SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA. Doc. Ing. Tomáš Dlouhý, CSc.



Podobné dokumenty
SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti BIOMASA. doc. Ing. Tomáš Dlouhý, CSc. Obnovitelné palivo

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Nedokonalé spalování. Spalování uhlíku C na CO. Metodika kontroly spalování. Kontrola jakosti spalování. Části uhlíku a a b C + 1/2 O 2 CO

Model dokonalého spalování pevných a kapalných paliv Teoretické základy spalování. Teoretické základy spalování

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA

Schéma výtopny. Kotel, jeho funkce a začlenění v oběhu výtopny. Hořáky na spalování plynu. Skupinový atmosférický hořák teplovodního kotle

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

Stavba kotlů. Stav u parních oběhů. Zvyšování účinnosti parního oběhu. Vliv účinnosti uhelného bloku na produkci CO 2

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon t/h tlak páry 1,4 10 MPa teplota páry C. Fluidní kotel

PARNÍ KOTEL, JEHO FUNKCE A ZAČLENĚNÍ V PROCESU ENERGETICKÉHO VYUŽITÍ PRŮMYSLOVÝCH A KOMUNÁLNÍCH ODPADŮ

PEVNÁ PALIVA. Základní dělení: Složení paliva: Fosilní-jedná se o nerostnou surovinu u našich výrobků se týká jen hnědouhelné brikety

TYPY KOTLŮ, JEJICH DĚLENÍ PODLE VYBRANÝCH HLEDISEK. Kotel horkovodní. Typy kotlů dělení z hlediska:

NA FOSILNÍ PALIVA: pevná, plynná, kapalná NA FYTOMASU: dřevo, rostliny, brikety, peletky. SPALOVÁNÍ: chemická reakce k získání tepla

Kotle pro výtopny. Výtopna. Plynová výtopna. Schéma výtopny. Hořáky na spalování plynu. Atmosférický plynový hořák

Spalování plynu. Hořáky na spalování plynu. Skupinový atmosférický hořák teplovodního kotle. Atmosférický plynový hořák

Emisní limity pro zvláště velké spalovací zdroje znečišťování pro oxid siřičitý (SO 2 ), oxidy dusíku (NO x ) a tuhé znečišťující látky

Popis výukového materiálu

DODAVATELSKÝ PROGRAM

Elektroenergetika 1. Technologické okruhy parních elektráren

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM

DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM)

Moderní kotelní zařízení

1/62 Zdroje tepla pro CZT

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

Kombinovaná výroba elektřiny a tepla

Novela nařízení vlády č. 352/2002 Sb. Kurt Dědič, odbor ochrany ovzduší MŽP

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

Energetické využití odpadu. 200 let První brněnské strojírny

Ročník: 1. Mgr. Jan Zmátlík Zpracováno dne:

Téma sady: Všeobecně o vytápění. Název prezentace: základní pojmy 2

Úvod do teorie spalování tuhých paliv. Ing. Jirka Horák, Ph.D.

Technologie výroby elektrárnách. Základní schémata výroby

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

PROBLÉMY ŽIVOTNÍHO PROSTŘEDÍ ENERGIE

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

ENERGETIKA TŘINEC, a.s. Horní Lomná

METODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ

1/79 Teplárenské zdroje

Možnosti energetického využívání tzv. palivového mixu v podmínkách malé a střední energetiky

Výpočet objemu spalin

ROŠTOVÝ KOTEL NA SPALOVÁNÍ UHLÍ A NEBO DŘEVNÍ BIOMASY O PARAMETRECH 200 T/H, 9,3 MPA, 520 C

Univerzální středotlaké parní kotle KU

Zapojení špičkových kotlů. Obecné doporučení Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami

SPOLUSPALOVÁNÍ TUHÉHO ALTERNATIVNÍHO PALIVA VE STANDARDNÍCH ENERGETICKÝCH JEDNOTKÁCH

Digitální učební materiál

METODICKÝ POKYN MINISTERSTVA ŽIVOTNÍHO PROSTŘEDÍ ODBORU OCHRANY OVZDUŠÍ

Kogenerační jednotka se spalovací turbínou o výkonu 2500 kw. Stanislav Veselý, Alexander Tóth

SPALOVÁNÍ A KOTLE ENERGIE. Přírodní a umělá paliva. Fosilní paliva a jejich vlastnosti

