2 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín



Podobné dokumenty
3.1 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

Přírodní zdroje a energie

3.1 Primární zdroje energie. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

Obnovitelné zdroje energie Budovy a energie

3.1 Základní přírodní zdroje země. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

1/71 Paliva pro centralizované zdroje tepla

VY_32_INOVACE_12_ENERGETICKE PLODINY

4.2 Vliv dopravy na životní prostředí. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

Obnovitelné zdroje energie Otázky k samotestům

"...s určitými riziky ve vztahu k životnímu prostředí jsou spojeny všechny systémy a druhy lidské činnosti, ať už si toho jsme vědomi, či nikoli...

okolo 500 let př.n.l. poč. 21.stol

Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49

TZB - Vytápění. Daniel Macek Katedra ekonomiky a řízení ve stavebnictví, Fakulta stavební, ČVUT v Praze

Využití biomasy pro výrobu biopaliva Bakalářská práce

Neobnovitelné a obnovitelné zdroje pro rozvoj civilizace

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.


BIOMASA JAKO ZDROJ ENERGIE

Expert na zelenou energii

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

J i h l a v a Základy ekologie

Nerostné suroviny Energie Odpady

Zplyňování. Ing. Martin Lisý, PhD. Energetický ústav VUT v Brně Fakulta strojního inženýrství

Vliv zdrojů elektrické energie na životní prostředí

MOŽNOSTI ZPRACOVÁNÍ ENERGETICKÝCH ROSTLIN Z VÝSYPEK K PRODUKCI BIOPLYNU. Ing. Jaime O. MUŇOZ JANS, Ph.D. Výzkumný pracovník, VÚRV-Chomutov

J i h l a v a Základy ekologie

Jaderná fyzika. Zápisy do sešitu

Zdroje energie a tepla

Integrace solárních soustav a kotlů na biomasu do soustav pro vytápění budov

SSOS_ZE_3.05 Přírodní zdroje

CZ.1.07/1.1.30/

Obnovitelné zdroje energie

Energetika a klimatické změny

Chemické procesy v ochraně životního prostředí

Digitální učební materiál

ROZPTÝLENÁ VÝROBA A JEJÍ VLIV NA DISTRIBUČNÍ SÍŤ

Úvod: Co je bioplyn? Biologický materiál: Funkce bioplynové stanice Bioplynové stanice v ČR:... 9

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Alternativní zdroje energie

SPALOVÁNÍ A KOTLE. Fosilní paliva a jejich vlastnosti. Přírodní a umělá paliva BIOMASA

Negativní vliv faktorů bezprostředněse podílejících se na množství a kvalitu dodávané organické hmoty do půdy


Rozměr a složení atomových jader

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Registrační číslo projektu: CZ.1.07/1.4.00/

Jaderné systémy I (JS1) & Jaderné reaktory a parogenerátory (JR)

PROJEKT BIOPLYNOVÉ STANICE

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

Technická zařízení budov zdroje energie pro dům

E N E R G E T I K A E V R O P Ě

Ochrana ovzduší ve státní správě. Sezimovo Ústí, listopadu 2006

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Příležitosti v čisté ekonomice: možnosti obnovitelných zdrojů. Martin Sedlák, Leading Minds Forum, Praha

Co bychom dělali bez energie

VŠB-TU OSTRAVA. Energetika. Bc. Lukáš Titz

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček

Monitorovací indikátor: Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 19

MODERNÍ METODY LIKVIDACE PRASEČÍ KEJDY

Nezávislost na dodavatelích elektřiny

Obnovitelné zdroje energie. Masarykova základní škola Zásada Česká republika

ZDROJE A PŘEMĚNY ENERGIE

7. NÁVRH OPATŘENÍ K REALIZACI DOPORUČENÉ VARIANTY ÚEK LK

Příručka. Obnovitelné zdroje energie

Ing. Dagmar Sirotková. Výsledky řešení výzkumného záměru

Jaderný palivový cyklus

Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.

