledku stérického bránění nerozpoznávaná spojení x-t x T a s-ts B. K.Davis Davis, Prog. Biophys.. Mol. Biol.. 72 (1999) I. Hirao et al. ature Biotech.. 20 (2002) J. W. hin et al.. Science 301 (2003) D jak ji neznáme Je kód zvolen optimálně? D jak ji neznáme Expandovaná D a základě teorie informace (donor = 1, akceptor = 0, purin = 0, pyrimidin = 1) lze ukázat, že volba T T a je optimální s ohledem na informační šum áhrada za T je v D nezbytná přechází v deaminací,, tato změna je nerozlišitelná Tedy R musela předcházet D H 2 H cytosine H H uracil Modifikované báze vznikají přidáním jednoho aromatického kruhu navíc Báze si zachovávají své vlastnosti Expandovaná D je mnohem stabilnější než D klasická Hybrid i čistá forma expandované D je plně funkční eexistuje žádné známé omezení na užití expandované D D. Bradley,, Science 297 (2002) H. Liu et al.. Science 302 (2003) D jak ji neznáme Jak skladovat D? D (1700 bp) ) o určité sekvenci je schopna spontánního složení do oktameru s průměrem 22 nm W. Shih et al. ature 427 (2004) Život jak ho neznáme Je život opravdu tak jednoduchý fenomén? Průměrný protein má 200 aminokyselin Počet všech kombinací aminokyselin je , tj. zhruba Vesmír má částic Rychlá chemický reakce trvá 1 femtosekundu (10-15 s) Počet všech myslitelných párových srážek od velkého třesku je = = Vesmír by potřeboval životů aby stvořil všechny kombinace tohoto proteinu Vesmír se neopakuje je nergodický
Vladimír Kopecký Jr. DNA. Protein RNA
d stavebních bloků k polymerům života aneb prebiotická evoluce Vladimír Kopecký Jr. Fyzikální ústav Univerzity Karlovy v Praze ddělení fyziky biomolekul http://biomolecules.mff.cuni.cz kopecky@karlov.mff.cuni.cz
Translace (druhý krok genové exprese)
Translace (druhý krok genové exprese) Od RN k proteinu Milada Roštejnská Helena Klímová 1 enetický kód trn minoacyl-trn-synthetasa Translace probíhá na ribosomech Iniciace translace Elongace translace
Nukleové kyseliny. DeoxyriboNucleic li Acid
Molekulární lární genetika Nukleové kyseliny DeoxyriboNucleic li Acid RiboNucleic N li Acid cukr (deoxyrobosa, ribosa) fosforečný zbytek dusíkatá báze Dusíkaté báze Dvouvláknová DNA Uchovává genetickou
Molekulární základy dědičnosti. Ústřední dogma molekulární biologie Struktura DNA a RNA
Molekulární základy dědičnosti Ústřední dogma molekulární biologie Struktura DNA a RNA Ústřední dogma molekulární genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace DNA RNA
Nukleové kyseliny. Nukleové kyseliny. Genetická informace. Gen a genom. Složení nukleových kyselin. Centrální dogma molekulární biologie
Centrální dogma molekulární biologie ukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Transkripce D R Translace rotein Mendel) Replikace 1869 objev nukleových kyselin (Miescher) 1944 nukleové kyseliny
2. Z následujících tvrzení, týkajících se prokaryotické buňky, vyberte správné:
Výběrové otázky: 1. Součástí všech prokaryotických buněk je: a) DNA, plazmidy b) plazmidy, mitochondrie c) plazmidy, ribozomy d) mitochondrie, endoplazmatické retikulum 2. Z následujících tvrzení, týkajících
Proteiny Genová exprese. 2013 Doc. MVDr. Eva Bártová, Ph.D.