2. Specifické emisní limity platné od 20. prosince 2018 do 31. prosince Specifické emisní limity platné od 1. ledna 2025

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

EU peníze středním školám digitální učební materiál

Stanovení účinnosti kotlů

Nový fluidní kotel NK14

Vliv energetických paramatrů biomasy při i procesu spalování

Účinnost spalovacích zařízení

Biflux. Vstřikový chladič páry. Regulace teploty páry chladičem. Regulace teploty páry. Regulace teploty páry. Regulaci teploty páry jde provádět :

Vlhkost 5 20 % Výhřevnost MJ/kg Velikost částic ~ 40 mm Popel ~ 15 % Cl ~ 0,8 % S 0,3 0,5 % Hg ~ 0,2 mg/kg sušiny Cu ~ 100 mg/kg sušiny Cr ~ 50

SPALOVÁNÍ PLYNU ZE ZPLYŇOVÁNÍ BIOMASY

ENERGETICKÁ ZAŔÍZENÍ ENERGETICKÁ ZAŔÍZENÍ

Negativní vliv energetického využití biomasy Ing. Marek Baláš, Ph.D.

Digitální učební materiál

Denitrifikace. Ochrana ovzduší ZS 2012/2013

MĚŘENÍ EMISÍ A VÝPOČET TEPELNÉHO VÝMĚNÍKU

Metodický postup pro určení úspor primární energie

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra energetiky- 361

lní vývoj v biomasy Ing. Jan Koloničný, Ph.D. Luhačovice

Spalování zemního plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

Pokročilé technologie spalování tuhých paliv

Vliv V daf na výbušnost prášku

Technologie přímého aditivního odsíření pro fluidní kotle malých a středních výkonů

Technická směrnice č kterou se stanovují požadavky a environmentální kritéria pro propůjčení ekoznačky

Obnovitelné zdroje energie

Posouzení vlivu teploty napájecí vody na konstrukci kotle

Technická směrnice č Teplovodní kotle průtočné na plynná paliva do výkonu 70 kw

Perspektivní metody. PROČ sušení pevných paliv? Většina dodané energie se ztrácí. Klasická metoda sušení horkými spalinami

Zdroje tepla. Kotelny

EU peníze středním školám digitální učební materiál

Paliva. nejběžnějším zdrojem tepla musí splňovat tyto podmínky: co nejmenší náklady na těžbu a výrobu snadno uskutečnitelné spalování

Parametry spalovacího procesu

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění prostorů. Základní pojmy

KOTLE NA SPALOVÁNÍ BIOMASY TYPU BF

Ing. David Kupka, Ph.D. Řešeno v rámci projektu Nakládání s odpady v Moravskoslezském a Žilinském kraji

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Hodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET

RNDr. Barbora Cimbálníková MŽP odbor ochrany ovzduší telefon:

OBSAH. ZVU Engineering a.s., člen skupiny ZVU, UTILIZAČNÍ KOTLE strana 2

Energetika Osnova předmětu 1) Úvod

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. 125ESB Energetické systémy budov. prof. Ing. Karel Kabele, CSc. ESB1 - Harmonogram

ÚVOD DO PROBLEMATIKY PAROVZDUCHOVÝCH OBĚHŮ

ČSN ČESKÁ TECHNICKÁ NORMA. Leden Kotelny se zařízeními na plynná paliva. Gas boiler houses. Gaz chaufferies.

enia úspor v podnikoch rodná konferencia ENEF Energetický audit - príklady Michal Židek VŠB - TU Ostrava - 1 -

PowerOPTI Poznat Řídit Zlepšit. Vyhodnocení a řízení účinnosti kotle

Seminář Koneko Praha, Spalování paliv. Kurt Dědič odbor ochrany ovzduší MŽP

ití,, výhody a nevýhody jednotlivých zdrojů

Metodický pokyn odboru ochrany ovzduší Ministerstva životního prostředí

VŠB Technická univerzita Ostrava Fakulta strojní Katedra Energetiky

Transkript:

SPALOVÁNÍ A KOTLE Doc. Ing. Tomáš Dlouhý, CSc. 1 ENERGIE Energie je extensivní veličina definuje se jako schopnost hmoty konat práci vyskytuje se v nejrůznějších formách Z hlediska jejího využití se často rozlišuje energie primární energie zušlechtěná získá se vhodnými energetickými přeměnami Pro praxi má největší význam energie ve formě užitečného tepla v různých formách elektřiny stlačeného vzduchu chladu získává se transformací v pracovních cyklech 2 Na počátku řetězce energetických přeměn realizovaných v pracovních cyklech stojí často spalování = uvolnění energie chemicky vázané v palivu vstupem mohou být: primární energetické zdroje (PEZ), zejména pak chemicky vázaná energie fosilních paliv jako je: uhlí uhlovodíková paliva, ropa a zemní plyn energie získaná z tzv. druhotných energetických zdrojů (DEZ) vysokopecní plyn sulfitové výluhy plyny z chemické výroby konvertorový plyn (při výrobě oceli) spalitelné odpady průmyslové, komunální obnovitelné zdroje energie z těchto je z hlediska spalování zajímavá pouze biomasa Fosilní paliva a jejich vlastnosti Fosilními palivy označujeme všechny látky, které nejspíše vznikly v době třetihor z biomasy či organismů a které při slučování s kyslíkem uvolňují tepelnou energii. Mohou mít skupenství pevné (uhlí), kapalné (ropa) plynné (zemní plyn) Fosilní paliva jsou základem pro výrobu paliv umělých 3 4 Přírodní a umělá paliva BIOMASA Obnovitelné palivo Rozeznáváme především zbytkovou (odpadní) biomasu dřevní odpady z lesního hospodářství odpady z celulózo-papírenského, dřevařského a nábytkářského průmyslu rostlinné zbytky ze zemědělské prvovýroby a údržby krajiny komunální bioodpad odpady z potravinářského průmyslu cíleně pěstovanou biomasu energetické byliny rychlerostoucí dřeviny 5 1

Složení paliv Každé palivo se skládá z hořlaviny přítěže = balastu Hořlavina = část, jejímž okysličováním se uvolňuje teplo chemicky vázané v palivu. Skládá se z aktivních látek, jejichž spalováním vzniká teplo uhlíku (C), vodíku (H) síry (S), z pasivních látek, které teplo nedodávají, ale jsou vázány chemicky na uhlovodíky kyslíku (O) dusíku (N) 7 Přítěž (balast) u paliv pevných a kapalných popeloviny voda u plynných paliv obsah vodní páry nehořlavých plynů. hlavními složkami popelovin jsou jílové minerály (Al 2 O 3, 2SiO 2.2H 2 O), karbonáty (CaCO 3, MgCO 3, FeCO 3 ), sulfidy (FeS 2 ), sulfáty (např. MgSO 4, Na 2 SO 4 ), oxidy (SiO 2, Fe 2 O 3 ) a další. 8 Výhřevnost a spalné teplo Výhřevnost paliva Q i [kj.kg -1, kj.nm -3, kwh.kg -1 nebo kwh.nm -3 ] je množství tepla, které se uvolní dokonalým spálením 1 kg (1 m 3 ) paliva při ochlazení spalin na standardní výchozí teplotu 20 C, přičemž vzniklá vodní pára nezkondenzuje. Spalné teplo Q s [kj.kg -1, atd.] je celkové latentní chemicky vázané teplo v palivu, tedy včetně kondenzačního tepla vodní páry ve spalinách z paliva. Vztah mezi spalným teplem a výhřevností je Pevná paliva 1 kg paliva se skládá z hořlaviny h popeloviny A vody W platí W je obsah vody v palivu [kg.kg -1 ] H je obsah vodíku v palivu [kg.kg -1 ] 9 10 Spalování paliv Spalování je fyzikálně chemický pochod, při kterém probíhá řízená příprava hořlavé směsi paliva a okysličovadla jejich slučování (hořením) za intenzivního uvolňování tepla => prudké stoupnutí teploty vznik spalin jakožto produktu spalování Hoření je možné pouze mezi elementárními složkami v atomárním stavu hořlaviny (C, H, S) okysličovadla (nejčastěji O 2 ze vzduchu). Pracovními látkami spalovacích procesů jsou palivo okysličovadlo spaliny - jsou produktem spalování a nositelem uvolněného chemicky vázaného tepla Spaliny plynné = směs převážně nehořlavých plynů (N 2, CO 2, SO 2 +SO 3, NO X, O 2 ) a par (H 2 O) pevné spaliny z popelovin (škvára, struska, popílek) 11 12 2

