Podstata plastů [1] Polymery



Podobné dokumenty
POLYMERY PRINCIPY, STRUKTURA, VLASTNOSTI. Doc. ing. Jaromír LEDERER, CSc.

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Základní formy využití polymerů. Aditivy do polymerních látek Plasty Nátěrové hmoty Vlákna

TECHNOLOGIE VSTŘIKOVÁNÍ

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Prof. Ing. Václav Švorčík, DrSc.

PŘEDMLUVA 3 1 ÚVOD 23 2 MATERIÁLY 25

Struktura polymerů. Příprava (výroba).struktura vlastnosti. Materiálové inženýrství (Nauka o materiálu) Základní představy: přírodní vs.

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

Pracovní stáž Univerzita Tomáše Bati ve Zlíně

Prof. Ing. Václav Švorčík, DrSc.

Matrice. Inženýrský pohled. Josef Křena Letov letecká výroba, s.r.o. Praha 9

Životní prostředí. Plasty v životním prostředí

VY_32_INOVACE_CHK4_5460 ŠAL

Termoplastové kompozity v leteckých aplikacích


Pružnost. Pružné deformace (pružiny, podložky) Tuhost systému (nežádoucí průhyb) Kmitání systému (vlastní frekvence)

LEPENÉ SPOJE. 1, Podstata lepícího procesu

18MTY 9. přenáška polymery 2

Plasty. Základy materiálového inženýrství. Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010

Jaromír Literák. Zelená chemie Problematika odpadů, recyklace

Ţijeme v době plastové

Fyzika kolem nás vybrané experimenty

Podstata plastů [1] POLYMERY 1 / 41

Kompozity s termoplastovou matricí

Silly putty ( inteligentní plastelína ) V USA za II.sv.války jako možná (neúspěšná) náhrada nedostatkové pryže (kyselina boritá + silikonový olej)

Plasty (laboratorní práce)

autor testu, obrázky: Mgr. Radovan Sloup 1. Vyřeš osmisměrku: (škrtat můžeš vodorovně, svisle nebo úhlopříčně v libovolném směru)

LEPIDLA POUŽÍVANÁ V MUZEJNÍ PRAXI A PRO KONZERVOVÁNÍ A RESTAUROVÁNÍ

Nauka o materiálu. Přednáška č.14 Kompozity

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. Japonsko, Kajima Corp., PVA-ECC (Engineered Cementitious Composites)ohybová zkouška

2 MECHANICKÉ VLASTNOSTI SKLA

CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. Základy chemie makromolekulárních látek VY_32_INOVACE_18_11

Podniková norma Nádoba 2.25 Nádoba Tato norma platí pro nádoby z PP a PE vyráběné technologií rotačního tváření rotomoulding

TECHNOLOGIE LEPENÍ V AUTOMOBILOVÉM PRŮMYSLU

České vysoké učení technické v Praze. Fakulta strojní. Ústav materiálového inženýrství BAKALÁŘSKÁ PRÁCE. Vliv struktury na mikrotvrdost polymerů

COBRAPEX TRUBKA S KYSLÍKOVOU BARIÉROU

POŽADAVKY NA KONSTRUKCI, VÝROBU, VÝSTROJ, SCHVALOVÁNÍ TYPU, ZKOUŠENÍ A ZNA

Vliv ozáření na mechanické a termomechanické vlastnosti LDPE a HDPE. Bc. Jiří Macourek

Vstřikování plastů. plasty, formy, proces. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti

CONTACT Kyanoakrylátová lepidla Superrychlá Úsporná Mnohostranná Trvalá

PŘÍKLADY 1. P1.4 Určete hmotnostní a objemovou nasákavost lehkého kameniva z příkladu P1.2 21,3 %, 18,8 %

MAKROMOLEKULÁRNÍ LÁTKY

MAKROMOLEKULÁRNÍ CHEMIE

ORGANIZAČNÍ A STUDIJNÍ ZÁLEŽITOSTI

Polymery lze rozdělit podle několika kritérií. Podle původu rozlišujeme polymery přírodní a syntetické. Přírodní polymery jsou:

Plastická deformace a pevnost

CZ.1.07/1.1.30/

Popis technologie tvarování

Metody termické analýzy. 3. Termické metody všeobecně. Uspořádání experimentů.

