Řízená akumulace tepla pro chlazení budov



Podobné dokumenty
Miloš Lain, Vladimír Zmrhal, František Drkal, Jan Hensen Ústav techniky prostředí, Fakulta strojní, České vysoké učení technické v Praze

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

SOFTWARE PRO STAVEBNÍ FYZIKU

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Stavební tepelná technika 1 - část A Jan Tywoniak ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Stavební fyzika (L)

Výpočet potřeby tepla na vytápění

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

IDENTIFIKAČNÍ ÚDAJE ZAKÁZKY ZHOTOVITEL: Thákurova 7, Praha 6, IČO: , DIČ:

Optimalizace teplosměnné plochy kondenzátoru brýdových par ze sušení biomasy

Ověřovací nástroj PENB MANUÁL

POČÍTAČOVÝ PROGRAM KOLEKTOR 2.1 PRO MODELOVÁNÍ SOLÁRNÍCH KOLEKTORŮ

Pohled na energetickou bilanci rodinného domu

SOLÁRNÍ SYSTÉM S DLOUHODOBOU AKUMULACÍ TEPLA VE SLATIŇANECH ANALÝZA PROVOZU

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY

VÝPOČET TEPELNÝCH ZTRÁT

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

NÁVRH DIMENZÍ ZEMNÍCH VÝMĚNÍKŮ TEPLA

M T I B A ZÁKLADY VEDENÍ TEPLA 2010/03/22

MODEL DYNAMICKÉHO TEPELNÉHO CHOVÁNÍ KONSTRUKČNÍCH DETAILŮ

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Vliv prosklených ploch na vnitřní pohodu prostředí

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 8

VÝPOČET TEPELNÝCH ZTRÁT

Numerická simulace přestupu tepla v segmentu výměníku tepla

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

OPTIMALIZACE PROVOZU OTOPNÉ SOUSTAVY BUDOVY PRO VZDĚLÁVÁNÍ PO JEJÍ REKONSTRUKCI

Průměrný součinitel prostupu tepla budovy

OPERATIVNÍ TEPLOTA V PROSTORU S CHLADICÍM STROPEM

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY (PENB) DLE VYHLÁŠKY 78/2013 Sb. O ENERGETICKÉ NÁROČNOSTI BUDOV. BYTOVÝ DŮM Křivoklátská ul., Praha 18 - Letňany

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

TZB Městské stavitelsví

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

ENS. Nízkoenergetické a pasivní stavby. Cvičení č. 4. Vysoká škola technická a ekonomická V Českých Budějovicích

9.1 Okrajové podmínky a spotřeba energie na ohřev teplé vody

N_SFB. Stavebně fyzikální aspekty budov. Přednáška č. 3. Vysoká škola technická a ekonomická V Českých Budějovicích

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

Porovnání tepelných ztrát prostupem a větráním

1/58 Solární soustavy

Průkaz energetické náročnosti budovy

BIM & Simulace CFD simulace ve stavebnictví. Ing. Petr Fischer

Energetická certifikace budov v ČR

Průkaz energetické náročnosti budovy

člen Centra pasivního domu

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÝ PŘÍKLAD KE CVIČENÍ II.

Šíření tepla. Obecnéprincipy

vydaný podle zákona č. 406/2000 Sb., o hospodaření energií, a vyhlášky č. 78/2013 Sb., o energetické náročnosti budov Měrné hodnoty kwh/(m 2 rok)

Vysoká škola technická a ekonomická V Českých Budějovicích. Energetický audit budov EAB. Seminář č. 4. Ing. Michal Kraus, Ph.D. Katedra stavebnictví

Účinnost užití energie základní pojmy

ÚSPORY ENERGIE PŘI CHLAZENÍ VENKOVNÍHO VZDUCHU

Ventilace a rekuperace haly

Simulace letního a zimního provozu dvojité fasády

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

( ) , w, w EXPERIMENTÁLNÍ A SIMULAČNÍ STANOVENÍ TEPLOT URČUJÍCÍCH TEPELNÝ KOMFORT

VÝSLEDKY OVĚŘOVÁNÍ ZEMNÍHO MASIVU JAKO ZDROJE ENERGIE PRO TEPELNÁ ČERPADLA. Technická fakulta České zemědělské univerzity v Praze

