Elektrické stroje Úvod Transformátory - Elektrické stroje točiv ivé rčeno pro studenty komb. formy FMMI předmětu 4570 / 04 Elektrotechnika Elektrické stroje jsou vždyv měniče e energie jejichž rozdělen lení a provedení je závislz vislé na druhu použit itého proudu a výstupní formě energie (mechanická,, elektrická). Podle způsobu dosažen ení změny magnetického toku hovoříme o indukovaném m napětí vzniklém transformací pohybem samoindukcí
Indukované napětí vzniklé transformací u i = * dφ dt h Indukované napětí vzniklé pohybem u i dφ x, t dφ x dx = * =, u i = Bx l v dt dx dt
Indukované napětí vzniklé samoindukcí u = i * dφ dt t di dt = di L dt Silové účinky F = B.I. l M = 0,5. d. sum F i 3
Základní rozdělen lení ES dle pohybu: - netočiv ivé (bez pohybu) - točiv ivé (s s pohybem) - lineárn rní (s pohybem) Elektrické stroje točiv ivé Def.: Točivý ES je zařízen zení,, které má části schopné vykonávat vat relativní točivý pohyb a které je určeno pro elektromechanickou přemp eměnu energie. Elektrické stroje točiv ivé přeměňují elektrickou (elektromagnetickou) formu energie na mechanickou formu energie (motory) a naopak (generátory). 4
Základní rozdělení EST (dle charakteru napájecího napětí ) střídavé stroje (AC stroje) jednofázové, trojfázové, m - fázové stejnosměrné stroje (DC stroje) ostatní ELEKTRICKÉ STROJE T O Č I V É ETOČIVÉ GEERÁTORY M O T O R Y TRASFORMÁTORY (jedno a trojfázové) MĚIČE Stejnosměrné cizím buzením derivační kompaudní sériové Střídavé (Alternátory) Stejnosměrné cizím buzením derivační kompaudní sériové Střídavé Komutátorové síťové (výkonové) pecní svařovací (rozptylové) měřící (MTP, MT) speciální (autotransformátory, bezpečnostní, izolační, atd.) usměrňovače střídavé měniče napětí střídače pulzní měniče měniče kmitočtu synchronní asynchronní asynchronní synchronní 5
Základní konstrukce elektrických strojů točivých Rotor s: klecovým vinutím 3-fázovým vinutím s kroužky vyniklými póly vč. permanentních magnetů vinutím a s komutátorem Stator s: 3-fázovým vinutím Asynchronní klecový motor, Asynchronní motor (s kotvou) nakrátko Asynchronní motor s vinutým rotorem Kroužkový asynchronní motor Synchronní stroj Komutátorový motor vyniklými póly Motor se stíněným pólem Synchronní stroj s vyniklými (vyjádřenými) póly Krokový motor Stejnosměrný stroj Transformátory Kat. 45 Transformátory Kat. 45 Značky ve schématech Říjen 004 Václav Vrána 6
Úvod Definice: Transformátory jsou elektrické netočivé stroje, které umožňují změnu velikosti (transformaci) střídavého napětí při konstantní frekvenci Podle počtu fází je rozdělujeme na jednofázové a trojfázové. Princip činnosti ideálního transformátoru Magnetický obvod Φ n Podmínky: I - nulový rozptyl: ~ Φ σ primární vinutí Φ σ = 0 - nulové ztráty: ΣΔ P = 0, R = R = 0, I Φ σ Převodový poměr: sekundární vinutí ind ind = = K = Obr. Jednofázový transformátor s železným jádrem Indukovaná napětí v jednotlivých vinutích: ind = 4,44. f. Φ m., ind = 4,44. f. Φ m. 7