Proteiny Genová exprese 2013 Doc. MVDr. Eva Bártová, Ph.D. Bílkoviny (proteiny), 15% 1g = 17 kj Monomer = aminokyseliny aminová skupina karboxylová skupina α -uhlík postranní řetězec Znát obecný vzorec
Struktura nukleových kyselin Vlastnosti genetického materiálu
Struktura nukleových kyselin Vlastnosti genetického materiálu V předcházejících kapitolách bylo konstatováno, že geny jsou uloženy na chromozomech a kontrolují fenotypové vlastnosti a že chromozomy se
Exprese genetické informace
Exprese genetické informace Stavební kameny nukleových kyselin Nukleotidy = báze + cukr + fosfát BÁZE FOSFÁT Nukleosid = báze + cukr CUKR Báze Cyklické sloučeniny obsahující dusík puriny nebo pyrimidiny
Exprese genetické informace
Exprese genetické informace Tok genetické informace DNA RNA Protein (výjimečně RNA DNA) DNA RNA : transkripce RNA protein : translace Gen jednotka dědičnosti sekvence DNA nutná k produkci funkčního produktu
Molekulárn. rní. biologie Struktura DNA a RNA
Molekulárn rní základy dědičnosti Ústřední dogma molekulárn rní biologie Struktura DNA a RNA Ústřední dogma molekulárn rní genetiky - vztah mezi nukleovými kyselinami a proteiny proteosyntéza replikace
Struktura a funkce nukleových kyselin
Struktura a funkce nukleových kyselin ukleové kyseliny Deoxyribonukleová kyselina - DA - uchovává genetickou informaci Ribonukleová kyselina RA - genová exprese a biosyntéza proteinů Složení A stavební
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc.
Garant předmětu GEN: prof. Ing. Jindřich Čítek, CSc. Garant předmětu GEN1: prof. Ing. Václav Řehout, CSc. Další vyučující: Ing. l. Večerek, PhD., Ing. L. Hanusová, Ph.D., Ing. L. Tothová Předpoklady: znalosti
Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová
Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní
Chemická reaktivita NK.
Chemické vlastnosti, struktura a interakce nukleových kyselin Bi7015 Chemická reaktivita NK. Hydrolýza NK, redukce, oxidace, nukleofily, elektrofily, alkylační činidla. Mutageny, karcinogeny, protinádorově
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace
Nukleosidy, nukleotidy, nukleové kyseliny, genetická informace Centrální dogma Nukleové kyseliny Fosfátem spojené nukleotidy (cukr s navázanou bází a fosfátem) Nukleotidy Nukleotidy stavební kameny nukleových
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Nukleové kyseliny Replikace Transkripce, RNA processing Translace
ukleové kyseliny Replikace Transkripce, RA processing Translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti
Typy nukleových kyselin. deoxyribonukleová (DNA); ribonukleová (RNA).
Typy nukleových kyselin Existují dva typy nukleových kyselin (NA, z anglických slov nucleic acid): deoxyribonukleová (DNA); ribonukleová (RNA). DNA je lokalizována v buněčném jádře, RNA v cytoplasmě a
Genetický kód. Jakmile vznikne funkční mrna, informace v ní obsažená může být ihned použita pro syntézu proteinu.