Model dokonalého spalování předpokládá úplné vyhoření paliva lze jej popsat elementárními chemickými rovnicemi C + O 2 CO 2 2 H 2 + O 2 2 H 2 O S + O 2 SO 2 pro aplikaci modelu je nezbytná znalost prvkového složení hořlaviny paliva zjišťuje se rozborem pomocí modelu lze vypočítat minimální objem kyslíku resp. vzduchu potřebného pro spálení paliva objem a složení spalin vznikajících při spalování paliv Přebytek spalovacího vzduchu spalovací proces je veden s množstvím vzduchu, které je větší než vypočtené minimálně potřebné množství spalovacího vzduchu se vyjadřuje relativně pomocí součinitele přebytku vzduchu u reálných zařízení se určuje měřením podle koncentrace kyslíku ve spalinách přibližně platí vztah 13 14 Optimální přebytek spalovacího vzduchu Závisí na druhu spalovaného paliva možnostech spalovacího zařízení Spalovaní plynu atmosférické hořáky α ~ 1,5 až 2 přetlakový hořáky α ~ 1,05 až 1,25 Spalovaní uhlí na pevném roštu α ~ 2 až??? na mechanickém roštu α ~ 1,5 až 2,5 ve formě prášku α ~ 1,15 až 1,3 Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách tvořena CO zbytky uhlovodíků hořlavinou v tuhých zbytcích koksový zbytek saze nedokonalost spalování lze omezit zvýšením množství spalovacího vzduchu konstrukcí spalovacího zařízení vhodnou organizací a řízením spalovacího procesu 15 16 Nedokonalé spalování palivo v kotli nikdy nevyhoří dokonale nedokonalost spalování je příčinou ztrát hořlavinou ve spalinách tvořena CO zbytky uhlovodíků hořlavinou v tuhých zbytcích koksový zbytek saze nedokonalost spalování lze omezit zvýšením množství spalovacího vzduchu konstrukcí spalovacího zařízení vhodnou organizací a řízením spalovacího procesu Spalovací zařízení a kotle spálením se chemicky vázané teplo v palivu převede do spalin pro další využití přímé pouze vytápění nepřímé ohřev pracovní látky voda pára vzduch jiné médium 17 18 3

Základní pojmy Změna vody na páru v kotli v diagramu T-s a i-s Kotel je zařízení sloužící k výrobě páry (parní kotel), ohřevu vody (teplovodní nebo horkovodní kotel) k ohřevu jiného media (např. oleje). Teplo se získává obvykle spalováním paliva z odpadního tepla (kotle utilizační) z elektřiny (elektrokotle). V kotli dochází k transformaci chemické energie paliva na tepelnou energii spalin do pracovního media. Výsledkem je pára (sytá nebo přehřála), teplá voda (do 110 C) resp. horká voda (nad 110 C) q eko - teplo do ekonomizéru (ohřátí napájecí vody do teploty varu) q var - teplo do výparníku (na vypaření napájecí vody) q př - teplo do přehříváku (na přehřátí syté páry ze stavu 3 na stav 4) podle použití se kotle dělí na elektrárenské, teplárenské, kotle pro výtopny, pro spalovny, utilizační (na odpadní teplo) podle pracovního média teplovodní, horkovodní parní Rozdělení kotlů Existuje celá škála různých způsobů dělení kotlů : podle použitého paliva kotle na tuhá paliva roštové, práškové, granulační, výtavné, cyklónové, fluidní, kotle na kapalná paliva kotle na plynná paliva Určení účinnosti kotle a tepelných ztrát Lze požít dvě metody určení účinnosti kotle : metoda přímá vychází z definice účinnosti metoda nepřímá tepelný výkon kotle příkon tepla v palivu poměrných tepelných ztrát 22 Nepřímá metoda určení účinnosti kotle Poměrné tepelné ztráty kotle i jsou k - fyzickým teplem spalin (komínová) sv - sdílením tepla do okolí CO - hořlavinou ve spalinách C - hořlavinou v tuhých zbytcích f - fyzickým teplem tuhých zbytků Nejvýznamnější je ztráta komínová, závisí na teplotě spalin za kotlem přebytku vzduchu ve spalinách za kotlem plynové kotle kotle na tuhá paliva 23 Přímá metoda určení účinnosti kotle je poměrně jednoduchá, neboť vyžaduje minimální počet měřených veličin dobře aplikovatelná u plynových a olejových kotlů podává jen všeobecnou informaci o účinnosti kotle nedostačující informace pro posuzování kvality provozu a zejména pak pro rozbor dosažených výsledků a návrh opatření Nepřímá metoda určení účinnosti kotle poskytuje přesnější výsledky a podrobnější informaci o provozních vlastnostech kotle 24 4