Materiály charakteristiky potř ebné pro navrhování

Tvorba 3D modelu vstřikovací formy. Jan Vykydal

Contact Kyanoakrylátová lepidla. New. super rychlá ekonomická univerzální spolehlivá. Pen-System

Vlastnosti, poškozování, konzervační postupy

Konstrukční desky z polypropylenu

Každá položka má objednácí číslo ve formátu xxx xxxx xxx xx, kde zvýrazněné dvojčíslí označuje kód materiálu.

TECHNOLOGIE POVRCHOVÝCH ÚPRAV. 1. Definice koroze. Soli, oxidy. 2.Rozdělení koroze. Obsah: Činitelé ovlivňující korozi H 2 O, O 2

Ing. Hana Zmrhalová. Název školy: Autor: Název: VY_32_INOVACE_20_CH 9. Číslo projektu: Téma: Anotace: Datum: Základní škola Městec Králové

OVMT Mechanické zkoušky

PMC - kompozity s plastovou matricí

Podniková norma Stěnové prvky z polypropylenu. Divize vstřikování Tento dokument je řízen v elektronické podobě

Polymery a plasty v praxi POLYSTYREN & KOPOLYMERY STYRÉMU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY ANALÝZA LEPIDEL VE VŠEOBECNÉM STROJÍRENSTVÍ ANALYSIS OF ADHESIVES IN GENERAL ENGINEERING

Výzkum vlivu materiálu formy na vlastnosti polymerních. Bc. Jan Švehlík

BAKALÁŘSKÁ PRÁCE ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA ELEKTROTECHNICKÁ. Přínosy síťování polymerních směsí pro kabelový průmysl

Scotch- W eld akrylová lepidla DP8405NS zelené DP8410NS zelené

Výztužné oceli a jejich spolupůsobení s betonem

Makromolekulární látky

PLASTY A SYNTETICKÁ VLÁKNA

Dřevo Živice Makromolekulárn

Lepení plastů a elastomerů

Plasty a pomůck Plasty a pomůc y

Titanic Costa Concordia

Využití: LDPE HDPE HDPE Nízkohustotní polyethylen:

Nauka o materiálu. Přednáška č.13 Polymery

Vliv podílu recyklátu na vlastnosti dílů z PA. Andrea Jarošová

Plasty pro stavebnictví a architekturu 1 Úvod do zpracování plastů

Princip a význam bariérových vlastností plastových obalů pro potravinářské aplikace. Miroslava Urbánková

Základní požadavky: mechanické a fyzikální vlastnosti materiálu

ODPADOVÉ HOSPODÁŘSTVÍ V PRAXI DRUSUR

Měření tvrdosti polymerů. Daniel Fabriger

MATERIÁLOVÁ PROBLEMATIKA PŘI SEPARACI PLYNŮ A PAR

vytvrzení dochází v poslední části (zóně) výrobního zařízení. Profil opouštějící výrobní zařízení je zcela tvarově stálý a pevný.

STANOVENÍ PEVNOSTI V TAHU U MĚKKÝCH OBALOVÝCH FÓLIÍ


Martin CINK Ing. Eva KRÓNEROVÁ, Ph.D.

Polymer Institute Brno, spol. s r.o. akreditovaná zkušebna č. L 1380 tel.: Tkalcovská 36/2 fax:

2 Kotvení stavebních konstrukcí

Stavební technologie

Požadavky na technické materiály

T e r m o p l a s t y

18MTY 1. Ing. Jaroslav Valach, Ph.D.

Konstrukční řešení automobilového dílu vyráběného hybridní technologií

Celosvětová produkce plastů

Stromolezení. Téma 3.: Konstrukce a materiál textilních lan , Brno. Připravili: prof. Ing. Jindřich Neruda, CSc. Ing.