Genetický kód Jakmile vznikne funkční, informace v ní obsažená může být ihned použita pro syntézu proteinu. Pravidla, kterými se řídí prostřednictvím přenos z nukleotidové sekvence DNA do aminokyselinové
Aminokyseliny. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín. Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití
Aminokyseliny Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 18.7.2012 3. ročník čtyřletého G Určování postranních řetězců aminokyselin
TRANSLACE - SYNTÉZA BÍLKOVIN
TRANSLACE - SYNTÉZA BÍLKOVIN Translace - překlad genetické informace z jazyka nukleotidů do jazyka aminokyselin podle pravidel genetického kódu. Genetický kód - způsob zápisu genetické informace Kód Morseovy
Centrální dogma molekulární biologie
řípravný kurz LF MU 2011/12 Centrální dogma molekulární biologie Nukleové kyseliny 1865 zákony dědičnosti (Johann Gregor Mendel) 1869 objev nukleových kyselin (Miescher) 1944 genetická informace v nukleových
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Vztah struktury a funkce nukleových kyselin. Replikace, transkripce
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Vztah struktury a funkce nukleových kyselin. Replikace, transkripce Nukleová kyselina gen základní jednotka informace v živých systémech,
REPLIKACE A REPARACE DNA
REPLIKACE A REPARACE DNA 1 VÝZNAM REPARACE DNA V MEDICÍNĚ Příklad: Reparace DNA: enzymy reparace nukleotidovou excizí Onemocnění: xeroderma pigmentosum 2 3 REPLIKACE A REPARACE DNA: Replikace DNA: 1. Podstata
Biosyntéza a metabolismus bílkovin
Bílkoviny Biosyntéza a metabolismus bílkovin lavní stavební materiál buněk a tkání Prakticky jediný zdroj dusíku pro heterotrofní organismy eexistují zásobní bílkoviny nutný dostatečný přísun v potravě
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Molekulární genetika (Molekulární základy dědičnosti) 0 Gen - historie 1909 Johanssen
Obecná struktura a-aminokyselin
AMINOKYSELINY Obsah Obecná struktura Názvosloví, třídění a charakterizace Nestandardní aminokyseliny Reaktivita - peptidová vazba Biogenní aminy Funkce aminokyselin Acidobazické vlastnosti Optická aktivita
Nukleové kyseliny Milan Haminger BiGy Brno 2017
ukleové kyseliny Milan aminger BiGy Brno 2017 ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto
Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto SUBSTITUČNÍ DERIVÁTY KARBOXYLOVÝCH O KYSELIN R C O X karboxylových kyselin - substituce na vedlejším uhlovodíkovém řetězci aminokyseliny - hydroxykyseliny
PROTEINY. Biochemický ústav LF MU (H.P.)
PROTEINY Biochemický ústav LF MU 2013 - (H.P.) 1 proteiny peptidy aminokyseliny 2 Aminokyseliny 3 Charakteristika základní stavební jednotky proteinů geneticky kódované 20 základních aminokyselin 4 a-aminokyselina
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Metabolismus aminokyselin. Vladimíra Kvasnicová
Metabolismus aminokyselin Vladimíra Kvasnicová Aminokyseliny aminokyseliny přijímáme v potravě ve formě proteinů: důležitá forma organicky vázaného dusíku, který tak může být v těle využit k syntéze dalších
NaLékařskou.cz Přijímačky nanečisto
alékařskou.cz Chemie 2016 1) Vyberte vzorec dichromanu sodného: a) a(cr 2 7) 2 b) a 2Cr 2 7 c) a(cr 2 9) 2 d) a 2Cr 2 9 2) Vypočítejte hmotnostní zlomek dusíku v indolu. a) 0,109 b) 0,112 c) 0,237 d) 0,120
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová
Metabolismus aminokyselin - testík na procvičení - Vladimíra Kvasnicová Vyberte esenciální aminokyseliny a) Asp, Glu b) Val, Leu, Ile c) Ala, Ser, Gly d) Phe, Trp Vyberte esenciální aminokyseliny a) Asp,
Aminokyseliny, peptidy a bílkoviny
Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v
Metabolismus bílkovin. Václav Pelouch
ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Metabolismus bílkovin Václav Pelouch kapitola ve skriptech - 3.2 Výživa Vyvážená strava člověka musí obsahovat: cukry (50 55 %) tuky (30 %) bílkoviny (15 20 %)
Svět RNA a bílkovin. RNA svět, 1. polovina. RNA svět. Doporučená literatura. Struktura RNA. Transkripce. Regulace transkripce.