. Princip činnosti skutečného transformátoru Skutečné ztráty - ΔP > 0 R > 0, R > 0 Rozptylové toky kolem vinutí Φ σ > 0 Φ σ >0 Skutečné napětí sekundárního vinutí ind - Δ Δ I. Z k 3. Pracovní stavy transformátoru Transformátor naprázdno. ~ I o I = I 0, I = 0 0 primární vinutí sekundární vinutí Převod transformátoru K = 0 Příkon odebíraný transformátorem ze naprázdno, které jsou sítě slouží ke krytí ztrát - železném jádře - Δ P Fe - ve vinutí - Δ P Cu. 8
Pracovní stav transformátoru : transformátor nakrátko ~ =0 I k I k primární vinutí sekundární vinutí ~ I K Z K Obr, áhradní schéma Z =0 =0 Z K = Z u K = I u K Z K = R + j X ο = R + R K + j( X ο + X ο K ) Příkon odebíraný transformátorem ze sítě slouží ke krytí ztrát nakrátko, které jsou ve vinutí. Pracovní stav transformátoru: - nakrátko Poměrné napětí nakrátko u K, u K% Při stavu transformátoru nakrátko se sníží primární napětí na hodnotu K, při které proud odebíraný ze sítě má hodnotu I K = I = = K = ind ind Z K u K = K Z = Z K I I = Z Z K K ~ I u K % = K Z 00 = Z K 00 Obr, áhradní schéma Proud nakrátko I K = u I K% 00 9
Transformátor při zatížení Jsou všechny ostatní pracovní stavy transformátoru, (vyjma stavů naprázdno a nakrátko). Vzájemné fázové poměry napětí a proudů lze zobrazit v tzv. fázorových diagramech a přibližně závisí na charakteru a velikosti zatěžovací impedance Z, ( 0 < Z < ) a parametrech vinutí (R a X). ~ Z K I. K - Z.K.K 0 Zatěžovací charakteristika transformátoru rozptylové transformátory napětí naprázdno síťové transformátory Obr, Zjednodušené náhradní schéma I IK I Účinnost transformátorů η = P P = P ΔP P = Δ P P 00 ΔP = ΔP Fe + ΔP Cu (W)... ztráty v transformátoru P =. I. cosϕ (W)... činný příkon transformátoru P =. I. cosϕ (W)... činný výkon transformátoru. V praxi se dosahuje účinnosti 85 až 99 % ( transformátory větších výkonů mají vyšší účinnost). Účinnost je závislá na velikosti zatížení a klesá úměrně s velikostí zatížení. 0
4. Konstrukce a provedení transformátorů magnetický obvod (jádro) - transformátorové izolované plechy, tloušťky 0,5 a 0,35 mm - ferit systém chlazení - vzduch - olej vinutí - materiál : měď, hliník - počet vinutí : dvou a vícevinuťové 5. Autotransformátory I b b I I. a II. - I + I I a = = K = ind ind I I. II. I + I c c a) pro snižování napětí b) pro zvyšování napětí Obr.9 - Zapojení autotransformátoru Výhody: Tvrdý chod, nízké pořizovací náklady evýhody: Bezpečnost osob při poruše
6. Měřící (přístrojové) transformátory - Měřící transformátor napětí (MT) ind = = K = Měřené napětí (např. vn) m M primár sekundár V R iv >> 0 Obr. 0 - MT n ind K = = K > Jmenovité sekundární napětí transformátoru (na straně voltmetru) bývá obvykle 00 V. 6. Měřící (přístrojové) transformátory - Měřící transformátor proudu (MTP) I K k I A R i 0 Obr. Zapojení MTP = = K = ind ind L l zkratovač I I I = K K = = K I > Jmenovitý sekundární proud transformátoru (na straně ampérmetru) I bývá obvykle 5 A ( A).
