SEKVENČNÍ INJEKČNÍ ANALÝZA. Obsah. 2. Princip a vlastnosti metody SIA; srovnání s technikou FIA. 1. Uvod. Referáty. Chem. Listy 93, 354-359 (1999)



Podobné dokumenty
Průtokové metody (Kontinuální měření v proudu kapaliny)

Sekvenční injekční analýza (Stanovení obsahu dusitanů rivanolovou metodou)

Mikrofluidní systémy a možnosti jejich automatizovaného a vzdáleného řízení

Sekvenční injekční analýza laboratoř na ventilu (SIA-LOV) (Stanovení obsahu heparinu v injekčním roztoku)

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS

OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

Automatická potenciometrická titrace Klinická a toxikologická analýza Chemie životního prostředí Geologické obory

U = E a - E k + IR Znamená to, že vložené napětí je vyrovnáváno

Udržitelný rozvoj v průmyslových prádelnách

přístroji FIA QuickChem QC8500

Základy fotometrie, využití v klinické biochemii

ZÁKLADNÍ MODELY TOKU PORÉZNÍ MEMBRÁNOU

IONOSEP v analýze vody. Využití analyzátorů IONOSEP pro analýzu vod. Doc. Ing. František KVASNIČKA, CSc.

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD

Aplikace AAS ACH/APAS. David MILDE, Úvod

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC

Kompaktní a spolehlivé řešení. Desky Jesco pro MaR EASYPOOL SMART. MaR Jesco 1

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan. Chemie anorganická analytická chemie kvantitativní. Datum tvorby

Principy chemických snímačů

Aplikační rozsah chromatografie

Suchá chemie. Miroslava Beňovská (vychází z přednášky doc. Šterna)

Laboratorní úloha Diluční měření průtoku

Metody separace. přírodních látek

Voltametrie (laboratorní úloha)

Odměrná analýza, volumetrie

UNIVERZITA KARLOVA V PRAZE FARMACEUTICKÁ FAKULTA V HRADCI KRÁLOVÉ. Katedra analytické chemie

KATALOG DIAGNOSTICKÝCH SETŮ S K A L A B 2018

DELFIA Dissociation-Enhanced Lanthanide Fluorescent ImmunoAssay

HODNOCENÍ JAKOSTI PODZEMNÍCH VOD. Tab. č. 18/ 1. Chloridy. Jakost podzemní vody v ukazateli: (mg/l) Hydrogeologický rajón

Obr. 1. Struktura glukosaminu.

HPLC - Detektory A.Braithwaite and F.J.Smith; Chromatographic Methods, Fifth edition, Blackie Academic & Professional 1996 Colin F. Poole and Salwa K.

Ing. Milan Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

Analyzátor sodíku. Easy Na Jednoduchost Přesnost Specifičnost. Specifické stanovení obsahu sodíku Snadné a přesné

Vývoj nového biosensoru k rychlému monitorování a mapování kontaminace v životním prostředí

SPE je metoda vhodná pro rychlou přípravu vzorků, která užívá

Fluorescence (luminiscence)

TRANSPORT PŘES MEMBRÁNY, MEMBRÁNOVÝ POTENCIÁL, OSMÓZA

Metody pro vyhodnocení experimentálních dat

DETEKTORY pro kapalinovou chromatografii. Izolační a separační metody, 2018

TLAKOVÉ MEMBRÁNOVÉ PROCESY A JEJICH VYUŽITÍ V OBLASTI LIKVIDACE ODPADNÍCH VOD

laboratorní technologie

Luminiscenční analýza Použití luminiscenční spektroskopie v analytické chemii

Část 3, Čerpadla pro HPLC

Využití technologie Ink-jet printing pro přípravu mikro a nanostruktur II.

MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN. Jakub Hraníček

Glukometr...a jeho příbuzní... Biofyzikální ústav Lf, MU Vladan Bernard 2011

1) Pojem biotechnologický proces a jeho fázování 2) Suroviny pro fermentaci 3) Procesy sterilizace 4) Bioreaktory a fermentory 5) Procesy kultivace,

Modulace a šum signálu

Chromatografie. Petr Breinek

Pojem management Standardní operační postup (SOP) Management potravinářské laboratoře

Ing. Libor Vodehnal, AITEC s.r.o., Ledeč nad Sázavou

5. Bioreaktory. Schematicky jsou jednotlivé typy bioreaktorů znázorněny na obr Nejpoužívanějšími bioreaktory jsou míchací tanky.

Stanovení cholesterolu ve vaječném žloutku a mléce kapilární elektroforézou


přesnost (reprodukovatelnost) správnost (skutečná hodnota)? Skutečná hodnota použití různých metod

Povodí Labe, státní podnik Odbor vodohospodářských laboratoří, laboratoř Ústí nad Labem Pražská 49/35, Ústí nad Labem

Chelatometrie. Stanovení tvrdosti vody

Vyhodnocení rozšířených nejistot PT/CHA/4/2015 (PT31) podle způsobu zjištění a podle analytických postupů A B C D Ukazatel Metoda

10. Chemické reaktory

VYUŽITÍ UV ZÁŘENÍ A OZONIZACE PŘI ODSTRAŇOVÁNÍ LÉČIV

Biosenzory. Helena Uhrová

Funkční vzorek. Geofyzikální ústředna GU100 modulární ústředna pro záznam dat v autonomním i síťovém režimu

Stanovení kreatininu v mase pomocí kapilární izotachoforézy

Jak se měří rychlost toku krve v cévách?