RNA svět, 1. polovina Struktura RNA Regulace transkripce Zrání pre-mrna Svět RNA a bílkovin Sestřih pre-mrna Transport a lokalizace RNA Stabilita RNA Doporučená literatura RNA svět Alberts B., et al.:
Struktura a funkce biomakromolekul
Struktura a funkce biomakromolekul KBC/BPOL 7. Interakce DNA/RNA - protein Ivo Frébort Interakce DNA/RNA - proteiny v buňce Základní dogma molekulární biologie Replikace DNA v E. coli DNA polymerasa a
Bílkoviny - proteiny
Bílkoviny - proteiny Proteiny jsou složeny z 20 kódovaných aminokyselin L-enantiomery Chemická struktura aminokyselin R představuje jeden z 20 různých typů postranních řetězců R Hlavní řetězec je neměnný
ENZYMY A NUKLEOVÉ KYSELINY
ENZYMY A NUKLEOVÉ KYSELINY Autor: Mgr. Stanislava Bubíková Datum (období) tvorby: 28. 3. 2013 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Organické sloučeniny 1 Anotace: Žáci se seznámí
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Molekulární genetika (Molekulární základy dědičnosti)
Molekulární genetika (Molekulární základy dědičnosti) Struktura nukleové kyseliny Cukerná pentóza: 2-deoxy-D-ribóza D-ribóza Fosfátový zbytek: PO 4 3- Purin Pyrimidin Dusíkatá báze Adenin Guanin Tymin
GENETIKA dědičností heredita proměnlivostí variabilitu Dědičnost - heredita podobnými znaky genetickou informací Proměnlivost - variabilita
GENETIKA - věda zabývající se dědičností (heredita) a proměnlivostí (variabilitu ) živých soustav - sleduje rozdílnost a přenos dědičných znaků mezi rodiči a potomky Dědičnost - heredita - schopnost organismu
6. Nukleové kyseliny
6. ukleové kyseliny ukleové kyseliny jsou spolu s proteiny základní a nezbytnou složkou živé hmoty. lavní jejich funkce je uchování genetické informace a její přenos do dceřinné buňky. ukleové kyseliny
Určení molekulové hmotnosti: ESI a nanoesi
Cvičení Určení molekulové hmotnosti: ESI a nanoesi ) 1)( ( ) ( H m z H m z M k j j j m z z zh M Molekula o hmotnosti M se nabije z-krát protonem, pík iontu ve spektru je na m z : ) ( H m z M z Pro dva
Hemoglobin a jemu podobní... Studijní materiál. Jan Komárek
Hemoglobin a jemu podobní... Studijní materiál Jan Komárek Bioinformatika Bioinformatika je vědní disciplína, která se zabývá metodami pro shromážďování, analýzu a vizualizaci rozsáhlých souborů biologických
Exprese genetického kódu Centrální dogma molekulární biologie DNA RNA proteinu transkripce DNA mrna translace proteosyntéza
Exprese genetického kódu Centrální dogma molekulární biologie - genetická informace v DNA -> RNA -> primárního řetězce proteinu 1) transkripce - přepis z DNA do mrna 2) translace - přeložení z kódu nukleových
Základy molekulární a buněčné biologie. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy molekulární a buněčné biologie Přípravný kurz Komb.forma studia oboru Všeobecná sestra Genetický aparát buňky DNA = nositelka genetické informace - dvouvláknová RNA: jednovláknová mrna = messenger
19.b - Metabolismus nukleových kyselin a proteosyntéza
19.b - Metabolismus nukleových kyselin a proteosyntéza Proteosyntéza vyžaduje především zajištění primární struktury. Informace je uložena v DNA (ev. RNA u některých virů) trvalá forma. Forma uskladnění
Metabolismus proteinů a aminokyselin
Metabolismus proteinů a aminokyselin Proteiny jsou nejdůležitější složkou potravy všech živočichů, nelze je nahradit ani cukry, ani lipidy. Je to proto, že organismus živočichů nedokáže ve svých metabolických
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
DUM č. 10 v sadě. 37. Bi-2 Cytologie, molekulární biologie a genetika
projekt GML Brno Docens DUM č. 10 v sadě 37. Bi-2 Cytologie, molekulární biologie a genetika Autor: Martin Krejčí Datum: 26.06.2014 Ročník: 6AF, 6BF Anotace DUMu: Procesy následující bezprostředně po transkripci.
