ZATEPLOVACÍ SYSTÉMY - ZÁSADY SPRÁVNÉHO NAVRHOVÁNÍ



Podobné dokumenty
BH059 Tepelná technika budov přednáška č.1 Ing. Danuše Čuprová, CSc., Ing. Sylva Bantová, Ph.D.

SCHEMA OBJEKTU POPIS OBJEKTU. Obr. 3: Pohled na rodinný dům

SCHEMA OBJEKTU. Obr. 3: Řez rodinným domem POPIS OBJEKTU

Obr. 3: Pohled na rodinný dům

1. Hodnocení budov z hlediska energetické náročnosti

Obr. 3: Pohled na rodinný dům

Ústřední vytápění 2012/2013 ZIMNÍ SEMESTR. PŘEDNÁŠKA č. 1

Obr. 3: Řez rodinným domem

SCHEMA OBJEKTU. Obr. 3: Pohled na rodinný dům

NÁVRH STANDARTU REVITALIZACE A ZATEPLENÍ OBJEKTU

POROVNÁNÍ TEPELNĚ TECHNICKÝCH VLASTNOSTÍ MINERÁLNÍ VLNY A ICYNENE

Výpočet potřeby tepla na vytápění

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

1. Energetický štítek obálky budovy. 2. Energetický průkaz budov a grafické vyjádření průkazu ENB. 3. Energetický audit

Průměrný součinitel prostupu tepla budovy

Tepelnětechnický výpočet kondenzace vodní páry v konstrukci

Dřevostavby komplexně Energetická náročnost budov a nové energetické standardy

TWINNER - zateplení, které předběhlo svoji dobu. Pavel Rydlo*

ARCHITEKTONICKÁ A ENERGETICKÁ KONCEPCE NÍZKOENERGETICKÝCH OBJEKTŮ. Ing. arch. Kristina Macurová Doc. Ing. Antonín Pokorný, Csc.

Přehled základních produktů a ceny Platný od června Ušetřete za energii, prostor a čas... Technické poradenství volejte zdarma

Energetický štítek obálky budovy. Stávající a navrhovaný stav

Přehled základních produktů a ceny Platný od května Ušetřete za energii, prostor a čas... TECHNICKÉ PORADENSTVÍ VOLEJTE ZDARMA

Přehled základních produktů a ceny Platný od Ušetřete za energii, prostor a čas... TECHNICKÉ PORADENSTVÍ VOLEJTE ZDARMA

Vliv podmínek programu Nová zelená úsporám na navrhování nových budov a stavební úpravy stávajících budov Konference ČKAIT 14.

Správné návrhy tepelné izolace plochých střech a chyby při realizaci Pavel Přech projektový specialista

Lineární činitel prostupu tepla

BH059 Tepelná technika budov Konzultace č. 3

ENERGETICKÁ NÁROČNOST BUDOV - ZMĚNY LEGISLATIVY

Projektová dokumentace adaptace domu

RODINNÝ DŮM STAŇKOVA 251/7

TZB Městské stavitelsví

TZB II Architektura a stavitelství

Tepelně technické vlastnosti zdiva

BH059 Tepelná technika budov

Přehled základních produktů a ceny Platný od Ušetřete za energii, prostor a čas... Technické poradenství volejte zdarma

Doporučené standardy nízko energetických budov a budov s téměř nulovou potřebou energie

BH059 Tepelná technika budov

BUDOVY DLE VYHLÁŠKY 78/2013 SB.

VÝPOČET TEPELNÝCH ZTRÁT

Zvyšování kvality výuky technických oborů

Oblast podpory A Snižování energetické náročnosti stávajících rodinných domů. Oblast podpory C.2 Efektivní využití zdrojů energie, výměna zdrojů tepla

VÝPOČET TEPELNÝCH ZTRÁT

Směrnice EP a RADY 31/2010/EU

VÝSTUP Z ENERGETICKÉHO AUDITU

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

EFEKTIVNÍ ENERGETICKÝ REGION ECHY DOLNÍ BAVORSKO

ČESKÁ TECHNICKÁ NORMA

Oprava a modernizace bytového domu Odborný posudek revize č.1 Václava Klementa 336, Mladá Boleslav

Minimální rozsah dokumentace přikládané k žádosti o dotaci v programu Zelená úsporám, v oblasti podpory B

Mistral ENERGY, spol. s r.o. NÁZEV STAVBY: Instalace krbového tělesa MÍSTO STAVBY: VYPRACOVAL:. TOMÁŠ MATĚJEK V BRNĚ, LISTOPAD 2011

[PENB] PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. (dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

ARCHITEKTONICKÁ A ENERGETICKÁ KONCEPCE BUDOVY A JEJICH INTERAKCE

rekreační objekt dvůr Buchov orientační výpočet potřeby tepla na vytápění stručná průvodní zpráva