7. Speciální transformátory Pecní transformátory - odporové, - obloukové, - indukční Svařovací transformátory Konstrukce chlazení 3f transformátoru Suchý a vyčištěný transformátor (např. při výrobě nebo po opravě) je umístěn v nádobě z vlnitého ocelového plechu. 3f transformátory tory Přívody nižšího napětí Přívody vyššího napětí ádoba je naplněna transformátorovým olejem a hermeticky uzavřena. Vinutí jsou vyvedeny přes izolační půchodky ven. Chladící olej cirkuluje a odvádí ztrátami vzniklé teplo od vinutí a jader do radiátorů. Řez 3f transformátorem s olejovým chlazením 3
3f transformátory tory - Výroba suchých typů transformátorů Suchý transformátor vn, 6 MVA Montáž vinutí 6 kv,,5 MVA Suchý transformátor vn, 300 kva Suchý transformátor pro nn Stýskala, 00 Obecně ASYCHROÍ STROJE Asynchronní stroj (AS) je používán jako f a 3f motor (AM) a také jako generátor. ejčastěji však jako motor. Je nazýván tažným koněm průmyslu. Většina AM používaných v průmyslu je s klecovým rotorovým vinutím, tzv. nakrátko. Oba motory, třífázový i jednofázový motory mají široké použití. AS jako asynchronní generátor má ojedinělé použití, jako typický je použití ve větrných elektrárnách, apod. Svorkovnice Jednofázový asynchronní motor Rozběhový kondenzátor Ložiskový štít-zadní Ložiskové pouzdro Hřídel Výkonový štítek stroje 4
ASYCHROÍ MOTORY Stator - konstrukce Jádro (paket) z izolovaných dynamoplechů s drážkami Vinutí z izolovaných Cu vodičů, zpravidla tří nebo jednofázové, je vytvarováno a uloženo oddělené drážkovou izolací v drážkách jádra Rotor klecového AM - konstrukce Paket z izolovaných dynamolechů s drážkami na vnějším obvodu Kovové tyče vinutí zalisovány v drážkách, zpravidla slitiny na bázi Al Dva kroužky spojující tyče nakrátko Drážky a tyče jsou zešikmeny z důvodů snížení hlučnosti vlivu harmonických Řez statorovým vinutím Jádro Statorová drážka Řez tyčí rotorového vinutí Rotorové tyče mírné zešikmení Spojovací kruhy ázorný řez 3f AM v patkovém provedení statorová svorkovnice motorový přívod elektrické energie příkon P výkonový štítek ventilátor kryt ventilátoru ložiska 3f statorové vinutí proud chladícího vzduchu hřídel výkon P přední a zadní ložiskový štít ztráty ΔP patka litinová nebo hliníková kostra s chladícími žebry 5
KROŽKOV KOVÉ ASYCHROÍ MOTORY Rozdílnost konstruce Vinutý rotor: Trojfázové rotorové vinutí je uloženo v rotorových drážkách. Je zapojen zpravidla do hvězdy (Y), zřídka do trojúhelníka (D) Konce fází rotoru jsou vyvedeny na kroužky, začátky do uzlu (Y) Tři uhlíkové kartáče dosedají na tři kroužky Rotorové vinutí může být spojeno s externími variabilními rezistory nebo se samostaným zdrojem (měničem) Třífázové statorové vinutí Vzduchová mezera Koncepce 3f AM s vinutým rotorem 3f rotorové vinutí uložené v rotorových drážkách vyvedené na kroužky Fáze V Statorové jádro - paket z izolovaných dynamoplechů Fáze W - + W + V + Rotorový paket z izolovaných dynamoplechů V - - Fáze W Statorové drážky s vinutím hřídel motoru ASYCHROÍ MOTORY Princip činnosti 3f AM Statorové vinutí je napájeno třífázovým napětím, které v něm vyvolá souměrný střídavý proud. Protékající třífázový proud generuje ve statoru točivé EM pole. Toto EM pole rotuje (obíhá, otáčí se) synchronní úhlovou rychlostí Ω = π n /30. Synchronní rychlost je úměrná synchronním otáčkam n, ty závisí na frekvenci napájecího napětí AM a počtu pólových dvojic (pólpárů) p: n = 60 f / p (min - ) Rotující EM pole indukuje indukované napětí do vodičů rotorového vinutí nakrátko. Indukované napětí vyvolá v klecovém vinutí rotoru el. proud. 6
Princip vzniku kruhového točivého magnetického pole ve statoru 3f AM fáze statorového vinutí napájení z 3f střídavého zdroje harmonického napětí u v v n.. synchronní otáčky točivého mag. pole ve statorovém vinutí, resp. ve statorovém paketu Působení kruhového točivého magnetického pole ve statoru 3f AM na rotor, vznik točivého momentu n synchronní otáčky Statorové vinutí n. otáčky (aktuální) rotoru Stator Rotor (rotorové vinutí není nakresleno) 3 fázový zdroj 7