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2011 - podobor genetiky (genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann Gregor
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomakromolekuly l proteiny l nukleové kyseliny l polysacharidy l lipidy... měli bychom znát stavební kameny života Biomolekuly l proteiny l A DA, RA l lipidy l
Jsme tak odlišní. Co nás spojuje..? Nukleové kyseliny
Jsme tak odlišní Co nás spojuje..? ukleové kyseliny 1 UKLEVÉ KYSELIY = K anj = A ositelky genetických informací Základní význam pro všechny organismy V buňkách a virech Identifikace v buněčném jádře (nucleos)
Tomáš Oberhuber. Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague Buňka buňka je základní stavební prvek všech živých organismů byla objevena Robertem Hookem roku 1665 jednodušší
Nukleové kyseliny. obecný přehled
Nukleové kyseliny obecný přehled Nukleové kyseliny objeveny r.1868, izolovány koncem 19.stol., 1953 objasněno jejich složení Watsonem a Crickem (1962 Nobelova cena) biopolymery nositelky genetické informace
Vazebné interakce protein s DNA
Vazebné interakce protein s DNA Vazebné možnosti vn jší vazba atmosféra + iont kolem nabité DNA vazba ve žlábku van der Waalsovský kontakt s lé ivem ve žlábku interkalace vmeze ení planárního aromat.
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Čudejková 2. Transkripce genu a její regulace Transkripce genetické informace z DNA na RNA Transkripce dvou genů zachycená na snímku z elektronového mikroskopu.
Úvod do studia biologie. Základy molekulární genetiky
Úvod do studia biologie Základy molekulární genetiky Katedra biologie PdF MU, 2010 Mendel - podobor Genetiky (Genetika je obecnější) Genetika: - nauka o dědičnosti a proměnlivosti - věda 20. století Johann
Projekt SIPVZ č.0636p2006 Buňka interaktivní výuková aplikace
Nukleové kyseliny Úvod Makromolekulární látky, které uchovávají a přenášejí informaci. Jsou to makromolekulární látky uspořádané do dlouhých. Řadí se mezi tzv.. Jsou přítomny ve buňkách a virech. Poprvé
1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu
Test pro přijímací řízení magisterské studium Biochemie 2019 1. Napište strukturní vzorce aminokyselin D a Y a vzorce adenosinu a thyminu U dalších otázek zakroužkujte správné tvrzení (pouze jedna správná
Bílkoviny. Charakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny
Bílkoviny harakteristika a význam Aminokyseliny Peptidy Struktura bílkovin Významné bílkoviny 1) harakteristika a význam Makromolekulární látky složené z velkého počtu aminokyselinových zbytků V tkáních
Gymnázium, Brno, Elgartova 3
Gymnázium, Brno, Elgartova 3 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: GE Vyšší kvalita výuky Číslo projektu: CZ.1.07/1.5.00/34.0925 Autor: Mgr. Hana Křivánková Téma:
Chemie nukleotidů a nukleových kyselin. Centrální dogma molekulární biologie (existují vyjímky)
Chemie nukleotidů a nukleových kyselin Centrální dogma molekulární biologie (existují vyjímky) NH 2 N N báze O N N -O P O - O H 2 C H H O H H cukr OH OH nukleosid nukleotid Nukleosidy vznikají buď syntézou
POLYPEPTIDY. Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy.
POLYPEPTIDY Provitaminy = organické sloučeniny bez vitaminózního účinku, které se v živočišném těle mění působením ÚV záření nebo enzymů na vitaminy. Hormony = katalyzátory v živočišných organismech (jsou
NUKLEOVÉ KYSELINY. Složení nukleových kyselin. Typy nukleových kyselin:
NUKLEOVÉ KYSELINY Deoxyribonukleová kyselina (DNA, odvozeno z anglického názvu deoxyribonucleic acid) Ribonukleová kyselina (RNA, odvozeno z anglického názvu ribonucleic acid) Definice a zařazení: Nukleové
Struktura biomakromolekul
Struktura biomakromolekul ejvýznamnější biomolekuly proteiny nukleové kyseliny polysacharidy lipidy... měli bychom znát stavební kameny života Proteiny Aminokyseliny tvořeny aminokyselinami L-α-aminokyselinami
Přírodní polymery proteiny
Přírodní polymery proteiny Funkční úloha bílkovin 1. Funkce dynamická transport kontrola metabolismu interakce (komunikace, kontrakce) katalýza chemických přeměn 2. Funkce strukturální architektura orgánů
Nukleové kyseliny Replikace Transkripce translace
Nukleové kyseliny Replikace Transkripce translace Prokaryotická X eukaryotická buňka Hlavní rozdíl organizace genetického materiálu (u prokaryot není ohraničen) Život závisí na schopnosti buněk skladovat,
Molekulární základ dědičnosti
Molekulární základ dědičnosti Dědičná informace je zakódována v deoxyribonukleové kyselině, která je uložena v jádře buňky v chromozómech. Zlomovým objevem pro další rozvoj molekulární genetiky bylo odhalení
Vzdělávací materiál. vytvořený v projektu OP VK. Anotace. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu:
Vzdělávací materiál vytvořený v projektu VK ázev školy: Gymnázium, Zábřeh, náměstí svobození 20 Číslo projektu: ázev projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz Z.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Funkční
Aminokyseliny příručka pro učitele. Obecné informace: Téma otevírá kapitolu Bílkoviny, která svým rozsahem překračuje rámec jedné vyučovací hodiny.