IV. Národní program hospodárného nakládání s energií a využívání jejích obnovitelných a druhotných zdrojů

Využití vodní energie Doc. Ing. Aleš Havlík, CSc.

Životní prostředí Energetika a životní prostředí

Představení záměru výstavby bioplynové stanice Chrástecký Dvůr

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: devátý

Relativistická dynamika

Sluneční energie. Základní energie - celkové množství přiváděné k Zemi cca 1350 W.m % se odrazí do kosmického prostoru 15 % pohlceno atmosférou

Přehled povolených odpadů

envic energie energie

kladů výroby biopaliv pro dopravu ČR

obnovitelné zdroje ČVUT v Praze Fakulta stavební Katedra technických zařízení budov


Obnovitelné zdroje energie

1) 2) 3) 4) 5) 6) 7) 8) 9) 10) JET 11) ITER

Jaderná energetika. Důvody podporující v současnosti výstavbu jaderných elektráren jsou zejména:

EVROPSKÝ PARLAMENT. Výbor pro průmysl, výzkum a energetiku PE v Pozměňovací návrh, který předkládá Nicole Fontaine

Výroba energie z biomasy

Hydromechanické procesy Lopatkové stroje - turbíny - čerpadla

Využití trav pro energetické účely Utilization of grasses for energy purposes

Jaderný palivový cyklus - Pracovní list

Biomasa jako palivo Energetické využití biomasy jejím spalováním ENERGETICKÉ VYUŽITÍ BIOMASY

č. 475/2005 Sb. VYHLÁŠKA kterou se provádějí některá ustanovení zákona o podpoře využívání obnovitelných zdrojů Ve znění: Předpis č.

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.22 EU OP VK. Obnovitelné zdroje

Vyhořelé jaderné palivo

Úvod do teorie spalování tuhých paliv. Ing. Jirka Horák, Ph.D.

DOTACE. Ing. Milan Kouřil Mgr. Martin Střelec DAPHNE ČR Institut aplikované ekologie

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

TECHNOLOGIE 21. STOLETÍ

ENERGETIKA MĚSTA ČAČAK. Valašské Meziříčí, Česká republika, září 2009 Aco Milošević, vedoucí Služby pro investice a dohled města Čačak

Studie. využití obnovitelných zdrojů energie Vsetín

OCHRANA ŽIVOTNÍHO PROSTŘEDÍ. Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

Transkript:

2 Primární zdroje energie Ing. Petr Stloukal Ústav ochrany životního prostředí Fakulta technologická Univerzita Tomáše Bati Zlín

Obsah přednášky 1. Zdroje energie rozdělení 2. Fosilní paliva 3. Solární energie 4. Geotermální energie 5. Energie vody 6. Energie větru 7. Biomasa 8. Nukleární 2

1) Zdroje energie 3

Zdroje energie Zdroje energie jsou přírodní látky a/nebo látky, které mohou obsahovat energii v několika formách (chemické, jaderné). 1. primární zdroje energie: fosilní (neobnovitelné) alternativní (obnovitelné) jaderné 2. Sekundární zdroje energie: elektrická energie, topný olej, petrolej teplo z komunální topné sítě 4

Zdroje energie Primární zdroje energie 1) Fosilní zdroje energie: uhlí ropa plyn 2) Obnovitelné zdroje energie biomasa a odpad geotermální energie sluneční energie voda vítr 3) Jaderná energie U 235 a Plutonium 5

Zdroje energie Neobnovitelné výhody - nízká tržní cena, technická dostupnost nevýhody - devastace území těžbou - odpady - zábor území, zmenšování přírody, - poškozování složek ŽP - ekonomika náklady na sanace 6

Zdroje energie Obnovitelné výhody - trvalá dostupnost -ekonomická stabilita surovinové základny nevýhody - při zavedení nového zdroje obvykle potřeba investic, náklady - při intenzifikaci existujícího zdroje se zhoršuje technická dostupnost a může docházet k poškozování ŽP a sociálních vazeb 7