Název: Vypracovala: Datum: Zuzana Lacková


7. Měření fluorescence při excitaci kontinuálním světlem ( steady-state )

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

Lékařská chemie a biochemie modelový vstupní test ke zkoušce

Elektrochemické metody

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Analytické znaky laboratorní metody Interní kontrola kvality Externí kontrola kvality

STŘEDNÍ ŠKOLA INFORMATIKY A SLUŽEB ELIŠKY KRÁSNOHORSKÉ 2069 DVŮR KRÁLOVÉ N. L.

SROVNÁNÍ KOLON PRO SEPARACI FARMACEUTICKY VÝZNAMNÝCH LÁTEK METODOU SEKVENČNÍ INJEKČNÍ CHROMATOGRAFIE

2) Připravte si 7 sad po pěti zkumavkách. Do všech zkumavek pipetujte 0.2 ml roztoku BAPNA o různé koncentraci podle tabulky.

VODA FARMACEUTICKOU VÝROBU PRO. VODA PRO FARMACEUTICKÉ ÚČELY Český lékopis 2002 uvádí 3 druhy vody pro farmaceutickou výrobu

LABORATORNÍ PŘÍSTROJE A POSTUPY

Příloha č. 1 k MP č. 04/14. Datum účinnosti. Identifikace metody (SOP) Zk.č. 1 M-CH 01 Stanovení teploty ČSN

Vysokoúčinná kapalinová chromatografie

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DRASLÍKU, SODÍKU, HOŘČÍKU A VÁPNÍKU METODOU FAAS/FAES

IMPLEMENTACE BIOVENTINGU

Metody testování humorální imunity

Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Izolace nukleových kyselin

Univerzální čistá voda, akciová společnost Strojírenská 259, Praha 5 - Zličín. Odstranění ní železa a manganu z vody

L 54/116 CS Úřední věstník Evropské unie

Chemická analýza moče

J. Kubíček FSI Brno 2018

MORAVSKÁ VODÁRENSKÁ, a.s. Oddělení kontroly kvality vody Dolní novosadská, Olomouc

Transkript:

SEKVENČNÍ INJEKČNÍ ANALÝZA HANA PASEKOVÁ, MIROSLAV POLÁŠEK a PETR SOLÍCH Katedra analytické chemie, Farmaceutická fakulta, Univerzita Karlova, Heyrovského 1203, 500 05 Hradec Králové, e-mail: pasekova@faf.cuni.cz Došlo dne 23.VII. 1998 Klíčová slova: sekvenční injekční analýza, přehled Obsah 1. Úvod 2. Princip a vlastnosti metody SIA; srovnání s průtokovou injekční analýzou (FIA) 3. Uplatnění SIA v praxi 3.1. Analýza složek životního prostředí 3.2. Bioanalytické a farmaceutické aplikace 3.3. Současné trendy v SIA 1. Uvod Sekvenční injekční analýza (Sequential Injection Analysis, SIA) patří do skupiny průtokových analytických technik, které umožňují racionalizovat a automatizovat složité postupy při analýze velkých sérií vzorků instrumentálními metodami, a tak podstatným způsobem zvyšovat produktivitu zejména rutinních stanovení. SIA byla vyvinuta během odstraňování nevýhod a nedokonalostí techniky průtokové injekční analýzy 1 ' 2 (FIA); u jejího zrodu stál kolektiv analytiků z University of Washington, vedený jedním z otců FIA, J. Růžičkou. První článek, definující koncepci SIA, byl uveřejněn 3 v roce 1990; od té doby bylo publikováno asi 100 prací, zabývajících se tematikou SIA. Předložený přehled si klade za cíl seznámit čtenáře s principy a možnostmi uplatnění této relativně nové a velmi progresivně se rozvíjející techniky v rozmanitých odvětvích analytické praxe. 