ASYCHROÍ MOTORY Vznik tažné síly AM Točivé EM pole indukuje proud v tyčích rot. vinutí Vzájemné působení tohoto proudu a EM točivého pole vyvolá hybnou sílu přenášenou na hřídel F = B I l Síla F Force l n, Ω I Tyče rotorového vinutí BIndukce rotating B točivého EM pole l je délka rotoru Ring Rotorové kruhy ASYCHROÍ MOTORY 3f AM - Význam skluzu Když se rotor otáčí stejnou úhlovou rychlostí (resp. otáčkami) jakoumátočivé EM pole statoru, je jím indukované napětí, proud a moment roven nule. Proto k vytvoření momentu musí mít rotor AM rychlost menší než je rychlost synchronní (Ω < Ω, resp. n < n ). Motor ke své činnosti potřebuje stále určitý rozdíl rychlosti (otáček) rotoru vůči rychlosti (otáčkám) synchronní, vytvořené EM polem statoru. Tento poměrný pokles otáček se nazýván skluz s a je dán vztahem: s = (n - n)/n Frekvence indukovaného napětí a proudu v rotoru je: f = s f Jmenovitý skluz s n (při jmenovitém zatížení) AM bývá od 0,5 do 5%, u velmi malých motorů až 0%. 8
ASYCHROÍ MOTORY 3f AM - Skluz - Příklad výpočtu Třífázový AM 4,7 kw, 3x30V, 50Hz, šestipólový, zapojený do Y, má jmenovitý skluz 5%. Vypočtěte: a) Synchronní otáčky a synchronní rychlost b) Jmenovité otáčky rotoru c) Jmenovitý moment motoru Řešení a) Synchronní otáčky : n = 60 f /p = 60 50 / 3 = 000 ot./min., tj. 6,667 ot./s. synchronní úhlová rychlost : Ω = π n = 04,669 rad./s. b) Otáčky rotoru: n n = ( - s ) n = ( - 0,05) 000 = 950 ot./min., tj. 5,83 ot./s. úhlová rychlost rotoru: Ω n = π n n = 99,465 rad./s. b) Jmenovitý moment motoru: M n = P n / Ω n = 47,8 m ASYCHROÍ MOTORY 3f AM - Momentová charakteristika - průběh a důležité hodnoty Momentová charakteristika, tzn. n = f (M) závislost rychlosti, resp. otáček AM na zatěžovacím momentu se dá sestrojit např. pomocí programu MathCad. Obrázek s m.ch. AM ukazuje důležité body a hodnoty, včetně nominálního bodu A. AM pracuje jako motor v rozsahu skluzu od do 0. n n 0 n n z v 0,0 0,05 0, 0, 0,3 0,4 M 0 M A n = f (M) n, resp. Ω s 0,5 0,6 M M 0,7 0,8 M Z 0,9 s =,0 0,0,0,0 3,0 M 4,0 9
Asynchronní motory 3 pracovní režimy, plynulé přechody Řízení rychlosti AM, brzdění Řízení rychlosti AM Brzdění AM Změnou frekvence statorového napětí (frekvenční měnič) Změnou rotorového odporu (podsynchronní kaskáda) Změnou počtu pólů (Dahlanderovo zapojení) Protiproudé (reverzace fází) motor pracuje jako brzda s> adsynchronní (generátorické) (frekvenční měnič / dahlander) s<0 Dynamické (stejnosměrné) 0
ASYCHROÍ MOTORY Jednofázový AM OBECĚ Je nejvíce používán v chladničkách, pračkách, ždímačkách, hodinách, vrtačkách, malých kompresorech, pumpách, atd. tohoto typu motoru je v drážkách statorovém paketu uloženo dvojí vinutí uspořádané navzájem kolmo. Jedno je hlavní (pracovní), a druhé pomocné je pro rozběh (stratovací). Hlavní vinutí Startovací - - pomocné vinutí Statorový paket z izolovaných dynymoplechů + Statorové drážky s vinutím _ Klecový rotor Rotorov tyče Kroužky spojující tyče nakrátko ASYCHROÍ MOTORY Jednofázový AM - Princip spouštění Spouštění f AM vyžaduje vytvoření točivého EM pole. Točivé EM pole k rozběhu je zde vytvořeno (např. pomocí kapacitoru v) proudy ve vinutích navzájem fazově posunutími o 90 o (el.). I odstředivý spínač rozběhové vinutí hlavní vinutí C rotor
Stejnosměrné (DC) motory mají obdobnou konstrukci jako DC generátory vyžadují jeden nebo dva DC napájecí zdroje možnost řízení jejich otáček je jednoduchá vyrábějí a používají se v širokém rozsahu výkonů od setin W, až po jednotky MW v současnosti jsou jejich aplikace nahrazovány AC pohony především z důvodů spolehlivosti, menších nároků na údržbu, levnější pořizovací ceny a příznivějšího poměru výkonu na jednotku hmotnosti Konstrukční uspořádání DC motoru