Zdroje energie Srovnání ČR 8

3) Fosilní zdroje 9

Fosilní zdroje Fosilní zdroje Uhlí (Antracit, Černé, Hnědé, Lignit) - Nejvydatnější zásoby - Spalováním uniká do atmosféry CO2 a síra (kyselé deště) - Ekologicky nejnebezpečnější Ropa - Směs uhlovodíků, především alkanů - úniky, havárie Zemní plyn - Levné, ale přitom kvalitní palivo - Nalézá se společně s ropou, uhlím, nebo samostatně - Velmi malé znečišťování vzduchu při spalování 10

Fosilní zdroje B. Uhlí ČU Uhlí Ropa Plyn 1. Hornoslezská pánev 2. Vnitrosudetská pánev 3. Podkrkonošská pánev 4. Středočeské pánve 5. Mělnická pánev L HU 1. Chebská pánev 2. Sokolovská pánev 3. Severočeská pánev 4. Žitavská pánev 1. Jihomoravská pánev 2. Jihočeská pánev 3. Žitavská pánev 11

Fosilní zdroje B. Ropa Prokazatelné zásoby ropy 1. Vídeňská pánev 12

Fosilní zdroje B. Zemní plyn Těžba ve světě 1. Jižní Morava 2. Severní Morava 13

3) Energie slunečního záření 14

Energie slunečního záření vzniká jadernými přeměnami v nitru Slunce - termonukleární fůze (při teplotě 13.10 6 K) obnovitelný, nevyčerpatelný Způsoby získání elektrické energie ze slunečního záření 1. Přímá přeměna - využití fotovoltaického jevu - fotovoltaický článek 2. Nepřímá přeměna - založeno na získání tepla - systémy solárních kolektory - solární věže, žlaby, talíře 15

Přímá přeměna Fotovoltaická přeměna - využití fotovoltaického jevu Fotovoltaický článek - tenká destička nařezaná z polovodičového materiálu (křemík) - z jedné strany obohacena atomy trojmocného prvku (např. Bor) typ P - z druhé strany atomy pětimocného prvku (např. Arzen) typ N - při dopadu fotonů se uvolňují záporné elektrony -> vznik kladně nabitých děr - po přiložení elektrod probíhá elektrický proud 16

Přímá přeměna Fotovoltaický článek typ N typ P 17

Nepřímá přeměna Nízkoteplotní systémy 100 300 C, účinnost 30-50% - princip skleníkového efektu - vytápění budov, skleníků, bazénů, - sluneční kolektory Vysokoteplotní systémy 650 4000 C, účinnost 60-75% - koncentrace slunečního záření do ohniska - Solární věže, žlaby, talíře, sluneční pece 18

Nepřímá přeměna Nízkoteplotní systémy Systémy slunečních kolektorů Pracuje na principu skleníkového efektu Teplo se zachytává v absorbéru Absorbér se ohřívá a odevzdává teplo teplonosnému médiu (voda, olej, vzduch ) Běžné v oblastech s intenzivnějším slunečním svitem 19

Nepřímá přeměna Vysokoteplotní systémy - koncentrace slunečního záření do ohniska - odrazu světla od vhodně tvarovaných a orientovaných zrcadel. - Solární věže, žlaby, talíře, sluneční pece 20

Nepřímá přeměna Solární věže -Záření ze zrcadel na vrchol věže - ohřev vhodné látky (olej, mletá sůl) 21

Nepřímá přeměna Solární pec 22

Nepřímá přeměna Solární žlaby - Parabolická zrcadla - V ohnisku zrcadla umístěna teplosměná látka (olej, voda) 23

Nepřímá přeměna Solární disky, talíře - zrcadla do ohniska - menší elektrárny, experimentální zařízení 24

4) Geotermální energie 25

Geotermální energie Rozpad radioaktivních prvků v zemském nitru Využití: - ve formě tepelné energie (vytápění) - pro výrobu elektrické energie v geotermálních elektrárnách obnovitelný zdroj energie Zdroj geotermální energie - mokrý - energie páry a horké vody - suchý z hlubokých vrtů 26