2. Princip a vlastnosti metody SIA; srovnání s technikou FIA Obecný princip metody SIA včetně základních teoretických podkladů byl podrobně diskutován v uvedených pracích 3 " 5. Při vysvětlení principu SIA vycházejme z jednoduchého analytického zadání, kdy analyt, obsažený v roztoku vzorku, potřebujeme převést na detegovatelný (např. barevný) produkt reakcí s činidlem a změřit (kvantifikovat) vhodnou analytickou vlastnost tohoto produktu (např. absorbanci při určité vlnové délce). Konvenční FIA 1 ' 2 řeší tento problém tím způsobem, že je zóna vzorku injikována dávkovacím kohoutem do kontinuálního nosného proudu a mísí se s činidlem za vzniku produktu reakce při plynulém průtoku jednotlivých zón vícekanálovým systémem směrem k průtokovému detektoru (obr. la). Technika SIA používá odlišný princip, jehož charakteristickým rysem jsou oddělené měřící cykly. Nejprve jsou zóny nosného média, vzorku a činidla postupně (jednorázově) aspirovány do jednokanálového systému s využitím selekčního vícecestného ventilu a pístového čerpadla (obr. lb) a poté j e pohyb pístu čerpadla obrácen, čímž dojde k promísení zóny vzorku a činidla a vzniklý produkt (obr. lc) je dopraven do detektoru; tím je jeden cyklus ukončen. V tomto jednoduchém případě je získán výsledný analytický signál ve formě píku podobně jako je tomu u FIA; v podstatě se jedná o záznam změny koncentračního gradientu reakčního produktu při průchodu jeho zóny detektorem. Rozdíly se projevují v geometrii nosného proudu. FIA využívá přímý konstantní tok, zatímco základem SIA jsou změny přímého a zpětného toku. Typická základní konfigurace příslušného SIA systému je schematicky znázorněna na obr. Id. Systém je tvořen jednokanálovým dvousměrným pístovým čerpadlem, vícecestným selekčním ventilem, vhodným detektorem, mísící cívkou, která slouží zároveň jako pojistka proti vniknutí vzorku a činidel do čerpadla, a spojovacím materiálem (obvykle plastikové hadičky s vnitřním průměrem 0,7-0,8 mm). V podstatě se dá říci, že SIA systém pracuje v cyklu naprogramovaných pohybů pístu čerpadla, synchronizovaných s přepínáním pozic selekčního ventilu. Přesná synchronizace a opakovatelnost těchto krokuje nutnou podmínkou k dosažení reprodukovatelné disperze jednotlivých zón v SIA systému a tím i k získání reprodukovatelného koncentračního gradientu reakčního produktu, resp. odpovědi detektoru. Z uvedených skutečností vyplývá, že nezbytnou součástí SIA systému musí být i vhodný mikroprocesor (nejlépe PC) s příslušným programovým vybavením, který řídí kroky měřícího cyklu a současně sbírá, uchovává a vyhodnocuje výstupní data. Průtokové rychlosti v SIA se prakticky neliší od FIA a pohybují se obvykle okolo 1 ml.min' 1 a doba trvání jednoho měřicího cyklu v SIA většinou nepřesahuje 30 s, což je v mnoha případech srovnatelné s frekvencí dávkování vzorku ve FIA. Zatímco ve FIA je v rámci jedné série měření dávkovaný objem vzorku fixní, což je dáno konstantní délkou dávkovači smyčky, u SIA je možno v jednotlivých cyklech objem vzorku cíleně měnit v rozsahu jednotek až stovek \ú programováním doby otevření příslušného kanálu selekčního ventilu; tímto postupem lze jednak optimalizovat disperzi zóny vzorku (a tedy citlivost stanovení) podle koncentrace analytu a také pohodlně provádět kalibraci, pokud jeden z kanálů selekčního ventilu propojíme s roztokem standardu. Giibeli s Christianem a Růžičkou si v prvních pracích všímají překrývání zón a disperze v jedno a dvou-činidlových systémech. Překrytí zón a jeho kontrola jsou důležitým parametrem SIA. V systému s jedním činidlem potvrzují dostatečné promísení při jedné změně směru toku. (Vícenásobná změna směru je opodstatněná při míšení zón s odlišnou viskozi- 354