Parametry kotlů Parní kotel je charakterizován souborem těchto údajů: jmenovitý hmotnostní tok vyrobené páry na výstupu z kotle, kterého musí kotel dosáhnout v trvalém provozu při dodržení jmenovitých hodnot základních parametrů tj. tlaku a teploty páry a napájecí vody při spalování projektovaného paliva, jmenovitý tlak, jmenovitá teplota páry (přehřáté i přihřáté), jmenovitá teplota napájecí vody druh a vlastnosti paliva. Příklad označení parního kotle KOTEL PARNÍ, PRÁŠKOVÝ, GRANULAČNÍ 4,86 kg/s (75 t/h) - hmotnostní tok páry 16/3,8 MPa-tlak přehřáté/přihřáté páry 540/545 C - teplota přehřáté/přihřáté páry 240 C - teplota napájecí vody na hnědé uhlí Q i = 15 MJ/kg výhřevnost W r =25% - obsah vody v palivu A r = 15% - obsah popelovin v palivu HORKOVODNÍ KOTEL 198 kg/s (715 t/h) - hmotnostní průtok vody (M w ) 150/90 C - výstupní/vstupní teplota vody (t w1 /t w2 ) na zemní plyn Typy teplovodních plynových kotlů Teplovodní plynové kotle Pracovním mediem je voda (nebo roztok nemrznoucí kapaliny), která se v kotli ohřívá na pracovní teplotu maximálně 115 C. Pracovní přetlak je stanoven výrobcem, u nižších výkonů bývá do 0,25 MPa, u vyšších až 0,6 MPa. Vyrábějí se ve výkonech od 8 do 3500 kw (výjimečně i vyšší). Určeny jsou normou ČSN 07 0240. Horkovodní plynové kotle Slouží k výrobě horké vody o teplotě přes 115 C při přetlaku nad 0,17 MPa. Vyrábějí se v širokém výkonovém pásmu od 1 do stovek MW a v rozsahu tlaku vody na výstupu z kotle od 0,9 do 7,0 MPa. Typy a základní parametry jsou určeny normou ČSN 07 0021. Pohled na vnitřní uspořádání závěsného plynového kotle pro vytápění a výrobu TUV v provedení C1 TURBO Plynové stacionární kotle s atmosférickým hořákem o výkonu 10 do 300 kw Detail litinového článku 5

Kotle stacionární ocelové s přetlakovým hořákem o výkonu 50 kw do 12 MW Princip činnosti Plynové kondenzační kotle u klasických a nízkoteplotních kotlů se latentní kondenzační teplo vodní páry nevyužívá ochlazením spalin pod teplotu rosného bodu nastává kondenzace vodní páry při kondenzaci se získává skupenské teplo, které lze využít stupeň kondenzace je úměrný podchlazení spalin pod teplotu rosného bodu 32 Plynové kondenzační kotle Energetická bilance příkon kotle a tedy i účinnost se vyjadřuje z výhřevnosti paliva výhřevnost nezahrnuje kondenzační teplo vodní páry kondenzací lze část latentního tepla získat => účinnost kotle může vyjít větší než 100 % Základní dělení podle parametrů páry Typy parních kotlů kotle na sytou páru - určeny především pro dodávku technologické páry kotle na přehřátou páru - určeny především pro výrobu páry k pohonu parních turbín podle provedení výparníku kotle velkoprostorové vhodné pro menší výkony a nižší parametry páry palivem je obvykle plyn nebo olej kotle vodotrubné vhodné pro větší výkony a vyšší parametry páry pro všechny druhy paliv 33 Velkoprostorový kotel na sytou páru pro výkony do 20 t/h Vodotrubné kotle na tuhá paliva dělení podle typu spalovacího zařízení roštové, práškové, granulační, výtavné, cyklónové, fluidní 35 6

Roštový parní kotel na uhlí Roštový kotel na spalování biomasy 38 Práškový parní kotel ELE 660MWe Deskový přehřívák na závěsech 1684 t/h 28 MPa 600 C Trubkový svazek Ohniště kotle s cirkulující fluidní vrstvou s odlučovacím cyklonem 7