CZ.1.07/1.5.00/

Mikrotvrdost modifikovaného PA66 pomocí beta záření. Tomáš Žalek

Beton. Be - ton je složkový (kompozitový) materiál

5.7 Vlhkost vzduchu Absolutní vlhkost Poměrná vlhkost Rosný bod Složení vzduchu Měření vlhkosti vzduchu

Termická analýza Excellence

Transkript:

PLASTY

Podstata plastů [1] Materiály, jejichž podstatnou část tvoří organické makromolekulami látky (polymery). Kromě látek polymerní povahy obsahují plasty ještě přísady (aditiva) jejichž účelem je specifická úprava vlastností. Polymery jsou chemické látky, které vykazují díky svým obrovským molekulám neobvykle širokou škálu vlastností. Polymery se dělí na elastomery a plasty. Rozdělení plastů: termoplasty a reaktoplasty. Polymery Plasty Termoplasty Elastomery Reaktoplasty

Elastomer je vysoce elastický polymer, který lze za běžných podmínek malou silou značně deformovat bez porušení. Tato deformace je převážně vratná. Dominantní skupinou elastomerů jsou kaučuky, z nichž se vyrábí pryže (nespisovně guma). Termoplasty lze opakovaně ohřevem převést do stavu taveniny nebo viskozního toku a ochlazením nechat ztuhnout při teplotách, které jsou charakteristické pro daný typ termoplastu. Základ recyklačních technologií termoplastů. Reaktoplasty procházejí při zpracovatelském procesu chemickou reakcí a účinkem tepla, záření nebo síťovacích činidel vytvářejí husté, prostorově sesíťované struktury, v nichž jsou původní molekuly vzájemně pospojovány kovalentními vazbami. Tento proces se nazývá vytvrzování. Reaktoplast je ve vytvrzeném stavu netavitelný a nerozpustný. Recyklace reaktoplastů je proto obtížnější než u termoplastů a vyžaduje jiné postupy. Jiné dělení polymerů vychází ze způsobu jejich vzniku [2] : Polymery přírodní (bílkoviny, škrob, celulóza, kaučuk a látky syntetické, ale přírodním polymerům podobné (celuloid, vulkánfíbr, viskóza, umělé hedvábí, umělá rohovina apod.). Polymery syntetické (polyetylén, polyvinylchlorid, atd.)

Struktura polymeru krystalická vysoce uspořádaná struktura amorfní prakticky neuspořádaná struktura semikrystalická částečně uspořádaná struktura (amorfní a krystalická) 3 / 56

Tvar makromolekul [1] Tvar makromolekul je dán funkčností monomerů, která rozhoduje o možnosti vzniku makromolekul lineárních nebo zesíťovaných. Rovněž reakční podmínky (teplota, tlak) mají vliv na to, zda při polymeraci vznikne polymer lineární nebo rozvětvený (např. u PE). Lineární a mírně rozvětvené polymery jsou rozpustné v některých rozpouštědlech, zesíťované polymery jsou nerozpustné, pouze bobtnají. Makromolekulární sítě vznikají např. síťováním, tj. spojováním lineárních nebo mírně rozvětvených makromolekul. Síťováním kaučuků (vulkanizací) vzniká pryž. Síťování lineárních nebo rozvětvených makromolekul reaktivní pryskyřice se nazývá vytvrzování. Vznikají nerozpustné a netavitelné produkty s různým uspořádáním prostorové sítě, které se nazývají reaktoplasty.

(a) Lineární (b) Rozvětvené (c) Polymery se zkříženými články (d) Síťované polymery Zdroj:[2]

Fázové stavy polymerních materiálů [1] Vysoká molekulová hmotnost polymerů způsobuje, že jejich bod varu je ve všech případech vyšší, než je teplota jejich rozkladu (degradace). Z tohoto důvodu u polymerů neexistuje plynný stav. Polymery se mohou nacházet pouze v kapalném nebo tuhém stavu. Podle uspořádání makromolekulárních řetězců v tuhém stavu rozlišujeme vysoce uspořádaný stav krystalický a téměř neuspořádaný stav amorfní (sklovitý). Na rozdíl od nízkomolekulárních látek je pro polymery charakteristický ještě přechodový stav mezi stavem sklovitým a kapalným, tzv. stav kaučukovitý. Polymer lze v tomto stavu malou silou deformovat až o stovky % téměř vratně. Je patrné, že polymery mohou existovat ve čtyřech fázových stavech, a to krystalickém a 3 amorfních (sklovitém, kaučukovitém, plastickém).