Referát) tou.) Při uplatnění dvou činidel se využívá uzavření zóny vzorku mezi tato činidla. Uzavření zóny vzorku mezi dvě zóny stejného činidla obvykle zvyšuje výtěžek reakčního produktu a tím i citlivost stanovení 4. Nevýhody SIA oproti FIA vidí autoři 4 zejména v poněkud snížené frekvenci dávkování vzorku a v nutnosti používat poměrně složitou počítačovou techniku. Na druhé straně má SIA proti FIA nesporné výhody: i když se pracuje s několika roztoky, které je nutno definovaným způsobem vnést do systému, probíhá analýza v jednokanálovém uspořádání s jedním ventilem a jedním čerpadlem. Objemy roztoků jsou dány časově, délkou pohybu pístu čerpadla. Při zastaveném toku je možné provádět kinetická měření, např. určovat řád reakcí, Obr. 1. a) FIA systém (V - vzorek, NP - nosný proud, Č - činidlo, PČ peristaltické čerpadlo, DV dávkovači ventil, MC mísící cívka, D - detektor); b), c) zóny vzorku, činidla a produktu reakce v SIA systému před a po obrácení směru toku nosného proudu (P - produkt reakce); d) SIA systém (PČ - pístové čerpadlo, SV - selekční ventil, S - standard, Č - činidlo, NP - nosný proud, V - vzorek, MC - mísící cívka, D - detektor, P - počítač) stejně jako ve FIA. Tyto postupy vedou k optimalizaci reakčního času, úspoře činidel, eliminaci interferujících signálů pozadí 5. Protože SIA pracuje s malými diskrétními objemy vzorků a činidel a využívá zastavení a změnu směru toku, spotřeby činidel a vzorků i objem odpadu jsou podstatně nižší než u FIA, kde jsou jednotlivé roztoky čerpány kontinuálně. Velkou výhodou SIA je její flexibilita, daná snadnou změnou parametrů měření prostřednictvím klávesnice počítače, aniž je třeba měnit konfiguraci SIA systému. Vstupní jednotkou SIA systému je čerpadlo, které generuje definovaný tok nosného proudu. V raném stádiu vývoje metody SIA používal Růžička prototyp pumpy s pístem, jehož pohyb je řízen mechanickou vačkou. Geometrie poskytovaného toku je sinusová. K aspiraci určitého roztoku přes selekční ventil docházelo v oblastech s nulovou rychlostí toku, aby se zabránilo nežádoucímu nedefinovanému promísení jednotlivých zón 3. Novější typy čerpadel nejsou ovládány vačkou, ale pohyb pístu je řízen krokovým elektromotorem. Délka pohybu pístu je definována počtem jednotlivých kroků, rychlost pohybu lze libovolně měnit. Další alternativou je použití peristaltických čerpadel. Při úpravách omezujících pulzaci toku představují řešení s nižší pořizovací cenou a širokou dostupností i v průměrně vybavených laboratořích; vzhledem k jejich snadnějšímu mechanickému opotřebování jsou však v SIA systémech peristaltická čerpadla používána spíše jako pomocná zařízení vedle hlavní pístové pumpy. V sériově vyráběném SIA systému typu FIAlab 3500 je zařazeno pístové čerpadlo poháněné vysoce přesným krokovým motorem. Čerpadla užívaná v SIA systémech jsou dodávána převážně firmami Alitea a Cavro. V některých případech byly použity také automatické byrety Crison nebo upravené automatické titrátory Allela. Další současí systému je vícecestný selekční ventil. Nejčastěji se jedná o 6, 8 a 10-cestné ventily firmy Valco. Jako doplněk někdy slouží jednodušší ventily Rheodyne. Selekční ventil představuje jednotku, která řídí seřazení jednotlivých zón v mísící cívce, zajišťuje připojení všech požadovaných roztoků k systému, jejich aspiraci a po obrácení toku i transport zón do detektoru. Časování poloh selektoru a jejich synchronizaci s pohybem čerpadla řídí a kontroluje počítač. Reakční (mísící) cívky v SIA systémech jsou jednodušší a kratší než u FIA zařízení; obvykle mají přímkovou geometrii. Buď slouží pouze k promíchání zón, nebo mohou obsahovat reaktivní náplň, např. pevné nosiče s imobilizovanými enzymy nebo magnetické polymerní částice s aktivním povrchem 6. Způsob umístění mísící cívky v SIA systému není zcela ustálen. Často bývá jediná reakční cívka zařazena mezi čerpadlo a selekční ventil. Druhá cívka může být eventuelně umístěna před detektorem, ale u rychle probíhajících reakcí se nepoužívá. Detektory v SIA nejsou systémově omezeny, jejich volba záleží na druhu použité analytické reakce. Využívají se zejména spektrofotometrické, fluorescenční a elektrochemické detektory s příslušnými průtokovými celami. U spektrofotometrických detektorů se nejčastěji vyskytuje Z-cela s optickou délkou 10 mm a vnitřním průměrem 1,5 mm, můžeme se však setkat i s univerzální membránovou celou sandwichového typu, která umožňuje provádět on-line separaci analytů selektivním průchodem přes dialyzační membránu. Pro realizaci jednoduchých spektrofotometrických SIA analyzátorů navrhl Růžička koncepci chemických senzorů 355

