Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví



Podobné dokumenty
Elektronová mikroskopie SEM, TEM, AFM

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

Proč elektronový mikroskop?

Drazí kolegové, µct Newsletter 01/2013 1/5

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

4 ZKOUŠENÍ A ANALÝZA MIKROSTRUKTURY

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

POČÍTAČOVÁ TOMOGRAFIE V ZOBRAZOVÁNÍ MALÝCH ZVÍŘAT ÚVOD. René Kizek. Název: Školitel: Datum:

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Difrakce elektronů v krystalech a zobrazení atomů

DIFRAKCE ELEKTRONŮ V KRYSTALECH, ZOBRAZENÍ ATOMŮ

Oblasti průzkumu kovů

Metody charakterizace

Optická konfokální mikroskopie a mikrospektroskopie. Pavel Matějka

Ing. Jiří Fejfar, Ph.D. Dálkový průzkum Země

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

VYHODNOCOVÁNÍ RADIOGRAFICKÝCH ZKOUŠEK POMOCÍ VÝPOČETNÍ TECHNIKY

METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ

Co je litografie? - technologický proces sloužící pro vytváření jemných struktur (obzvláště mikrostruktur a nanostruktur)

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha

Konfokální XRF. Ing. Radek Prokeš Katedra dozimetrie a aplikace ionizujícího záření Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze

CHARAKTERIZACE MATERIÁLU POMOCÍ DIFRAKČNÍ METODY DEBYEOVA-SCHERREROVA NA ZPĚTNÝ ODRAZ

POPIS VYNALEZU

Termografie - měření povrchu železobetonového mostu

Návrh rozsahu přejímacích zkoušek a zkoušek dlouhodobé stability. skiagrafických radiodiagnostických rtg zařízení s digitalizací obrazu.

INTERAKCE IONTŮ S POVRCHY II.

Vybrané spektroskopické metody

Technická specifikace předmětu veřejné zakázky

CT-prostorové rozlišení a citlivost z

Planmeca ProMax. zobrazovací možnosti panoramatického rentgenu

Rozdělení přístroje zobrazovací

Techniky mikroskopie povrchů

KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková

Teorie rentgenové difrakce

Spektrometrie záření gama

Spektrální charakteristiky

Optické metody a jejich aplikace v kompozitech s polymerní matricí

- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).

Technický boroskop zařízení na monitorování spalovacích procesů

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

CT - artefakty. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová fyzika

Zobrazovací systémy v transmisní radiografii a kvalita obrazu. Kateřina Boušková Nemocnice Na Františku

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

SPEKTROSKOPICKÉ VLASTNOSTI LÁTEK (ZÁKLADY SPEKTROSKOPIE)

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

Fluorescence (luminiscence)

Konstrukce výpočetního tomografu. Jiří Ferda, Hynek Mírka Klinika zobrazovacích metod LFUK a FN v Plzni

METODY ANALÝZY POVRCHŮ

Meo S-H: software pro kompletní diagnostiku intenzity a vlnoplochy

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

CÍLE CHEMICKÉ ANALÝZY

Přírodovědecká fakulta bude mít elektronový mikroskop

Fyzikální podstata DPZ

Princip rastrovacího konfokálního mikroskopu

METALOGRAFIE I. 1. Úvod

Základy výpočetní tomografie

Viková, M. : MIKROSKOPIE V Mikroskopie V M. Viková

Přednášky z lékařské přístrojové techniky

X-CUBE RTG Kabina. IČ: DIČ: CZ Registrace v OR ved. MS v Praze odd. C, vložka 15389

Laboratoř RTG tomografice CET

Elektronová Mikroskopie SEM

Integrita povrchu a její význam v praktickém využití

Západočeská univerzita v Plzni fakulta Strojní

Nebezpečí ionizujícího záření

Chemie a fyzika pevných látek p2

Mikroskopie, zobrazovací technika. Studentská 1402/ Liberec 1 tel.: cxi.tul.cz

POKUSY VEDOUCÍ KE KVANTOVÉ MECHANICE II

POZOROVÁNÍ SLUNCE VE SPEKTRÁLNÍCH ČARÁCH. Libor Lenža Hvězdárna Valašské Meziříčí, p. o.