Fázové stavy sklovitý (sklo, tuhý) kaučukovitý (kaučuk) plastický (kapalina, kapalný) krystalický polymer Tm krystaly amorfní polymer kapalina Tm Tg sklo semikrystalický polymer krystaly kaučuk Tg kapalina Tm kaučuk kapalina

Lineární polymery (termoplasty) Název a zkratka struktura Tg [ C] Tm [ C] Polyethylen (PE) lineární krystalická (silně) -122 137 rozvětvený krystalická (středně) -122 110 Polypropylen (PP) izotaktický krystalická -24 176 Polystyren (PS) amorfní 90 - Polyvinylchlorid (PVC) amorfní 75 - Polytetrafluorethylen (PTFE) amorfní -97 330 Polymethylmethakrylát (PMMA) amorfní 105 - Polyoxymethylen (POM) krystalická -40 181 Polyamid 6 (PA6) krystalická 45 225 Polyamid 66 (PA66) krystalická 65 265 Polyfenylenether (PPE) krystalická (málo) 210 268 Polyetheretherketon (PEEK) krystalická 154 334 Polyethylentereftalát (PETP) krystalická (středně) 70 267 Polykarbonát (PC) amorfní 144 - Polyfenylensulfid (PPS) krystalická 185 285 Polyethersulfon (PES) amorfní 230 -

Chování polymerů za zvýšené teploty a působení vnější síly[1] Tvar makromolekuly vliv na vlastnosti polymerního materiálu - zvýšená teplota a současné působení vnější síly. Odlišné chování termoplastu, elastomeru a reaktoplastu. Pro termoplasty - tvořeny lineárními nebo mírně rozvětvenými polymerními řetězci, které jsou u semikrystalických polymerů zpevněny oblastmi, kde jsou makromolekuly vysoce uspořádány. Jestliže teplota překročí Tm, potom dochází v polymeru k plastickému nevratnému toku a výrobek se zbortí. Chování semikrystalického termoplastu při teplotě vyšší než Tf, který obsahuje lineární a mírně rozvětvené makromolekuly (zveřejněno se svolením nakladatelství Scientia, Praha)

Elastomer (kaučuku), příčné vazby byly připraveny vulkanizací (obr.). U toho polymeru nedochází k plastickému toku, neboť polymerní řetězce jsou vzájemně fixovány příčnými vazbami. Po přiložení vnější síly dochází k deformaci elastomeru až o stovky % díky konformačním změnám ve struktuře makromolekul. Deformace je vratná a vzorek se po oddálení síly vrátí do původního stavu. Elastomer, který obsahuje mírně zesíťované řetězce a vlivem vnější síly dochází k jeho deformaci, která je vratná (zveřejněno se svolením nakladatelství Scientia, Praha)

U reaktoplastů (termosetů) - velmi hustá trojrozměrná síť chemických vazeb. Díky nim jejich vlastnosti nejsou teplotně závislé. Na rozdíl od elastomerů, které vykazují významné elastické vlastnosti, jsou reaktoplasty díky rigidní trojrozměrné struktuře křehké. Reaktoplast (termoset, pryskyřice) je tvořen trojrozměrnou sítí a proto při působení vnější síly dochází k jeho destrukci (zveřejněno se svolením nakladatelství Scientia, Praha)

Identifikace termoplastů bez použití analytických přístrojů Využívá se charakteristických vlastností polymerů hustota, chování v plameni, houževnatost. Flotační metoda využívá rozdílné hustoty plastů, je použitelná i v průmyslovém měřítku k třídění plastových odpadů. Chování v plameni

Stanovení hořlavosti Metoda je založena na stanovení délky zkušebního tělesa a doby jeho hoření (60s). zuhelnatělé části Za 60 s od začátku působení plamene se kahan zhasne měří se doba hoření zkušebního tělesa. pozoruje se, jak snadno se vzorek zapaluje, zda po vyjmutí z plamene hoří i nadále, nebo zda nehoří vůbec, jaký zabarvení má okraj a jádro plamene, posuzuje se zápach dýmu po uhašení plamene, charakter příškvarku vzorku, popřípadě chování taveniny.