s obnovitelným citlivým povrchem, který bývá tvořen činidlem navázaným na submilimetrové částice inertního nosiče polymerního charakteru nebo samotným nosičem, na kterém se příslušný analyt selektivně zachytí. Není zde nutná pevná kovalentní vazba nosič-činidlo, protože vhodným uspořádáním pokusu lze citlivý povrch před každým měřením obnovit 3. V této souvislosti byla v poslední době pro SIA systémy vyvinuta tzv. jet-ring cela, jejímž prostřednictvím lze jak optický tak i elektrochemický senzor s obnovitelným povrchem poměrně snadno vytvořit. Christian používá univerzální sandwichovou membránovou celu vhodnou pro průtokové měření absorbance a chemiluminiscence a také mikroobjemovou celu určenou pro komplikovanější SIA analýzy, ve kterých je analyt stanovován po reakci s několika činidly najednou. Tzv. fontánová cela byla aplikována při perfuzních studiích živých buněk 7. V rámci elektrochemické detekce se vedle běžných amperometrických průtokových cel často uplatňují v SIA iontově selektivní a enzymové elektrody. Mechanické součásti SIA systému (čerpadlo, selekční ventil) a detektor jsou propojeny prostřednictvím příslušných převodníků a digitálních vstupů a výstupů těchto jednotek s počítačem, který řídí celý proces automatické analýzy včetně sběru, zpracování a ukládám dat. Klíčový význam zde má kvalitní obslužný program SIA systému, bez něhož nelze automatická SIA měření provádět; příslušný software musí též umět" zpracovat a vhodným způsobem prezentovat výsledky měření. Běžný je automatický výpočet výšky, plochy a dalších parametrů píku (čas dosažení jeho maxima, šířka píku v určité výšce), kalibračních parametrů a koncentrace vzorku 8 ' 9. Tyto programy, jako např. Flowtek 8 ' 10 ' 11, Fialab 12 " 14, Labpro 3 ' 4, Labdata 5 amat-lab 6l5 ' 17 většinou poskytují také funkci automatické kalibrace a tvorbu grafů pro přehledné znázornění výsledků analýzy. Stejně jako je tomu u zařízení FIA, i do SIA systému je možno zařadit různé doplňkové moduly. Jsou to zejména jednotky pro kapalinovou extrakci, dialýzu a difúzi plynů přes membránu. Konvenční uspořádání hlavních jednotek, tvořících SIA systém, je znázorněno na obr Id; vyskytuje se ve velké většině dosud publikovaných prací. 3. Uplatnění SIA v praxi Od roku 1990 bylo publikováno téměř sto prací, týkajících se automatického stanovení většiny běžných anorganických iontů a četných organických látek včetně léčiv technikou SIA. Se vzrůstajícími potřebami kontroly kvality životního prostředí, potravin a léčiv, s požadavky na rychlost a spolehlivost diagnostických metod v medicíně a biologickém výzkumu, a na racionalizaci řízení technologických procesů se jeví SIA jako jedna z nadějných alternativ, umožňujících provádět analýzy velkých sérií vzorků s vysokou produktivitou a dostatečnou spolehlivostí. 3.1. Analýza složek životního prostředí SIA se uplatnila při stanovení některých anorganických iontů ve vodě různého původu (povrchové, pitné, odpadní) za účelem kontroly její kvality. Výhodné je současné stanovení několika druhů iontů bez nutnosti separace nebo opakovaného měření s různými činidly. Takto byly např. stanoveny ve vodě vápenaté ionty 10-18 nebo Ca 2+ souběžně s Mg 2+ s využitím tvorby barevných komplexů a spektrofotometrickou detekcí 19 " 23. Podobně byly stanoveny ionty železité 24 ' 25. Z aniontů se stanovují současně chloridy a fluoridy 2627 ; k jejich detekci se zde využívají iontově selektivní elektrody. Důležité je rychlé a přesné stanovení. Obsah dusitanů a dusičnanů ve vodě byl stanoven SIA se spektrofotometrickou detekcí 28. Sírany se stanovují pomocí srážecí reakce s barnatými ionty 11,29,30 Fosfáty, jako důležité pollutanty podporující růst mikroorganismů ve vodě, byly určovány samostatně 3U2 nebo současně s křemičitany 33. Při stanovení amonných solí a některých organických látek, z nichž lze v alkalickém prostředí vytěsnit amoniak, byla využita difúze amoniaku přes membránu do proudu činidla, které převede plyn na detegovatelnou složku. Amoniak reaguje s acidobazickým indikátorem a je detegován spektrofotometricky 34 " 36 nebo konduktometricky 37. Stanovením obsahu herbicidů, které ve velké míře ovlivňují životní prostředí, se zabývá další práce 38. Sleduje se v ní hladina 2,4-dichlorofenoxyoctové kyseliny ve vodě. Toto stanovení je založeno na amperometrické detekci kombinované s enzymovým imunosorbentním systémem. Jako enzymy jsou použity peroxidasa a alkalická fosfatasa. Na imunoanalytické reakci se podílí myší protilátky imunoglobulinu G. Odezva této kompetitivní reakce je sledována platinovou elektrodou. Technikou SIA byla též určována stopová množství některých těžkých kovů; uplatnila se zde on-line prekoncentrace extrakcí analytů do tenkého filmu organického rozpouštědla, vytvořeného na stěně SIA systému 39. Tento postup se uplatnil při spektrofotometrickém stanovení vanadu 40, molybdenu 41 a chrómu 42 v různých mocenstvích. Kadmium, měď, rtuť, indium, olovo, cín a thalium byly stanoveny metodou SIA s elektrochemickou detekcí 43 (rozpouštěcí voltametrie). 3.2. B i o an aly ti cké a farmaceutické aplikace Poměrně často se v SIA uplatňují imunoanalytické reakce. Byly vyvinuty speciální typy detekčních cel, které umožňují imobilizaci protilátek nebo antigenů přímo v SIA systému. Zajímavé je zakotvení částic s navázanými protilátkami pomocí magnetického pole. Tento způsob byl využit při stanovení imunoglobulinu G, přičemž imobilizace proběhla v reakční cívce 6. Někdy se využívá tzv. jet-ring cela, která umožňuje sledovat vazbu protilátek s antigeny. Měření je prováděno v přítomnosti větších částic sorbentu, na které jsou protilátky navázány. Při detekci se např. sleduje fluorescence značených komplexů nebo značených nenavázaných protilátek. Jet-ring cela je umístěna tak, že se mezi ní a detektorern vytvoří úzká štěrbina, kterou nemohou projít částice sorbentu, ale látky rozpuštěné v roztoku postupují do detektoru. Poté jsou větší částice odstraněny obrácením směru toku nosného proudu. Toto uspořádání bylo využito u stanovení sodíku a lithia 44, chrómu 45, imunoglobulinu G 46, glukosy 47, ale také při analýze buněk ledvinové tkáně 15. V upravené podobě se tato cela objevuje s pohyblivým tělem, které nasedá na okénko detektoru. Po změření fluorescence nebo absorbance sorbentu se štěrbina automaticky rozšíří a pevné částice jsou nosným proudem vyplaveny do od- 356