Protokol k průkazu energetické náročnosti budovy

VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 9

Průkaz 2013 v PROTECH spol. s r.o Satrapa Jiří - Praha Datum tisku: Identifikační údaje budovy

Budova užívaná orgánem veřejné moci Pronájem budovy nebo její části Jiná než větší změna dokončené budovy

Energetická náročnost budov

CFD. Společnost pro techniku prostředí ve spolupráci s ČVUT v Praze, Fakultou strojní, Ústavem techniky prostředí

ENERGETICKÉ VÝPOČTY. 125ESB1,ESBB 2011/2012 prof.karel Kabele

Protokol k průkazu energetické náročnosti budovy

196,0 244,2. Neobnovitelná primární energie (Vliv provozu budovy na životní prostředí) Celková dodaná energie (Energie na vstupu do budovy)

Reflexní parotěsná fólie SUNFLEX Roof-In Plus v praktické zkoušce

Lineární činitel prostupu tepla

Energetické systémy budov 1

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška A3. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

108,2 121,9. Neobnovitelná primární energie (Vliv provozu budovy na životní prostředí) Celková dodaná energie (Energie na vstupu do budovy)

Statutární město Brno Dominikánské náměstí 196/1, Brno-město, Brno. Energetický specialista:

Komplexní vzdělávací program pro podporu environmentálně šetrných technologií ve výstavbě a provozování budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Zakázka číslo: StaJ. Energetická studie pro program Zelená úsporám. Bytový dům Královická Brandýs nad Labem Stará Boleslav

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY bytový dům Řehořov 72, Jihlava

Protokol k průkazu energetické náročnosti budovy

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

Nezávislost na dodavatelích tepla možnosti, příklady. Tomáš Matuška Ústav techniky prostředí Fakulta strojní, ČVUT v Praze

148,4 179,4. Neobnovitelná primární energie (Vliv provozu budovy na životní prostředí) Celková dodaná energie (Energie na vstupu do budovy)

Protokol k průkazu energetické náročnosti budovy

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Protokol k průkazu energetické náročnosti budovy

AKADEMIE ZATEPLOVÁNÍ. Není izolace jako izolace, rozdělení minerálních izolací dle účelu použití. Marcela Jonášová Asociace výrobců minerální izolace

Protokol k průkazu energetické náročnosti budovy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Identifikační údaje budovy. Typ budovy

Protokol k průkazu energetické náročnosti budovy

Protokol k průkazu energetické náročnosti budovy

Vliv EPBD II, zákona o hospodaření energií a vyhlášky o energetické náročnosti budov na obálku budov

Průkaz energetické náročnosti budovy

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební. Laboratoře TZB

1,0 6,3 34,8. Dílčí dodané energie Měrné hodnoty kwh(m 2 rok) U em W/(m 2 K) Hodnoty pro celou budovu MWh/rok. Vnější stěny: Okna a dveře: Střechu:

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

PROCESY V TECHNICE BUDOV 11

Obnovitelné zdroje energie Budovy a energie

Transkript:

Řízená akumulace tepla pro chlazení budov Pavel Kopecký, ČVUT v Praze, Fakulta stavební, Katedra konstrukcí pozemních staveb, pavel.kopecky@fsv.cvut.cz Úvod Budoucí systémy vytápění a chlazení budov se budou muset stále více orientovat na přírodní zdroje energie, jako například venkovní vzduch nebo zeminu. Pro klimatické podmínky ČR je venkovní vzduch v letním období dostatečně chladný pouze v nočních hodinách. Pro využití nočního vzduchu ke chlazení budov během dne je proto potřebná krátkodobá akumulace chladu. Obvyklým způsobem takové akumulace je noční předchlazení stavebních konstrukcí uvnitř budovy. Podstatnou nevýhodou je obtížná řiditelnost a pomalost tohoto procesu, poněvadž přestup tepla spoléhá na přirozenou konvekci. Možnou eliminací této nevýhody by mohlo být využití řízené akumulace tepla pomocí výměníku vzduch/hmota (viz obrázek 1). Jeho princip je založen na střídání nuceného ohřívání hmoty výměníku (odvedení denních tepelných zisků) a ochlazování hmoty (vyrovnání energetické bilance výměníku pomocí chladného nočního vzduchu). Jelikož průtok vzduchu přes výměník je vyvoláván nuceně, nabízí se možnost dokonalejšího řízení procesu nabíjení a vybíjení. Výměník může navíc být vhodně integrován do stavebních prvků (např. stěna, stropní panel [1], podlaha) a nemusí tedy nutně znamenat navýšení nákladů stavby. Nevýhodou je, že výkon chlazení je závislý na teplotě venkovního vzduchu během předešlé noci. Prožitá zkušenost posledních let (např. období veder v roce 2003 a 2006) ukazuje, že noční teploty v těchto obdobích nemusejí klesat pod 20 C, zejména v městské zástavbě. Alternativní techniky chlazení založené na využití nočních teplot proto v těchto extrémních obdobích nelze přeceňovat. Na provoz zařízení je navíc potřeba drahá elektrická energie, která je v současnosti přeměňovaná zejména z neobnovitelných zdrojů energie s negativními důsledky pro životní prostředí. Proto bude velmi důležitá optimalizace vztahu výkon vs. spotřeba. Vlastní technický návrh zařízení je multikriteriální a netriviální úloha. větrání vnější vzduch 32 C den chlazení zóny 20 C výměník vzduch/hmota postupné ohřívání hmoty 26 27 C vnitřní vzduch větrání vnější vzduch 16 C Tepelná izolace Akumulační hmota Vzduch noc chlazení výměníku vnitřní vzduch výměník vzduch/hmota postupné ochlazování hmoty Obrázek 1: Cirkulační režim výměníku vzduch/hmota schématický nákres

Model výměníku vzduch/hmota V literatuře lze nalézt řadu modelů pro štěrkové zásobníky tepla, tzv. packed beds. Cílem je představit postup, jak je v Simulinku možné implementovat jednoduchý model popsaný systémem obyčejných diferenciálních rovnic. Základní popis: Modelovaný systém je výměník tepla vzduch/hmota celkové délky L s vnější adiabatickou hranicí (obrázek 2). Část základního kvádru s průřezovou plochou A o objemu Adx je vyplněna akumulační hmotou o objemu V s a teplosměnnou plochou A s. m a c a T in T s dx T a B B C A=B*C T in Tepelná izolace 1/m a c a C s T s 1/h conv T a C a Obrázek 2: Schéma výměníku vzduch hmota a elektrická analogie reprezentující jeho zjednodušený model Předpoklady: a) Hmota v segmentu je nahrazena pouze jedním teplotním uzlem T s s tepelnou kapacitou C s. Toto zjednodušení je možné za předpokladu, že teplotní gradient mezi povrchem hmoty a vnitřkem hmoty je zanedbatelný. b) Vedení tepla ve směru podélné osy je zanedbatelné. c) Hmotnostní průtok přes výměník m a [kg/s] je rovnoměrně rozložený v celé průřezové ploše a vede k rychlosti proudění v a [m/s] ve výměníku a rychlosti v a0 v kanále o průřezové ploše A: v v m = a a ηaρ (1) a a0 m a = (2) Aρa kde: η je poměr plochy vzduchu k celkové průřezové ploše [-] A celková průřezová plocha [m 2 ] ρ a objemová hmotnost vzduchu [kg/m 3 ] Řídící rovnice: tepelná bilance v uzlu T a : dta Ca = maca( Tin Ta) Ashconv ( Ta Ts) dt [W] (3) tepelná bilance v uzlu T s : dts Cs = Ashconv ( Ta Ts) dt [W] (4) kde:

T a je teplota vzduchu [ C] C a tepelná kapacita uzlu - vzduch [J/K] T s teplota hmoty [ C] C s tepelná kapacita uzlu - hmota [J/K] T in teplota vzduchu na vstupu [ C] h conv součinitel přestupu tepla mezi vzduchem a hmotou [W/(m 2.K)] t čas [s] Kapacity C a a C s jsou definovány jako: C = ρ c ηadx [J/K] (5) a a a Cs = ρ (1 ) scs η Adx [J/K] (6) kde: c a je měrná tepelná kapacita vzduchu [J/(kg.K)] ρ s objemová hmotnost akumulačního materiálu [kg/m 3 ] c s měrná tepelná kapacita akumulačního materiálu [J/(kg.K)] Povšimněme si ještě následujících skutečností: a) Model umožňuje zabývat se obecným uspořádáním akumulační hmoty výměníku. b) Dílčí problémy jako výpočet součinitele přestupu tepla konvekcí h conv, výpočet teplosměnné plochy A s, např. u boxů vyplněných štěrkem nebo kulovými částicemi, zde nejsou popisovány. c) Tepelná vodivost akumulačního materiálu λ s není vstupním parametrem do modelu, což je důsledkem modelového předpokladu nulového teplotního gradientu mezi povrchem a vnitřkem hmoty. Platnost tohoto předpokladu lze ověřit splněním podmínky, viz [2]: L c Bi = d 0.2 [-] (7) kde: Bi je Biotovo číslo [-] L c charakteristická délka [m], která je pro modelovaný případ aproximována jako: V L 2 s c = As [m] (8) d je poměr: d λ s = [m] (9) hconv Podmínka (7) patrně nebude vždy dokonale splněna, s důsledky pro přesnost modelu. Reprezentace modelu v Simulinku: Grafická reprezentace řídících rovnic v Simulinku je zobrazena na obrázku 3.

Obrázek 3: Reprezentace řídících rovnic v Simulinku, subsystém popisující jeden segment výměníku dle obr. 2 Analytická validace: Validace je důležitou součástí tvorby jakéhokoliv modelu, protože umožní odstranit základní chyby a otestovat vyvinutý výpočetní nástroj. Analytické řešení publikované v [3] bylo využito k validaci vytvořeného zjednodušeného modelu. Modelovány byly následující případy, viz tabulka 1. Tabulka 1: Konfigurace výměníků použité pro validaci modelu označení L [m] B [m] C [m] η [-] A s [m 2 ] V a [m 3 /h] v a0 [m/s] v a [m/s] h conv [W/m 2.K] v1 3 0.25 0.25 0.44 5.25 100 0.44 1.00 10 v2 12 0.25 0.25 0.44 21.0 100 0.44 1.00 10 v3 3 0.25 0.25 0.16 15.75 100 0.44 2.78 10 v4 12 0.25 0.25 0.16 63.0 100 0.44 2.78 10 v5 3 0.25 0.25 0.16 15.75 33.3 0.15 0.93 10 vlastnosti materiálu: λ s = 1,5 W/(m.K), ρ s = 2500 kg/m 3, c s = 1000 J/(kg.K) výměník délky L byl rozdělen na 30 podélných segmentů Obrázek 4: Porovnání numerického řešení s výsledky z analytického modelu (#anal výsledky z analytického řešení, #num výsledky numerického modelu) Shoda výsledků numerického výpočtu s výsledky analytického modelu je poměrně dobrá, i když zdaleka ne perfektní (obrázek 4). Chování skutečných výměníků bude navíc zatíženo vlivy, které nebyly ve formulaci numerického ale ani analytického