Flotační zkouška Jedna z metod pro stanovení hustoty nelehčených plastů Podstatou je vzájemným mísením imerzních kapalin odlišných hustot (větší a menší než je hustota vzorku) zjistit okamžik, kdy měřený vzorek začne v kapalině flotovat bez pohybu nahoru nebo dolů po dobu nejméně jedné minuty. Jako vzorky opracované výrobky, prášky a granule nejsou vhodné Metoda FLOAT SINK Pro vlastní měření se použije kádinka naplněná zkušebním roztokem vytemperovaným na teplotu měření (20 C), která ovlivňuje měrnou hmotnost zkušebních roztoků. Ze vzorku plastu se připraví vzorky 10x10 mm, které se vhodí do válce s roztokem. Pro identifikaci plastů float-sink testem použijeme 3 zkušební roztoky: 2. Voda 3. Ethylalkohol o hustotě ρ = 0,93 g/cm3 4. Roztok NaCl o hustotě ρ = 1,20 g/cm3

Směs plastů / neurčený plast (PP,HDPE,PS,PVC) Plave PP,LDPE Ethylalkohol, ρ=0,93 Pitná voda, ρ=1 Klesne PS,PVC NaCl, ρ=1,20 Klesne - PVC Klesne - HDPE Plave - PP Plave - PS

Specifické hmotnosti běžných plastů (g/cm3) Typ plastu PP - polypropylen LDPE - polyethylen nízkohustotní HDPE - polyethylen vysokohustotní ABS - akrylonitril butadien styren PS - polystyren (pevný) PMMA - polymethylmetakrylát PC - polykarbonát PVC - polyvinylchlorid PET - polethylen tereftalát 0,90-0,93 0,93-0,95 0,95-0,98 1,03-1,05 1,05-1,08 1,17-1,22 1,20-1,24 1,30-1,45 1,34-1,40

Mechanické vlastnosti polymerů Mechanické vlastnosti polymerů. jsou velmi rozdílné a silně závislé na teplotě. Zdroj:[2] Tahová křivka pro PA66 v závislosti na teplotě (v=1mm/min.)

.a také na jsou silně závislé na rychlosti deformace Deformační křivka v závislosti na rychlosti deformace

Mechanické vlastnosti v praxi jsou skutečné vlastnosti ovlivněny tvarem výrobku stavem materiálu po zpracování orientace makromolekul vnitřní pnutí krystalizace stupeň vytvrzení

Mechanické vlastnosti při krátkodobém namáhání zjišťují se trhací zkouškou výsledkem zkoušky je závislost napětí na deformaci, z této závislosti lze zjistit mez kluzu a pevnosti tažnost modul pružnosti v tahu celkové chování materiálu při deformaci z těchto hodnot můžeme odvodit dovolené namáhání v tahu dovolené namáhání ve smyku

Mez kluzu a pevnosti mez kluzu v tahu σe mez pevnosti v tahu σp homogenní, houževnaté, semikrystalické plasty plněné, křehké, amorfní plasty a reaktoplasty pevnost v tlaku σd pro houževnaté materiály rovna pevnosti v tahu pro křehké materiály je o 30% až 60% vyšší než pevnost v tahu

Mez kluzu a pevnosti hodnoty σe a σp se snižují s rostoucí teplotou a při dlouhodobém zatížení orientací struktury při zpracování dochází obecně ke zvýšení pevnosti ve směru orientace a snížení ve směru příčném Čím je stupeň orientace makromolekulární struktury vyšší, tím jsou vyšší i rozdíly v pevnostech podél směru orientace a napříč.