pádu. Takto byl stanovován ethanol a glukosa ve víně a pivu s využitím enzymových elektrod a amperometrické detekce. V další práci byla určována koncentrace lidského sérového albuminu, různých typů inzulínů, theofylinu a aminotheofylinu reakcí s monoklonálními protilátkami 49. Detekci zajišťoval fluorescenční mikroskop. Podobnou funkci má i fontánová cela. Sledují se v ní nejčastěji jednotlivé buňky určité kultury. Detekce se provádí videokamerou přes fluorescenční mikroskop. Popis fontánové cely se objevuje ve dvou teoretických pracích 7 ' 50, praktická aplikace se týká perfuzních studií živých buněk 5 ' >52 a stanovení hladiny glukosy a peroxidu vodíku reakcí s luminolem 53. Analyticky využitelné enzymy jako látky bílkovinné povahy jsou citlivé na změny teploty a složení okolního prostředí a jejich výroba je poměrně drahá. Zakotvení těchto látek v reakční cívce SIA systému vede ke snížení jejich spotřeby a umožňuje také opakovanou aktivaci uvnitř systému. Tato technika se uplatňuje při stanovení glukosy s pomocí imobilizované glukosa-oxidasy a následné reakce peroxidu vodíku s luminolem 54 " 56. V těchto pracích se kombinuje stanovení glukosy s dalšími látkami, laktátem a penicilinem. Při analýze samotného laktátu se využívá reakce enzymového systému dependentního na NAD + a vzniklý NADH se deteguje spektrofotometricky 57 ' 59. Podobně probíhá i SIA stanovení ethanolu, produkovaného buněčnou kulturou; imobilizovaným enzymem je zde alkohol-dehydrogenasa 60. Při SIA stanovení glukosy 61 a souběžném stanovení glukosy a ethanolu 60 byly využity amperometrické enzymové elektrody s imobilizovanou glukosa-oxidasou a alkohol-dehydrogenasou. Z farmaceuticky významných analýz byla SIA technikou provedena dříve zmiňovaná stanovení penicilinu 55 ' 56, trimeprazinu a perfenazinu tvořících barevné komplexy s paladiem 62, bromazepamu poskytujícího komplex s železnatými kationty 63, morfinu oxidovaného manganistanem na fluoreskující produkt 64, ciprofloxacinu a norfloxacinu vytvářejících barevný komplex s ionty železitými 65. Při stanovení barbiturátů a serotoninových inhibitorů byla SIA využita k extrakci a následná analýza proběhla pomocí HPLC 66. Imunoanalytické stanovení inzulínů, theofylinu a aminotheofylinu bylo uvedeno výše 49. Dále bylo publikováno spektrofotometrické stanovení promethazinu komplexotvornou reakcí s paladiem 67. Z anorganických iontů vyskytujících se v potravinových doplňcích a léčivých přípravcích byly stanoveny železité ionty68,69 y o(, ou případech se spektrofotometrickou detekcí. V kinetické studii byl sledován proces oxidace vitaminu C (cit. 70 ). Další možnosti přináší práce popisující disoluční stanovení ibuprofenu v tabletách, obalených tabletách a kapslích 71. Chemometrické metody byly použity pro optimalizaci stanovení oxprenololu ve farmaceutických přípravcích 72. Dále byl stanovován morfin v nevodném nosném proudu pomocí chemiluminiscenční detekce 73 a warfarin byl určován díky fluorescenci vykazované v přítomnosti cyklodextrinu 74. 3.3. Současné trendy v SIA Rychlost, jednoduchost, flexibilita a plná automatizace předurčují techniku SIA jako velmi vhodný prostředek všude tam, kde je nutno analyzovat velké série vzorků (např. rutinní analýzy vod, potravin, krve, moči), sledovat změny koncentrace důležitých analytů v průběhu různých procesů (řízení a optimalizace biotechnologických výrob, monitorování hladin léčiv nebo jejich metabolitů v tělních tekutinách pacientů) nebo studovat odpověď buněk, membrán či orgánů na různé vnější podněty 51 ' 75 (např. ve farmaceutickém výzkumu). Lze očekávat, že v brzké době SIA silně ovlivní oblast imunoanalýzy, kdy využitím komerčních imunosorbentů a jet-ring cely bude možno podstatně zrychlit a zlevnit tyto velmi selektivní a citlivé analytické postupy. Možnost uplatnění SIA ve farmacii se vztahuje nejen na kontrolu kvality a účinnosti léčiv, ale také na hodnocení déle trvajících stabilitních studií. Ve výrobní technologii pomáhá tato metoda zjistit stejnoměrnost obsahu účinné látky v různých farmaceutických přípravcích a rychlost jejího uvolňování z dané lékové formy (disoluční testy). Významná je také možnost využití SIA při studiu vazby léčiv či toxických látek na krevní bílkoviny. Z uvedených skutečností vyplývá, že potenciál využití SIA v analytické praxi je značný a bude se zřejmě dále rozšiřovat s pronikáním komerčních SIA analyzátorů do analytických laboratoří. Aktuální informace o vývoji SIA poskytuje internetová stránka firmy Alitea, která zatím jediná vyrábí kompletní komerčně dostupný SIA systém (viz http: //www.flowinjection.com/). Autoři děkují Fondu rozvoje vysokých škol za finanční podporu této práce (projekt č. 1268/99). LITERATURA 1. Růžička J., Hansen E. H.: Flow Injection Analysis. J. Wiley, New York 1988. 2. Calatayud J. M.: Flow Injection Analysis of Pharmaceuticals. Taylor and Francis, London 1996. 3. Růžička J., Marshall G. D.: Anal. Chim. Acta 237, 329 (1990). 4. Giibeli T., Christian G. D., Růžička J.: Anal. Chem. 63, 2407 (1991). 5. Růžička J., Gubeli T.: Anal. Chem. 63, 1680 (1991). 6. Pollema C. H., Růžička J., Christian G. D., Lernmark A.: Anal. Chem. 64, 1356 (1992). 7. Christian G. D.: J. Flow Inj. Anal. 11, 2 (1994). 8. Marshall G. D., Staden J. F.: Process Control Qual. 3,251 (1992). 9. Marshall G. D., Staden J. F.: Anal. Instrum. 20,79 (1992). 10. Staden J. F., Taljaard R. E.: Anal. Chim. Acta 323, 75 11. Staden J. F., Taljaard R. E.: Anal. Chim. Acta 331, 271 12. Ivaska A., Růžička J.: Analyst 118, 885 (1993). 13. Lukkari I., Růžička J., Christian G. D.: Fresenius J. Anal. Chem. 346, 813(1993). 14. Baxter P. J., Christian G. D., Růžička J.: Analyst 119, 1807 (1994). 15. Růžička J., Pollema C. H., Scudder K. M.: Anal. Chem. 65, 3566 (1993). 16. Chung S., Christian G. D., Růžička J.: Process Control Qual. 3, 115(1992). 17. Guzman M., Pollema C. H Růžička J., Christian G. D.: Talanta40, 81 (1993). 18. Nyman J., Ivaska A.: Anal. Chim. Acta 308,286 (1995). 357