Zapojení budícího, kotevního vinutí a vinutí pomocných pólů DC motoru Hlavní póly (budící) Kartáče Kotva (rotor) Pomocné póly Zdroj budícího a kotevního napětí Principielní uspořádání DC motoru Otáčky n (směr otáčení rotoru) SJ Severní pól hřídel kotva S komutátor hlíkové kartáče elektromagnetické pole elektromagnetické buzení, nebo permanentní magnet Jižní pól + - apájecí napětí kotvy 3
Principielní uspořádání DC motoru a jeho činnost Severní pól Jižní pól + apájecí napětí kotvy Animace principu činnosti DC motoru S + a.. napájení kotvy motoru J 4
Řez špičkovým převodovým DC motorem firmy MAXO Druhy stejnosměrných strojů Podle toku energie motory, generátory Obdobně jako AM 3 režimy motor generátor brzda Podle zapojení budicího vinutí viz obr. níže 5
Mechanické charakteristiky DC motorů Vlastností DC motorů je velký záběrný proud viz charakteristiky, realizace rozběhu a) Jen vyjímečně přímým připojením (univerzální motorky, serva) b) při sníženém napětí c) S předřadným odporem Mechanické charakteristiky motoru se sériovým buzením (univerzální motor) Mechanické charakteristiky motoru s cizím buzením, příp. s permanentními magnety Použití stejnosměrných strojů Trakce (sériové motory, motory s cizím buzením) Hračky, servomotorky Zvláštní druh jsou tzv. univerzální motory jedná se o upravený sériový motor, který lze napájet DC i AC napětím, využití vysavače, ruční nářadí Mech. charakteristiky jsou shodné se sériovým motorem 6
Synchronní stroje Synchronní generátor 4 500 kw Synchronní motor 3 50 kw Synchronní stroje Dělení synchronních strojů Podle směru toku energie Podle provedení konstrukce rotoru Motory Generátory (alternátory) S hladkým S vyniklými rotorem póly S permanentními magnety Charakteristické vlastnosti: synchronní rychlost, vysoká účinnost, možnost měnit účiník (kompenzovat) Charakteristické využití: generátory (turboalternátory, hydrogenerátory), synchronní stroj jako tzv. ventilový pohon pro pohon např. ropovodu, pohony válcovacích stolic (velké výkony, malé otáčky) 7
Synchronní stroje ejvyužívanějším typem relativního pohybu EM pole a vodiče je pohyb rotační (využívaný ve většině běžných AC generátorů) u(t) Časový průběh indukovaného napětí S ωt Rychlost otáčení, resp. otáčky n J ~ VOLTMETR Mag. indukce B i(t) - (střídavý proud obou polarit) u(t) střídavé indukované napětí 8
Hlavní části generátoru Kotevní vinutí: je nejčastěji 3f, umístěno ve statorové části. Z něho se odebírá vyrobená indukovaná elektrická energie Budící vinutí: DC rotorové vinutí napájeno z budiče (často to je DC rotační zdroj na stejné hřídeli s rotorem), vytvářející nutné elektromagnetické pole Stator: pevná část generátoru Rotor: rotuje uvnitř statoru vlivem hnacího stroje Kroužky a kartáče: kroužky jsou umístěny na rotoru a spolu s kartáči slouží ke spojení budiče s otáčejícím se budícím vinutím, pozn. apájení je možné i bez kartáčů indukcí tzv. bezkontaktní buzení - větší spolehlivost -------------------------------------------------------------------------------------------------- Hnací stroj: dodává přes rotor generátoru mechanickou energii, nejčastěji to bývají parní, plynové, spalovací nebo vodní turbíny, spalovací motory... Princip 3f synchronního turboalternátoru názorně L L3 L tři fázové vodiče vedoucí k blokovému transformátoru L L L3 kroužky 3f statorové vinutí ulový vodič (S) Kartáče + DC BDIČ S (J) Rotor - otáčející se elektromagnet buzený (napájený) z DC zdroje 9
Pohled na 3f synchronní hydroalternátor (vodní dílo Lipno, x 60 MW) Charakteristiky synchronních strojů Rozběh synchr. motoru: a) asynchronní, poté vtažení do synchronismu b) cizím pomocným motorem c) pomocí frekvenčního měniče, cyklokonvertoru Momentová charakteristika synchronního stroje 30