Charakteristiky optického záření

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Ing. Pavel Hrzina, Ph.D. - Laboratoř diagnostiky fotovoltaických systémů Katedra elektrotechnologie K13113

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Nedestruktivní defektoskopie

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů

Snímkování termovizní kamerou

Luminiscenční spektroskopické metody

Ústav technologie, mechanizace a řízení staveb. Teorie měření a regulace. emisivní p. ZS 2015/ Ing. Václav Rada, CSc.

TERMOGRAFICKÉ MĚŘENÍ LOPATEK ROTAČNÍHO STROJE "FROTOR"

NEWSLETTER 11/2016 ÚVODNÍ SLOVO. Vážení přátelé a uživatelé služeb tomografické laboratoře,

ZKOUŠENÍ MATERIÁLU. Defektoskopie a technologické zkoušky

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základy Mössbauerovy spektroskopie. Libor Machala

Skenovací parametry. H.Mírka, J. Ferda, KZM LFUK a FN Plzeň

Struktura bílkovin očima elektronové mikroskopie

Chemie a fyzika pevných látek l

Metal Magnetic Memory Method

9. ČIDLA A PŘEVODNÍKY

od 70mm (měřeno od zadní desky s axiálním výstupem) interní prvky opatřeny černou antireflexní vrstvou, centrální trubice s vnitřní šroubovicí

POPIS VYNALEZU K AUTORSKÉMU OSVĚDČENÍ (19) (13) B1. (40) Zveřejněno (45) Vydáno (75) Autor vynálezu A.UTRATA RUDOLF Ing. CSo.

VÍŘIVÉ PROUDY DZM

Moderní trendy měření Radomil Sikora

Detekce světla. - křivka zčernání, expozice - světlocitlivá emulze, CCD - komprese signálu zrakovou dráhou. Detektory světla

modelový experiment M 3/2017

Zjistil, že při dopadu elektronů s velkou kinetickou energií na kovovou anodu vzniká záření, které proniká i neprůhlednými předměty.

Videosignál. A3M38VBM ČVUT- FEL, katedra měření, přednášející Jan Fischer. Před. A3M38VBM, 2015 J. Fischer, kat. měření, ČVUT FEL, Praha

Luminiscence. emise světla látkou, která je způsobená: světlem (fotoluminiscence) fluorescence, fosforescence. chemicky (chemiluminiscence)

ZADÁVACÍ DOKUMENTACE VEŘEJNÉ ZAKÁZKY

Transkript:

Nové aplikační možnosti použití rentgenové projekční mikroskopie a mikrotomografie pro diagnostiku předmětů kulturního dědictví Klíma Miloš., Sulovský Petr Přírodovědecká fakulta Masarykovy univerzity v Brně klima@sci.muni.cz, Použití rentgenového záření k diagnostice materiálu různých objektů již patří po řadu desítek let ke zcela nepostradatelným součástem našeho života. Tato diagnostická metoda má rovněž velmi široké uplatnění při ochraně předmětů kulturního dědictví. V současnosti si již prakticky nemůžeme ani představit, že bychom započali konzervační zákroky zvláště u archeologických předmětů kovového charakteru bez diagnostiky stavu materiálu technickým rentgenem. Málo kdo však ze specialistů v oboru konzervování-restaurování má zkušenosti s nejnovějšími směry aplikací rentgenového (RTG) záření při diagnostice předmětů kulturního dědictví RTG projekční mikroskopií a mikrotomografií. Na základě pracovní návštěvy u jednoho z výrobců této přístrojové techniky (firma Feinfocus, Německo www.feinfocus.de, obchodní zástupce v ČR firma Testima, Praha - www.testima.cz) jsme měli vzácnou příležitost odzkoušet si tyto metody za přítomnosti firemních expertů na řadě vzorků z oblasti předmětů kulturního dědictví a mineralogie. V tomto příspěvku uvádíme naše nové poznatky na vybraných příkladech. RTG projekční mikroskopie Rentgenové záření je ionizující elektromagnetické záření, proud fotonů, o energii řádově desítek až stovek kev. Typické rozmezí vlnových délek je 10-12 až 10-8 m. Přirozenými zdroji jsou hlavně hvězdy; uměle lze rentgenové záření získat v rentgenové trubici dopadem urychlených elektronů na anodu rentgenové lampy (zdroj primárního rentgenového záření). Při ozařování látek primárním rentgenovým zářením dochází k interakci RTG záření a látky, kdy záření je látkou pohlcováno v závislosti na složení a struktuře materiálu. V závislosti na tloušťce materiálu může část RTG záření projít objektem a poskytnout nám tak informaci o vnitřní stavbě předmětu. Rentgenové záření způsobuje vybuzení sekundárního (fluorescenčního) rentgenové záření v látkách, může rovněž působit druhotné záření látek v optickém oboru (luminiscence), zčernání fotografické emulze, ovlivňuje živou i neživou hmotu. Využívá se např. v rentgenové strukturní a spektrální analýze, v lékařství, radiační chemii a defektoskopii. Princip RTG zobrazování vnitřní stavby materiálu předmětů je založen na výše uvedeném principu prozařování materiálu rentgenovým zářením a zobrazením jeho prošlé části na plochu vhodného detektoru, jež je citlivý na toto záření (fotografická deska, luminiscenční převaděč obrazu, resp. v současnosti již polovodičové CCD prvky). Princip projekční rentgenové mikroskopie je založen na standardní zobrazovací RTG metodě, kdy přiblížením prozařovaného materiálu blíže ke zdroji RTG záření dochází na detektoru prošlého záření k zobrazení stále menšího a menšího výseku materiálu, ale s vyšším rozlišením (zvětšením) jeho zobrazované části (viz obr.1). Zdroj RTG záření se však musí blížit kvůli dobré ostrosti obrazu k ideálnímu bodovému zdroji (rozměry řádově µm).

RTG 1 2 3 Obr.1: Princip projekční RTG mikroskopie (Feinfocus). Při použití současné zobrazovací techniky je možné získat RTG obraz předmětu v reálném snímacím čase, tj. v kontinuálním režimu snímání lze zobrazovat předmět pod různými úhly a detaily, otáčet s ním a prohlížet si jej včetně zvětšování potřebných detailů v reálném čase. Proces monitorování lze zaznamenávat formou ukládání vybraných obrazů nebo jako videosoubor na PC, kde je možné tyto informace dále v klidu zpracovávat. Příkladem může být silně zkorodovaný archeologický předmět (železo) obr.2. A) 82 mm B) C) Obr.2: Příklad použití RTG projekční mikroskopie k diagnostice struktury silně zkorodovaného archeologického předmětu ze železa: A) fotografie předmětu B) RTG snímek předmětu - zobrazená tmavá část materiálu je zachovalé kovové jádro předmětu, ostatní světlejší část jsou již jen korozní sloučeniny. C) RTG snímek předmětu (detail struktury) - snímky byly získány v reálném kontinuálním zobrazovacím procesu zvětšování detailu zobrazovaného předmětu (přibližování předmětu ke zdroji RTG záření).