19. Rius A., Callao M. P., Rius F. X.: Anal. Chim. Acta 316, 27 (1995). 20. Gomez E., Tomas C, Cladera A., Estela J. M., Cerda V.: Analyst 720, 1181 (1995). 21. Rius A., Callao M. R, Ferré J., Rius F. X.: Anal. Chim. Acta 357,287(1997). 22. Ruisanchez I., Lozano J., Larrechi M. S., Rius F. X., Župan J.: Anal. Chim. Acta 348, 113 (1997). 23. Araújo A. N., Costa R. C, Lima J. L., Reis B. F.: Anal. Chim. Acta 358, 111(1998). 24. Rubí E., Jiménez M. S., Mirabó F. B., Forteza R., Cerda V.: Talanta 44, 553 (1997). 25. Gracia J., Saraiva M., Araújo A., Lima J., Valle M., Poch M.: Anal. Chim. Acta 348, 143 (1997). 26. Alpizar J., Crespi A., Cladera A., Forteza R., Cerda V.: Electroanalysis 8, 1051 27. Alpizar J., Crespi A., Cladera A., Forteza R., Cerda V.: Lab. Rob. Autom. 8, 165 28. Oms M. T., Cerda A., Cerda V.: Anal. Chim. Acta 315, 321 (1995). 29. StadenJ. F., TaljaardR. E.: Fresenius J. Anal. Chem. 357, 577 (1997). 30. Rius A., Callao M. P., Rius F. X.: Analyst 122,131 (1997). 31. Munoz A., Torres F. M., Estela J. M., Cerda V.: Anal. Chim. Acta 350, 21 (1997). 32. Staden J. F Taljaard R. R: Mikrochim. Acta 128, 223 (1998). 33. Torres F. M., Estela J. M., Cerda V.: Analyst 122, 1033 (1997). 34. Luo Y., Al-Othman R., Christian G. D., Růžička J.: Talanta 42, 1545(1995). 35. Oms M. T., Cerda A., Cladera A., Cerda V., Forteza R.: Anal. Chim. Actai7<S, 251 36. Staden J. F., Taljaard R. E.: Anal. Chim. Acta 344,281 (1997). 37. Oms M. T., Cerda A., Cerda V.: Electroanalysis 8, 387 38. Wilmer M., Trau D., Renneberg R., Spener F.: Anal. Lett. 50,515(1997). 39. Luo Y., Al-Othman R., Růžička J., Christian G. D.: Analyst 121, 601 40. Nakano S., Luo Y., Holman D., Růžička J., Christian G. D.: J. Flow Inj. Anal. 13, 148 41. Nakano S., Luo Y., Holman D., Růžička J., Christian G. D.: Microchem. J. 55, 392 (1997). 42. Luo Y., Nakano S., Holman D., Růžička J., Christian G. D.: Talanta 44, 1563 (1997). 43. Ivaska A., Kubiak W. W.: Talanta 44, 713 (1997). 44. Christian G. D.: Analyst 119, 2309 (1994). 45. Egorov O., Růžička J.: Analyst 120, 1959 (1995). 46. Pollema C. H., Růžička J.: Anal. Chem. 66, 1825 (1994). 47. Lindfors T., Lahdesmáki I., Ivaska A.: Anal. Lett. 29, 2257 48. Mayer M., Růžička J.: Anal. Chem. 68, 3808 49. Willumsen B., Christian G. D., Růžička J.: Anal. Chem. 69, 3482 (1997). 50. Růžička J.: Analyst 119, 1925 (1994). 51. Pollema C. H., Růžička J.: Analyst 118, 1235 (1993). 52. Baxter P. J., Hallgren L., Pollema C. H., Trnka M., Růžička J.: Anal. Chem. 67, 1486 (1995). 53. Tucker D. J., Toivola B., Pollema C. H Růžička J., Christian G. D.: Analyst 119,975 (1994). 54. Liu X., Hansen E. H.: Anal. Chim. Acta 326, 1 55. Min R. W., Nielsen J., Villadsen J.: Anal. Chim. Acta 320, 199 56. Min R. W., Nielsen J., Villadsen J.: Anal. Chim. Acta 312, 149 (1995). 57. Snu H., Hakanson H., Mattiasson B.: Anal. Chim. Acta 283, 727 (1993). 58. Shu H., Hakanson H., Mattiasson B.: Anal. Chim. Acta 300, 277 (1995). 59. Araújo A. N., Lima J. L., Saraiva M. L., Zagatto E. A.: Am. J. Enol. Vitic. 48, 428 (1997). 60. Hedenfalk M., Mattiasson B.: Anal. Lett. 29, 1109 61. Baron A., Guzman M., Růžička J., Christian G. D.: Analyst 777, 1839(1992). 62. Sultán S. M., Suliman F. E. O., Saad B.: Analyst 720,561 (1995). 63. Sultán S. M., Suliman F. E. O.: Analyst 727, 617 64. Barnett N. W., Lewis S. W., Tucker D. J.: Fresenius J. Anal. Chem. 355, 591 65. Suliman F. E. O., Sultán S. M.: Talanta 43, 559 66. Peterson K., Logan B., Christian G. D., Růžička J.: Anal. Chim. Acta 337,99 (1997). 67. Sultán S. M., Desai N.: Analyst 722, 911 (1997). 68. Araújo A. N., Gracia J., Lima J., Poch M., Lucia M., Saraiva M.: Fresenius J. Anal. Chem. 357, 1153 (1997). 69. Staden J. F., Plessis H., Taljaard R. E.: Anal. Chim. Acta 357, 141 (1997). 70. Sultán S. M., Desai N. I.: Talanta 45, 1061 (1998). 71. Liu X., Fang Z.: Anal. Chim. Acta 358, 103 (1998). 72. Suliman F. E., Sultán S. M.: Microchem. J. 57, 320 (1997). 73. Barnett N. W., Lenehan C. E., Lewis S. W., Tucker D. J., Essery K. M.: Analyst 123, 601 (1998). 74. Tang L. X., Rowell F. J.: Anal. Lett. 31, 891 (1998). 75. Růžička J., Lindberg W.: Anal. Chem. 64, 537 (1992). 76. Pollema C. H., Růžička J., Lernmark A., Christian G. D.: Microchem. J. 45, 121 (1992). 77. Růžička J.: Anal. Chim. Acta 261, 3 (1992). 78. Christian G. D.: J. Pharm. Biomed. Anal. 70,769 (1992). 79. Christian G. D., Růžička J.: Anal. Chim. Acta 267, 11 (1992). 80. Liu S., Dasgupta P. K.: Talanta 41, 1903 (1994). 81. Baxter P. J., Christian G. D., Růžička J.: Chem. Anal. 40, 455 (1995). 82. Cladera A., Tomas C, Gomez E., Estela J. M., Cerda V.: Anal. Chim. Acta 302, 297 (1995). 83. Masini J. C, Baxter P J., Detwiler K. R., Christian G. D.: Analyst 720, 1583 (1995). 84. Crespi A., Forteza R. Cerda V.: Lab. Rob. Autom. 7,245 (1995). 85. Grate J. W., Strebin R. Janata J., Egorov O., Růžička J.: Anal. Chem. 68, 333 86. Cladera A., Gomez E., Estela J. M., Cerda V.: Talanta43, 1667 87. Staden J. F., Malan D.: Anal. Commun. 33, 339 88. Rubí E., Forteza R., Cerda V.: Lab. Rob. Autom. 8, 149 89. Estela J. M., Cladera A., Munoz A., Cerda V.: Int. J. Environ. Anal. Chem. 64, 205 90. Grate J. W., Taylor R. H.: Field Anal. Chem. Technol. 7, 39 358