modelu zohledněny (např. vedení tepla v podélném směru, nedokonalost adiabatické hranice a zejména nerovnoměrnost průtoku v průřezu). Případová studie využití řízené akumulace tepla pro chlazení budov Cílem případové studie je implementovat termický model cirkulace vzduchu přes výměník vzduch-hmota do modelu budovy vytvořeném v HAMbase. Originální model HAMbase upravili jeho autoři do podoby tzv. S-funkce [4], s kterou dokáže Simulink pracovat. Popis budovy: Geometrie simulované budovy (obrázek 5) je převzata z [5], uvažován však je odlišný podíl prosklení, více odpovídající běžným hodnotám (přibližně 40 %). Obvodové stěny a střechu tvoří 2 cm sádrokartonu, 25 cm tepelná izolace z minerálních vláken. Podlaha je tvořena 2,5 cm nášlapné vrstvy z dřevěných fošen, 25 cm tepelné izolace z minerálních vláken, 20 cm betonové desky a 100 cm vrstvy zeminy, na jejíž spodní straně je umístěna izotermická okrajová podmínka 10 C. Uvnitř zóny nejsou žádné další konstrukce. Okno má součinitel prostupu tepla 1.0 W/(m 2.K) a energetickou propustnost 0.5 v nezastíněném stavu a 0.05 v zastíněném stavu. 6m 8m 2.7m 1.5m 6m Obrázek 5: Simulovaná budova jih Popis modelu: Obvodové konstrukce jsou nahrazeny plochami. Objem vzduchu je vypočten z vnějších rozměrů, aniž by bylo uvažováno s tloušťkami konstrukcí (8 x 6 x 2.7 m). V modelu je předpokládáno 150 W citelných vnitřních zisků sdílených ze 60 % radiací, ze 40 % konvekcí. U varianty s řízenou akumulací tepla je sdílení tepla z tohoto systému uvažováno ze 100 % konvekcí. Pohltivost vnějších povrchů je uvažována 0.6, emisivita pro dlouhovlnnou radiaci je uvažována 0.9. U vnitřních povrchů je uvažováno s průměrnými přestupovými součiniteli 5 W/(m 2.K) pro radiaci a 2.7 W/(m 2.K) pro konvekci. Klimatická data byla využita data z roku 2006, měřená na stanici Praha Karlov. Simulováno bylo období dvacetidvou dnů; začátek simulovaného období byl 1.7.2006. Výpočtové scénáře: var0 základní varianta, bez stínění oken, intenzita větrání 0.3 h -1 konstantní během celého dne; var1 jako var0 s uvažováním stínění oken, které se aktivuje při intenzitě solárního záření 100 W/m 2 dopadajícího na povrch okna a zároveň při teplotě vnitřního vzduchu vyšší než 20 C;

var2 jako var1 s uvažováním nočního větrání (2,5 h -1 ), které může nastat mezi 22:00 a 7:00, toto větrání nenastane, pokud je teplota vnitřního vzduchu nižší než 20 C (v tomto případě zůstává 0,3 h -1 ); var3 jako var2, sádrokarton obvodových konstrukcí a střechy budovy je nahrazen 15 cm monolitického betonu. varpb" jako var2, s cirkulačním chlazením, výměník vzduch/hmota je vytvořen z běžné betonové tvárnice (viz obrázek 6). Je předpokládáno paralelní zapojení čtyř těchto částí, což představuje dvojnásobnou výměnu vzduchu v simulované zóně (4 x 65 m 3 /h). Vlastnosti výměníku viz tabulka 2 a tabulka 3. Rozměry obvodových konstrukcí budovy nebyly nijak upravovány oproti předchozím variantám, výměník je uvažován jako dodatečný prvek, aniž by nahradil část obvodových konstrukcí. Regulace aktivuje cirkulaci vzduchu do zóny mezi 07:00 22:00. Noční vybíjení výměníku nastává tedy pouze po dobu 8 hodin, zato s dvojnásobným průtokem (4 x 130 m 3 /h). 0.190 m L 0.352 m Obrázek 6: Segment výměníku vzduch hmota vytvořeného z betonové tvárnice Tabulka 2: Základní informace o segmentu výměníku vzduch/hmota L B C η A s hmotnost [m] [m] [m] [-] [m 2 ] [kg] 5.7 0.35 0.19 0.54 6.12 395 vlastnosti materiálu: λ s = 1,33 W/(m.K), ρ s = 2250 kg/m 3, c s = 1020 J/(kg.K) Tabulka 3: Průtok vzduchu přes segment výměník vzduch/hmota V a v a0 v a V a /A V a /(ηa) V a /A s h conv * [m 3 /h] [m/s] [m/s] [m 3 /h/m 2 ] [m 3 /h/m 2 ] [m 3 /h/m 2 ] [W/m 2.K] 65 0.27 0.50 977 1805 319 ~3 130 0.54 1.00 1955 3610 637 ~6 *spočteno z obvyklého vztahu Nu = 0.023Re 0.8 Pr 0.3 [7] Reprezentace modelu v Simulinku Vysvětlení oblastí na obrázku 7: oblast 1 je simulace zóny (HAMbase), oblast 2 představuje simulaci výměníku vzduch/hmota (vytvořený model), oblast 3 představuje jednoduchou regulaci výměníku vzduch/hmota (viz popis varpb), oblast 4 je výpočet výkonu chlazení.