Závislost napětí na měrném prodloužení 1 tvrdé plasty bez meze kluzu σ Dt = σp kp kp = 1,25 2 měkké plasty bez meze kluzu dovolené napětí je takové napětí, při kterém vzniká trvalá deformace 1% 3 plasty s výraznou mezí kluzu σ Dt σk = kk kk = 2,5

Závislost meze pevnosti na teplotě 1. HDPE 2. LDPE 3. PP 4. PS 5. hps 6. SAN 7. ASA 8. ETFE 9. ETFE + 25%SV

Modul pružnosti E je mírou tuhosti materiálu se vzrůstající teplotou klesá mění se v závislosti na době zatěžování teplotě vlhkosti vzduchu v praxi se používá konstrukční modul pružnosti Ek je funkcí teploty doby zatěžování velikosti napětí

Definice modulu pružnosti u plastů

Poissonovo číslo pohybuje se mezi 0,3 0,5 se vzrůstající teplotou vzrůstá

Rázová houževnatost acu Je kinetická energie kyvadlového rázového kladiva, spotřebovaná na přeražení zkušebního tělesa bez vrubu, vztažená na původní plochu jeho příčného průřezu. je měřítkem náchylnosti materiálu k lomu při rázovém namáhání pod teplotou Tg je nízká, nad teplotou Tg prudce vzroste acu Ec = x103 h b Ec korigovaná energie [J] spotřebovaná při přeražení zkušebního tělesa h tloušťka zkušebního tělesa [mm] bn šířka zkušebního tělesa[mm] 1. 2. 3. 4. 5. 6. 7. PP PMMA hps POM PA + 30%SV PC + 30%SV UP pryskyřice + skleněná rohož

Vrubová houževnatost acn je měřítkem houževnatosti materiálu a také citlivosti k vrubům a koncentraci napětí pod teplotou Tg je nízká a při vyšší teplotě prudce vzroste acn Ec = x103 h bn Ec korigovaná energie [J] spotřebovaná při přeražení zkušebního tělesa h tloušťka zkušebního tělesa [mm] bn šířka zkušebního tělesa pod vrubem [mm] 1. 2. 3. 4. 5. 6. 7. PP PA6 normálně vlhký PA6 suchý PA66 normálně vlhký PA66 suchý POM PTFE

ČSN EN ISO 179-1 1 směr rázu Rozměry zkušebního tělesa

Rázová a vrubová houževnatost rázová houževnato st vrubová houževnatost určuje vrubovou citlivost materiálu čím je tento poměr větší, tím je materiál citlivější na vruby a na koncentraci napětí Zkoušky poskytují určité informace o chování plastů při nárazu. Výsledky stanovení závisí na druhu plastu, jeho složení, teplotě, zkušební metodě, podmínkách provedení zkoušky, tvaru zkušebního tělesa. Houževnatost lze ovlivnit volbou aditiv.

Mechanické vlastnosti při dlouhodobém konstantním namáhání jedná se o závislost tří veličin napětí deformace čas předpokládá se neměnná teplota vzájemný vztah těchto veličin se zjišťuje pomocí dvou zkoušek creepové zkoušky tahem (tečení) ČSN 640621 relaxační zkoušky

Zkoušení s fluorescenčním UV zářením a kondenzací vody ČSN 77 0344 Použití metody je určeno k modelování poškození způsobeného vodou ve formě deště nebo rosy a energií ultrafialového záření ve slunečním záření. Metoda není určena k modelování poškození způsobenému místními povětrnostními vlivy jako je znečištění atmosféry, biologické napadení a vystavení slané vodě. Zkušební zařízení viz obrázek, konstruované z antikorozních materiálu, zahrnuje osm zářivek, vyhřívanou lázeň, zkušební vzorky a podmínky pro kontrolování a zaznamenání času a teploty. 4 hodiny UV - záření při 60 C, 4 hodiny kondenzace při 50 C.

Základní pevnostní vlastnosti některých termoplastů Název Modul pružnosti v tahu [MPa] Mez pevnosti [MPa] Polyethylen PE 200 1400 8-35 Polypropylen PP 1100 1300 21 37 Polyvinylchlorid - PVC 2400 4200 40-60 Polyamid 6 PA6 1200 1400 70-85

LITERATURA [1] Kratochvíl B., Švorčík V., Vojtěch D. Úvod do studia materiálů. 1. vydání. ISBN 80-7080-568-4. 2005. [2] www.ped.muni.cz/wphy/fyzvla/fmkomplet3.htm [3] Macek K., Zuna P.: Strojírenské materiály. ČVUT 2003. [4] Technik technologie, materiály, inovace, trhy. 1/2. Leden, únor 2005.