Geotermální energie Mokrý zdroj - energie páry a horké vody Systém suché páry - Přímo přehřátá pára po odfiltrování kapiček vody pohání turbíny elektrárny. Systém mokré páry - teplota vody v podzemí od 180 C do 350 C (vysoký tlak) do odtlakovací nádrže vzniklá pára pohání turbíny elektrárny. 27

Geotermální energie 28

Geotermální energie Suchý zdroj - z hlubokých vrtů Jde o získávání tepla ze suchých hornin. Hloubka cca 5 000 metrů Finanční nákladnost 29

5) Energie Vody 30

Energie vody Energie vodních toků Princip vodní elektrárny: - přeměna potenciální nebo kinetické energie Využitelný spád Průtok (průtočné množství vody v daném profilu)

Alternativní zdroje energie vody vodní elektrárny Kinetická energie vody vodní rovnotlaké stroje na rotačním principu (vodní kolo, Bankiho turbína, Peltonova turbína). Obvodová rychlost stroje nižší než je rychlost proudění.

Alternativní zdroje energie vody vodní elektrárny Potenciální energie vody - rozdíl dvou výškových potenciálů tlak. - přetlakové rotační stroje (turbíny typu Kaplan, Francis, turbíny vrtulové). Otáčky běžného kola přetlakové turbíny několikanásobně vyšší než absolutní rychlost proudění. Francisova turbína Kaplanova turbína

Energie vody Energie vodních toků Rozdělení vodních elektráren podle způsobu provozu: - průtočné elektrárny - akumulační podle systému soustředění měrné energie a přívody vody k turbíně: - přehradní a jezové elektrárny - derivační - přečerpávací (akumulační) podle spádu (tlaku vody) - nízkotlaké - spády do 20 m - středotlaké - spády do 100 m - vysokotlaké spády nad 100 m

Energie vody Energie vodních toků Jezy - nízkotlaké průtočné Přehrady - středotlaké, vysokotlaké.

Energie vody Energie vodních toků Derivační

Energie vody Energie vodních toků Přečerpávací - Dlouhé stráně

Energie vody Energie vodních toků Vodní elektrárny Výhody - Částečná nebo úplná energetická nezávislost - Vyšší výkon proti větrným a slunečním elektrárnám - Stabilnější zdroj proti větrné a solární energii - Žádné emise, odpady Nevýhody - Složitá výstavba a instalace - Použití jen na místech s optimálním průtokem a spádem - Investičně náročné - Ekologické dopady na ekosystémy

Energie vody Energie vodních toků

6) Energie Větru 40

Energie větru Vítr vzniká v atmosféře při rozdílu atmosférických tlaků, který je důsledkem nerovnoměrného ohřívání zemského povrchu. Dopadající sluneční záření ohřev vzduchu horizontální proudění vzduchu Nejobvyklejší - větrné elektrárny (větrná turbína) Princip elektrárny - Přeměna kinetické energie větru na energii mechanickou (předání kinetické energie větru lopatkám turbín) - Přeměna mechanické energie v generátoru na elektrickou energii

Energie větru Větrné elektrárny 1 vrtule 2 brzda motoru 3 převodovka 4 řídící elektronika 5 generátor 6 mechanické natáčení 7 stožár 8 elektrická přípojka 9 rotorová hlavice

Energie větru Povětrnostní podmínky v ČR Průměrná rychlost větru 5 m/s bezproblémové pro umístění větrných elektráren 4 m/s 5 m/s podmíněně vhodné k instalaci větrné elektrárny

Energie větru

Alternativní zdroje energie větru Výhody větrných elektráren - Větrná energie je obnovitelným nevyčerpatelným zdrojem energie. - Při vlastní spotřebě elektrické energie se vyhneme přenosovým ztrátám. - Při výrobě nejsou produkovány žádné škodlivé emise (SO 2, CO 2, NO x, popel) Nevýhody větrných elektráren - Poměrně vysoká hlučnost (hygienický předpis hlučnost pod 45 db) - Nestabilní zdroj. - Poměrně časově a finančně náročná předrealizační fáze. - Při stavbě větrné elektrárny o vyšších výkonech nutno vynaložit poměrně vysoké investiční náklady. - Návratnost vložených finančních prostředků závislá na využití vyrobené elektrické energie.