Obecné informace: Aminokyseliny příručka pro učitele Téma otevírá kapitolu Bílkoviny, která svým rozsahem překračuje rámec jedné vyučovací hodiny. Navazující učivo Před probráním tématu Aminokyseliny probereme
jedné aminokyseliny v molekule jednoho z polypeptidů hemoglobinu
Translace a genetický kód Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny Srpkovitý tvar červených krvinek u srpkovité anémie: důsledek záměny jedné aminokyseliny v molekule jednoho
b) Jak se změní sekvence aminokyselin v polypeptidu, pokud dojde v pozici 23 k záměně bázového páru GC za TA (bodová mutace) a s jakými následky?
1.1: Gén pro polypeptid, který je součástí peroxidázy buku lesního, má sekvenci 3'...TTTACAGTCCATTCGACTTAGGGGCTAAGGTACCTGGAGCCCACGTTTGGGTCATCCAG...5' 5'...AAATGTCAGGTAAGCTGAATCCCCGATTCCATGGACCTCGGGTGCAAACCCAGTAGGTC...3'
Aminokyseliny, struktura a vlastnosti bílkovin. doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie
Aminokyseliny, struktura a vlastnosti bílkovin doc. Jana Novotná 2 LF UK Ústav lékařské chemie a klinické biochemie 1. 20 aminokyselin, kódovány standardním genetickým kódem, proteinogenní, stavebními
Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno:
Bruno Sopko Rychlost chemické reakce je dána změnou Gibbsovy energie a aktivační energií: Tudíž zrychlení reakce pomocí katalýzy může být vyjádřeno: Z předchozí rovnice vyplývá: Pokud katalýza při 25
15. Základy molekulární biologie
15. Základy molekulární biologie DNA je zkratka pro kyselinu deoxyribonukleovou, která je nositelkou genetické informace všech živých buněčných organismů. Je tedy nezbytná pro život pomocí svých informací
Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Biosyntéza nukleových kyselin. VY_32_INOVACE_Ch0219.
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek
První testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
Biologie buňky. systém schopný udržovat se a rozmnožovat
Biologie buňky 1665 - Robert Hook (korek, cellulae = buňka) Cytologie - věda zabývající se studiem buňek Buňka ozákladní funkční a stavební jednotka živých organismů onejmenší známý uspořádaný dynamický
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_CHE_413 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti. Translace, techniky práce s DNA
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Translace, techniky práce s DNA Translace překlad z jazyka nukleotidů do jazyka aminokyselin dá se rozdělit na 5 kroků aktivace aminokyslin
Bílkoviny a rostlinná buňka
Bílkoviny a rostlinná buňka Bílkoviny Rostliny --- kontinuální diferenciace vytváření orgánů: - mitotická dělení -zvětšování buněk a tvorba buněčné stěny syntéza bílkovin --- fotosyntéza syntéza bílkovin
Základy molekulární biologie KBC/MBIOZ
Základy molekulární biologie KBC/MBIOZ Mária Majeská Čudejková 3. Proteosyntéza Centrální dogma molekulární biologie Rozluštění genetického kódu in vitro Marshall Nirenberg a Heinrich Matthaei zjistili,
ÚVOD DO BIOCHEMIE. Dělení : 1)Popisná = složení org., struktura a vlastnosti látek 2)Dynamická = energetické změny
BIOCHEMIE 1 ÚVOD DO BIOCHEMIE BCH zabývá se chemickými procesy v organismu a chemickým složením živých organismů Biologie: bios = život + logos = nauka Biochemie: bios = život + chemie Dělení : Chemie
Nukleové kyseliny Replikace DNA Doc. MVDr. Eva Bártová, Ph.D.