Obrázek 7: Schéma simulovaného systému v Simulinku Výsledky simulací: Obrázek 8: Vypočtené teploty vzduchu v budově pro jednotlivé scénáře (var0 varpb), T e je teplota vnějšího vzduchu, T out je teplota vzduchu na výstupu z výměníku vzduch/hmota Obrázek 9: Vypočtené hodnoty tepelné zátěže od solárního záření a vnitřních zisků q sol+int, výkon chlazení výměníku vzduch/hmota q cooling. Hodnoty jsou vztaženy na 1m 2 podlahové plochy budovy (8 m x 6 m = 48 m 2 ). Závěr Přínos využití řízené akumulace tepla by mohl být ve snižování hodnoty špičkové tepelné zátěže budov a tím zmenšování velikosti klimatizace, zejména u lehkých

staveb s vyššími vnitřními zisky. Nadbytečná tepelná zátěž by samozřejmě měla být nejprve důsledně redukována stavebním řešením. Logickým navazujícím krokem by měla být parametrická studie tepelného chování výměníků vzduch/hmota (maximalizace energetické efektivity). Existuje řada možností jak zvětšovat přestupovou plochu a součinitel přestupu tepla, ale jako u každého výměníku to s sebou nese vyšší tlakové ztráty. Kde leží optimum? Teoretické studium by mohlo vést k návrhu prototypů a jejich laboratornímu ověření. Využití materiálu se skupenskou změnou by mohlo znamenat podstatné snížení potřebného množství akumulační hmoty. Model výměníku vzduch/hmota proto bude v budoucnu rozšířen i o případ, kdy je akumulační hmota nahrazena materiálem se skupenskou změnou. V [6] byl například zkoumán výměník vytvořený z malých kapslí vyplněných materiálem s fázovou změnou nasypaných do válcového zásobníku, přes který byl nasáván vzduch. Vyvinutý numerický model byl úspěšně experimentálně validován. Navazující případová studie nízkoenergetického domu chlazeného pomocí výměníku vzduch/materiál se skupenskou změnou prokázala možnost použití této techniky. Potřebné množství materiálu bylo 6 kg/m 2 podlahové plochy (přibližně šestina hmoty použité v případové studii), pro dům s 200 m 2 se tedy jedná o přibližně 1200 kg materiálu. Literatura [1] Barton, P., Beggs, C., B., Sleigh, P., A.: A theoretical study of thermal performance of the TermoDeck hollow core slab system, Applied Thermal Engineering 22, 2002. [2] Hagentoft, C., E.: Introduction to Building Physics, Studentliteratur, 2001. [3] Hollmuller, P., Lachal, B., Zgraggen, J. M.: A new heat exchange and storage technique for ventilation: controlled thermal phase-shifting, HeatSET 2007, Chambery, France, 2007. [4] Writing S-functions, The MathWorks, Inc. [5] Ashrae: Standard method of test for the evaluation of building energy analysis computer programs, standard 140-2001, 2001. [6] Arkar, C., Medved, S.: Free cooling of a building using PCM heat storage integrated into the ventilation system, Solar Energy 81, 2007. [7] Ashrae: Handbook of Fundamentals, 2001.