Energie větru největší větrnou farmu na světě Texasu (USA), výkon 781,5 MW, 627 větrných turbín, spotřeba 230 000 domácností

7) Biomasa 47

Biomasa Veškerá hmota organického původu Odpadní biomasa - rostlinné odpady - lesní odpad - průmyslové odpady - odpady z živočišné výroby - komunální odpady Energetická biomasa - lignocelulózové plodiny - olejnaté plodiny - škrobeno-cukernaté plodiny

Biomasa Základní používané technologie 1. Termochemická přeměna (tj. suché procesy) Spalování (produkce tepla) Pyrolýza (produkce plynu, oleje) Zplyňování (produkce plynu) 2. Biochemická přeměna (tj. mokré procesy) Fermentace, alkoholové kvašení (produkce ethanolu) Anaerobní vyhnívání, metanové kvašení (produkce bioplynu) Aerobní vyhnívání 3. Mechanicko-chemická přeměna Esterifikace surových bio-olejů (výroba bionafty a přírodních maziv) Štípání, drcení, lisování, peletace, mletí (výroba pevných paliv) Lisování olejů (produkce kapalných paliv, oleje)

Biomasa 1. Termochemická přeměna (tj. suché procesy) Spalování - lignocelulózové plodiny, dřevní odpady, komunální odpady Pyrolýza - tepelný proces rozkladu biomasy bez přístupu vzduchu. - lignocelulózové plodiny, dřevní odpady, komunální odpady. - olej s vysokým a nízkým bodem varu, plyn, uhlí. Zplyňování (produkce plynu) - Ze suché biomasy se působením vysokých teplot bez přístupu vzduchu uvolňují hořlavé plynné složky, tzv. dřevoplyn. - Při přítomnosti vzduchu by docházelo k běžnému spalování. - Plyn obsahuje hlavně CO, CO2, CH4, H2, H2O, N2 a uhlovodíky.

Biomasa 2. Biochemická přeměna (tj. mokré procesy) Fermentace, alkoholové kvašení - probíhá v mokrém (na vodu bohatém) prostředí bez přístupu vzduchu. - produktem je alkohol (spalovací motory), který je získáván následnou destilací. - vhodná biomasa cukrová řepa, obilí, kukuřice, ovoce, brambory, zelenina, celulóza Anaerobní vyhnívání, metanolové kvašení - metanové kvašení v uzavřených nádržích bez přístupu kyslíku - produktem bioplyn - metanem (od 55 % do 70 %) - hnůj, výkaly hospodářských zvířat, zelené rostliny, čistírenský kal - využití - pro výrobu tepla, elektřiny nebo plnění do ocelových lahví. Aerobní vyhnívání - výroba kompostu, za přístupu vzduchu

Biomasa 3. Mechanicko-chemická přeměna Esterifikace surových bio-olejů - řepková semena - lisování oleje - katalyzátor, vysoká teplota - metylester řepkového oleje = bionafta (1. generace). - míšením s některými lehkými produkty vzniká bionafta 2.generace (min 30% metylesteru řep. oleje ) - používání bionafty je doprovázeno rychlým biologickým odbouráváním spalin.