Nukleové kyseliny Replikace DNA 2013 Doc. MVDr. Eva Bártová, Ph.D. Nukleové kyseliny 7% cytozin Monomer: NUKLEOTID, tvoří jej: uracil kyselina fosforečná pentóza (ribóza, deoxyribóza) tymin organická dusíkatá
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE
TEST: GENETIKA, MOLEKULÁRNÍ BIOLOGIE 1) Důležitým biogenním prvkem, obsaženým v nukleových kyselinách nebo ATP a nezbytným při tvorbě plodů je a) draslík b) dusík c) vápník d) fosfor 2) Sousedící nukleotidy
CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY. Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy, oligosacharidy, hexosaminy, nukleotidy, voda
CHEMICKÉ SLOŽENÍ BAKTERIÁLNÍ BUŇKY Prvky : Makrobiogenní C, H, O, N, S, P, K, Na, Mg Mikrobiogenní - Fe, Cu, Mn, Co, F, Br, Si, Sr, Va, Zn, Ba Sloučeniny: Nízkomolekulární: aminokyseliny, monosacharidy,
a) Primární struktura NK NUKLEOTIDY Monomerem NK jsou nukleotidy
1 Nukleové kyseliny Nukleové kyseliny (NK) sice tvoří malé procento hmotnosti buňky ale významem v kódování genetické informace a její expresí zcela nezbytným typem biopolymeru všech živých soustav a)
Metabolismus mikroorganismů
Metabolismus mikroorganismů Metabolismus organismů Souvisí s metabolismem polysacharidů, bílkovin, nukleových kyselin a lipidů Cytoplazma, mitochondrie (matrix, membrána) H 3 PO 4 Polysacharidy Pentózový
Obecná biologie - přednášky
Obecná biologie - přednášky 1) Biogenní prvky H, C, N, O, P, S jsou základem látek nezbytných pro život H, C, O (N) jsou obsaženy v sacharidech H, C, O, (P) jsou obsaženy v lipidech H, C, N, O, S vytvářejí
Předmět: KBB/BB1P; KBB/BUBIO
Předmět: KBB/BB1P; KBB/BUBIO Chemické složení buňky Cíl přednášky: seznámit posluchače se složením buňky po chemické stránce Klíčová slova: biogenní prvky, chemické vazby a interakce, uhlíkaté sloučeniny,
Metabolizmus aminokyselin II
Metabolizmus aminokyselin II Ústav lékařské chemie a klinické biochemie 2.LF UK a FN Motol MUDr. Bc. Matej Kohutiar, Ph.D. matej.kohutiar@lfmotol.cuni.cz Praha 2018 Degradace uhlíkové kostry aminokyselin
Procvičování aminokyseliny, mastné kyseliny
Procvičování aminokyseliny, mastné kyseliny Co je hlavním mechanismem pro odstranění aminoskupiny před odbouráváním většiny aminokyselin: a. oxidativní deaminace b. transaminace c. dehydratace d. působení
Eva Benešová. Genetika
Eva Benešová Genetika Význam nukleotidů - Energetický metabolismus (oběh energie). - Propojení odpovědi buňky na hormony a další stimuly. - Komponenty enzymových kofaktorů a dalších metabolických intermediátů.
Aminokyseliny. Peptidy. Proteiny.
Aminokyseliny. Peptidy. Proteiny. Struktura a vlastnosti aminokyselin 1. Zakreslete obecný vzorec -aminokyseliny. Která z kodovaných aminokyselin se z tohoto vzorce vymyká? 2. Které aminokyseliny mají