91. Holman D., Christian G. D., Růžička J.: Anal. Chem. 69, 1763 (1997). 92. Staden J. F.,Plessis H.: Anal. Commun. 34, 147 (1997). 93. Echols R. T., James R. R., Aldstadt J. H.: Analyst 122, 315 (1997). 94. Staden J. R, Plessis H., Linsky S., Taljaard R. E., Kremer B.: Anal. Chim. Acta 354, 59 (1997). 95. Mirabo F. M., Thomas A. C, Rubí E., Forteza R., Cerda V.: Anal. Chim. Acta 355, 203 (1997). 96. Marshall G. D., Staden J. F.: Instrum. Sci. Technol. 25, 307 (1997). 97. Thomas O., Theraulaz F., Cerda V., Constant D., Quevauviller P.: Trends Anal. Chem. 16, 419 (1997). 98. Sales F., Callao M. P., Rius F. X.: Chem. Int. Lab. Syst. 38, 63 (1997). 99. Parab S., Van Wie B. J., Byrnes I. Robles E. J., Weyrauch B., Tiffany T. O.: Anal. Chim. Acta 359, 157 (1998). 100. Růžička J., Hansen E. H.: Trends Anal. Chem. 17, 69 (1998). 101. Schindler R., Watkins M., Vonach R., Lendl B., Kellner R., Sara R.: Anal. Chem. 70, 226 (1998).) H. Paseková, M. Polášek, and P. Solich (Department of Analytical Chemistry, Faculty of Pharmacy, Charles University, Hradec Králové'): Sequential Injection Analysis The review deals with the principles and practical applications of the SIA (sequential injection analysis) techniques. The article in vol ves 101 references covering the period from 1990 to 1998. 359