Biomasa Výhody užití biomasy: obnovitelný zdroj energie, neutrální vzhledem k produkci CO 2 tuzemský zdroj energie, který není vázán jen na určitou lokalitu pěstováním energetických plodin je možné využívat přebytečnou zemědělskou půdu nebo půdu, která se nehodí k potravinářské výrobě likvidace odpadů, zbytek po zpracování lze využít jako hnojiva možnost spalování pevných komunálních odpadů. Nevýhody užití biomasy: větší obsah vody a tudíž nižší výhřevnost, větší objem paliva, vyšší nároky na skladovací prostory nutnost úpravy paliva (sušení, tvarování, atd.) vyžadují investice do nových zařízení u výroby a využití bioplynu poměrně vysoké investiční náklady na technická zařízení, což zvyšuje cenu vyrobené energie nutnost likvidace popela, pouze lokální využití paliva

8) Jaderná energie 54

Jaderná energie existuje a uvolňuje se z jaderných reakcí v atomovém jádře neobnovitelný zdroj štěpení jader izotopů některých těžkých kovů vyvolané neutrony. současnosti se využívá uranu nebo plutonium. Uran (U) - smolinec; nízké koncentrace (0,04-3%) - směs izotopů: 238 U (99,276 %), 235 U (0,718 %), 234 U (0,004 %). - Obohacený 2-4% 235 U

Jaderná energie Štěpná jaderná reakce - rozbití jádra nestabilního atomu vniknutím cizí částice za vzniku energie. 235 U + 1 n---> 140 Ba + 93 Kr + 3. 1 n 235 U + 1 n ---> 92 Sr + 141 Xe + 3. 1 n

Jaderná energie Jaderná elektrárna V principu - tepelná elektrárna s jaderným reaktorem Dva základní typy: -jednookruhové - dvouokruhové

Jaderná energie Jaderná elektrárna

Jaderná energie Jaderná elektrárna http://www.cez.cz/cs/vyroba-elektriny/jadernaenergetika/interaktivni-model-je-jak-fungujejaderka.html

Jaderná energie Typy reaktorů Dělění podle Typu moderátotu - zpomalují neutrony - voda, těžká voda nebo grafit, případně i jiné vhodné látky Typu chladiva jaderného paliva - lehká a těžká voda, oxid uhličitý, helium, sodík

Jaderná energie Typy reaktorů Lehkovodní (spojené i funkcí chladicí) VVER/PWR - voda/voda; dvouokruhový; obohacený Uran, nejčastější typ (60%, Dukovany, Temelín) BWR - voda/voda, jednookruhový, druhý nejčastější, obohacený Uran (21%) Grafitový reaktor - Grafit/voda, jednookruhový, přírodní nebo slabě obohacený uran (bývalá SSSR)

Jaderná energie Typy reaktorů - shrnutí

Jaderná energie Řízení průběhu štěpné reakce Regulační tyče - regulují výkon neutronového toku - vysoké absorpční schopnosti - obsahují bór nebo kadmium Havarijní tyče - okamžité zastavení reakce - Vyšší koncentrace absorbéru

Jaderná energie Vyhořelé palivo (po 3-4 letech) Složení: - 96 % uran (~1% 235 U); 1 % transurany; 3 % štěpné produkty (stabilní, krátkodobé, dlouhodobé) Skladování - bazén vyhořelého paliva (cca 5let) - mezisklad ocelové kontejnery (desítky let) Zpracování - Recyklace doplnění U235, drahé - Hlubinná úložiště -

Jaderná energie Radioaktivita A(t) = - d N(t) / d t N(t) je počet dosud nepřeměněných jader A(t) je okamžitá aktivita Jednotka: 1 Bq = 1rozpad/1sekundu Poločas rozpadu - rozpad poloviny z původního počtu atomů radionuklidu

Jaderná energie Vyhořelé palivo poločasy 137 Cs (T 1/2 30 roků), 90 Sr (T 1/2 28,8 roků), 241 Am (T 1/2 458 roků), 239 Pu (T 1/2 2.10 4 roků), 240 Pu (T 1/2 6.10 3 roků)..a řada dalších dlouhodobých radionuklidů.

Jaderná energie termojaderná fúze sloučení atomových jader za pomoci vysoké teploty či tlaku. Palivo - deuterium Zatím se nepovedlo dosáhnout potřebných podmínek

Děkuji Vám za pozornost Dotazy? 68