Obr.3: Příklad použití RTG projekční mikroskopie k diagnostice struktury fosilií (Ammonite) A celkový pohled, B zvětšený detail. (Feinfocus) Obr.4: Příklad použití RTG projekční mikroskopie k diagnostice vnitřní struktury biologických vzorků (hmyz) A celkový pohled, B zvětšený detail hlavy. (Feinfocus)

RTG mikrotomografie RTG mikrotomografie je nová nedestruktivní technika zobrazující s vysokým rozlišením vnitřní stavbu vzorků - trojrozměrná RTG mikroskopie. Tato metoda využívá principu projekční RTG mikroskopie pouze v s tím rozdílem, že probíhá v 3D rozměru. Může tedy být využíváno stejné zařízení jako v předchozím případě pouze s dalšími doplňujícími prvky (obr.6). Princip: Vzorek se umístí na velmi stabilní rotující stolek nebo je uchycen do rotujícího manipulátoru a je ozařován intenzivním svazkem rentgenového záření (obr.5). Prošlé záření dopadá na CCD detektor, který registruje jeho intenzitu s vysokým rozlišením - výsledný záznam se podobá klasickému rentgenovému snímku. Vzorkem se pootočí o velmi malý úhel (např. 1o) a proces se opakuje, dokud nedostaneme sadu 360 radiogramů. Poté se předmět případně posune ve směru osy z o další část snímaného řezu předmětem a celý proces se opakuje dokud není celá Obr.5 potřebná oblast předmětu nasnímána. Pomocí matematické techniky zvané zpětná projekce se tyto snímky konvertují na trojrozměrný obraz, složený z miliónů malých krychliček (voxelů); každá z nich představuje určitou část vzorku a informaci o tom, jak tento objem absorbuje rtg záření. V současnosti lze již dosahovat rozlišení: lepší než 1 µm. Za použití dalších vizualizačních programů lze dále vyhodnocovat takto získaný 3D obraz. Např. libovolným místem předmětu lze provádět řezy materiálem včetně rotace takto vzniklého útvaru (lze si jej prostorově prohlédnout), ve struktuře předmětu lze zvýraznit pouze určité části mající stejnou intenzitu pohlcení RTG záření, resp. určitý rozsah pohlcení ( vytažení kontrastní struktury pouze těch částí materiálu, které mají stejné nebo blízce obdobné vlastnosti, resp. chemické složení) apod.. Možné využití: Zjišťování vnitřní stavby předmětů (struktura a rozložení zkorodovaného a nezkorodovaného materiálu, pórovitost, homogenita, trhliny, oslabená místa, hloubka a rovnoměrnost penetrace konzervačních látek, vlhkosti). Obr.6: Zařízení firmy Feinfocus k 2D/3D RTG projekční mikroskopii (µct FOX).

A) Obr.7: Příklad použití 3D RTG projekční mikroskopie (mikrotomografie) na archeologickém železe (předmět z obr.2): A) 2D boční průmět s vyznačením počítačově zpracovaných řezů v xy rovině (posun v ose z) B) jednotlivé počítačově zpracované řezy v xy rovině předmětem. y x 1 2 3 z B) 1 2 3 y x

A) z x y Obr.8: Dále počítačově zpracovávaný výřez struktury železného předmětu (RTG obraz): A) výseč s osami xyz B) natáčení s výřezem. B)

Další příklady použití RTG mikrotomografie (firma SkyScan, Belgie - www.skyscan.be): Papír Kostka zledovatělého sněhu Obr.9 Obr.10 (1,2 x 1,5 mm) Obr.11: Mikrofosilie řez strukturou. Obr.12: 3D rekonstrukce řezu geologickým vzorkem. Obr.13: Odřezek dřeva: A) řez strukturou, B) detail A) B)

Na základě pracovní návštěvy u jednoho z výrobců přístrojové techniky RTG mikrotomografie (firma Feinfocus, Německo), kde jsme měli vzácnou možnost si odzkoušet za přítomnosti firemních expertů řadu vzorků z oblasti předmětů kulturního dědictví a mineralogie, lze naše zkušenosti s touto metodou ve stručnosti charakterizovat přibližně následujícím způsobem: Výhody metody: Předměty není třeba nijak upravovat lze je pozorovat v jejich přirozeném stavu (avšak relativní - v závislosti na charakteru předmětů, rozměrech a požadovaném zvětšení při monitorování) Předměty lze v 2 D projekčním módu monitorovat v reálném čase ( živě ) včetně možného záznamu na různá média Předměty lze po počítačové rekonstrukci v 3D módu detailně studovat provádění řezů předmětem v libovolném směru další možné digitální zvětšení detailů obrazu separace různých částí předmětu (prostorově, materiálově nebo strukturně dle úrovně intenzity absorbovaného RTG záření) Na základě vyhodnocení získaných údajů lze získat zcela nové informace o stavu zachování předmětu, jeho tvaru, struktuře, složení, reliéfu apod. a následně lze navrhnout a optimalizovat konzervační zásah na předmětu (průběh konzervace každý význačnější krok - lze s výhodou zpětně kontrolovat a vyhodnocovat). Omezení metody: Zvětšení: maximální, resp. minimální zvětšení určeno vzdáleností zdroje RTG záření od osy otáčení předmětu vzhledem velikosti rotujícího předmětu (tj. rotující předmět kolem své osy otáčení nesmí narazit do zdroje RTG záření, resp. do detektoru) maximální zvětšení určeno velikostí rotujícího předmětu, který musí kolem své osy otáčení trvale setrvávat v kuželovém svazku RTG záření a současně v zorném poli detektoru (viz obr.5). Charakter předmětů: hmotnost (podle typu přístroje a manipulátoru do cca 10 kg v 2D módu, do cca 2 kg v 3D módu) rozměry (podle typu přístroje a manipulátoru do cca 30x40x30 cm) struktura a složení (předměty musí mít kontrastní strukturu pro absorpci RTG záření a současně takové rozměry, aby nedocházelo k úplnému pohlceni RTG záření). Doba snímání: - pro 3D mód při požadavku dobrého rozlišení trvá doba snímání a vyhodnocování řadu hodin (pro 2D mód monitorování probíhá v reálném čase). Příklady problematické diagnostiky předmětů (v 3D modu): lokální detaily rozměrnějších předmětů na povrchu nebo uvnitř objemu předmětu tenké vrstvy na mnohonásobně tlustší podložce

předměty o velmi rozdílné absorpci RTG záření při rotaci kolem osy otáčení (jeden rozměr kolem osy otáčení je podstatně větší než rozměr druhý, tj. např. tvar desky vzniká přesvícení snímku ve směru menšího rozměru ) nelze diagnostikovat předměty, jejichž rozměry vzhledem absorpci materiálu již zcela pohlcují RTG záření (resp. jeden rozměr vzhledem k ose otáčení) pro velká zvětšení (rozlišení na úrovni jednotek µm) je nutné odebrat z originálních předmětů vzorky a vhodně je upravit Zhodnocení metod: Dle našeho názoru jsou tyto nové nedestruktivní metody diagnostiky struktury materiálů mimořádně vhodné pro studium a dokumentaci předmětů kulturního dědictví. Nicméně současný stav řešení zobrazovací přístrojové techniky používané u RTG mikrotomografu (včetně 3D zobrazovacích programů) má ještě svá určitá omezení daná zvláště tradicí doposud nejvíce používaných aplikací v oblasti monitorování mikroelektronických součástek. Na základě podobných zkušeností z minulosti u obdobných diagnostických nebo zobrazovacích technik lze předpokládat, že tyto uživatelské nedostatky mohou být poměrně rychle alespoň z části odstraněny (celkový vývoj oboru i potřeby rozvoje dalších aplikací). RTG projekční mikroskopie (zobrazovací 2D mód) je dle našich zkušeností zcela jedinečná zvláště vzhledem k možnostem zobrazování předmětů i jejich detailů (mikrostruktury) v reálném čase. Vzhledem k finanční náročnosti těchto metod však lze předpokládat, že se uchytí pouze ve velkých muzeích národního charakteru nebo ve význačnějších centrech, resp. institutech zabývajících se ochranou kulturního dědictví. Poděkování: Výsledky získány za přispění finanční podpory výzkumného záměru MSM 0021622411 a firem Feinfocus, Německo a Testima, Praha.