NEZBYTNÉPŘÍSTUPY KE SNIŽOVÁNÍ ENERGETICKÉ NÁROČNOSTI BUDOV

PENB a dotační programy. Ing. Jan Škráček, energe/cký specialista

10. Energeticky úsporné stavby

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY. DLE VYHL.Č. 78/2013 Sb. RODINNÝ DŮM. čp. 24 na stavební parcele st.č. 96, k.ú. Kostelík, obec Slabce,

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

SOFTWAROVÁ PODPORA PŘI NAVRHOVÁNÍ STAVEB Ing. Jiří Teslík

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, , Karlovy Vary Autor: MARIE KRAUSOVÁ Název materiálu:

Principy návrhu střech s opačným pořadím izolačních vrstev

Oblast podpory A Snižování energetické náročnosti stávajících bytových domů

Zelená úsporám. Program podpory úspor energie a využívání obnovitelných zdrojů. budovách. Odbor GIS Státní fond životního prostředí

NG nová generace stavebního systému

Krycí list technických parametrů k žádosti o podporu: B - Výstavba rodinných domů s velmi nízkou energetickou náročností

Moje přednáška má jen stručně poukázat na rozdíl mezi Energetickým štítkem obálky budovy a Průkazem energetické náročnosti budovy a to podle

BYTOVÝ DŮM MINSKÁ 190/62, BRNO zpracovaný podle vyhlášky 148/2007 Sb.

VÝVOJ A ZÁVAZNOS TEPELNĚ-TECHNICKÝCH PO

Účinnost užití energie základní pojmy

Průkaz energetické náročnosti budov odhalí náklady na energie

EFEKTIVNÍ ENERGETICKÝ REGION JIŽNÍ ČECHY DOLNÍ BAVORSKO

Energetická studie varianty zateplení bytového domu

VYHLÁŠKA ze dne 22. března 2013 o energetické náročnosti budov

YTONG DIALOG Blok I: Úvod do problematiky. Ing. Petr Simetinger. Technický poradce podpory prodeje

termín pasivní dům se používá pro mezinárodně uznávaný standard budov s velmi nízkou spotřebou energie a vysokým komfortem bydlení pasivní domy jsou

Icynene chytrá tepelná izolace

Katalog konstrukčních detailů oken SONG

Ověřovací nástroj PENB MANUÁL

Prezentace: Martin Varga SEMINÁŘE DEKSOFT 2016 ČINITELÉ TEPLOTNÍ REDUKCE

BH059 Tepelná technika budov Konzultace č.1

Izolace fasád. Průvodce pro investora

s t a v e b n í s y s t é m p r o n í z k o e n e r g e t i c k é d o m y Tepelně technické vlastnosti l i s t o p a d

NOVINKA. Nejúčinnější způsob jak ušetřit energii. Podkrovní prvky FERMACELL P+D. Profi-tip FERMACELL:

Průkaz energetické náročnosti budovy (PENB).

Tepelná technika 1D verze TEPELNĚ TECHNICKÉ POSOUZENÍ KONSTRUKCE - Dle českých technických norem

Školení DEKSOFT Tepelná technika 1D

Vysoké učení technické v Brně Fakulta stavební Ústav pozemního stavitelství. BH059 Tepelná technika budov Konzultace č.1

(dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

Zakázka číslo: StaJ. Energetická studie pro program Zelená úsporám. Bytový dům Královická Brandýs nad Labem Stará Boleslav

ŠETŘÍLEK. Martin Koutník, Jan Hubáček. Střední průmyslová škola a Vyšší odborná škola Kladno Jana Palacha KLADNO

Porovnání tepelných ztrát prostupem a větráním

PRŮKAZ ENERGETICKÉ NÁROČNOSTI BUDOVY

Tabulka Tepelně-technické vlastností zeminy Objemová tepelná kapacita.c.10-6 J/(m 3.K) Tepelná vodivost

Protokol pomocných výpočtů

Tepelné mosty v pasivních domech

Téma: Průměrný součinitel prostupu tepla

Pohled na energetickou bilanci rodinného domu

(dle vyhl. č. 78/2013 Sb. o energetické náročnosti budovy)

Energetická efektivita

Technologie staveb Tomáš Coufal, 3.S

Transkript:

ZATEPLOVACÍ SYSTÉMY - ZÁSADY SPRÁVNÉHO NAVRHOVÁNÍ DŮVODY PROČ ZATEPLOVAT Když se řekne zateplovací systém, téměř každý si vybaví nějakou fasádu kde viděl, jak se na celou plochu fasády,,něco,, lepí. Pravděpodobně se jednalo o tepelnou izolaci. Při pohledu na tuto činnost jistě někoho napadnou otázky typu:,,proč jí tam ale vlastně dávají, proč jí tam nedali už před 0 lety, když se to stavělo atd. V závislosti na tom si tedy můžeme říci, jak asi ta tepelná izolace té či oné stavbě pomůže? Jaký to na řešenou stavbu bude mít celkový vliv atd. Na tyto otázky na první pohled odpověď neznáme a přeci jsou to právě tyto otázky, které si každý z nás musí také klást před tím, než vůbec začne zateplovat svoji stavbu. Hlavním důvodem, často ale ne jediným, jsou úspory, kterých se díky zateplení dosáhne. Sníží se tím výrazně náklady na vytápění celého objektu, který je dostatečně a správně zateplen. Nicméně jsou tu i další faktory, jako například akustika, ochrana před nežádoucím přehřátím vnitřních prostor v létě, požární hledisko atd. Všechny tyto důvody je nutno nejprve zvážit, než se rozhodneme pro určitou formu zateplení, abychom dle našich požadavků zvolili to nejlepší. Obecně lze všechny důvody shrnout tak, že je nutno zajistit soulad mezi legislativou a požadovanými úpory energie. JAK POSTUPOVAT PŘI NÁVRHU ZATEPLENÍ Před vlastním návrhem zateplení je nutno si rozhodnout jakou kvalitu zateplení očekáváme. Rozhodování je to podobné jako v případě nákupu jakékoliv jiné věci či služby. Například u automobilů se někdo spokojí se škodovkou, jiný už chce mercedes. Musíme si tedy ujasnit zda chceme jen to nejnutnější nebo raději běžný standard či už něco víc. Z čeho můžeme vybírat se dá lehce zjisti z následující tabulky, která vychází z normy ČSN 7 050-. Kvalita zateplení je zde seřazena od minimálního zateplení až po maximální. ozn. označení kritérium dle ČSN 7 050- hodnota požadované zateplení max. hodnota součinitele prostupu tepla U dle konstrukce - viz. obr. 5 doporučené zateplení max. hodnota součinitele prostupu tepla U dle konstrukce - viz. obr. 5 nízkoenergetický dům roční plošná měrná potřeba tepla na vytápění e A - < 50 kwh m- a pasivní dům roční plošná měrná potřeba tepla na vytápění e A - < 5 kwh m- a 5 nulový dům roční plošná měrná potřeba tepla na vytápění e A - 0 kwh m- a Poznámka : V ČSN 7 050- jsou mimo těchto hlavních kritérií i kritéria další která by se měla taktéž dodržet (celkové množství energie, návrhové teploty vnitřního vzduchu, atd.). U nulových domů se potřeba tepla získává jen z odpadního tepla domácích spotřebičů, proto vlastní vytápění stavby nemá a proto může být hodnota rovna 0, i když z fyzikálního hlediska to samozřejmě neplatí. Jakmile již víme jak kvalitně chceme dům zateplit, měli bychom se obrátit na odborníka, nejčastěji projektanta a nechat si zpracovat podrobný projekt zateplení stavby. Do projektu se pak zohlední právě námi zvolená kvalita zateplení kterou vyžadujeme. Jakmile máme zpracovaný projekt, tak již nic nebrání tomu nechat si od realizačních firem zpracovat jednotlivé cenové nabídky. Jakmile proběhne i nutná legislativa, tak již nic nebrání vlastní realizaci zateplení. CO VŠE SE ZATEPLUJE, NEJVĚTŠÍ NÁROKY NA ZATEPLENÍ - STŘECHY A FASÁDY V 90% případů je hlavním důvodem zateplení ekonomická stránka, tedy úspora nákladů na vytápění, a proto tato úspora je ten hlavní ukazatel pro výběr tepelné izolace. Zateplení by měl řešit projekt a aby byl projekt správně proveden, musíme vědět co vše se zatepluje a jak to máme řešit. Abychom si to snadno zjistili, tak si musíme uvědomit kterou cestou nám může teplo z interiéru unikat. Představme si konkrétní modelovou situaci, například klasický rodinný dům v zimě. Snadno zjistíme, že když chceme mít v interiéru 0 C a venku je například -5 C, že se přirozeně snaží teplo dostat ven aby se tento rozdíl teplot vyrovnal, což je běžný fyzikální jev. Jistě hned každého napadne, že se teplo bude snažit unikat fasádou či střechou a opravdu tomu tak je. Nicméně máme i další části stavby, například taková podlaha, stěna sklepa, výplně otvorů, různé detaily atd. Vždyť okolní zemina nemá teplotu 0 C jako máme v interiéru. Okolní zemina může mít teplotu z závislosti na venkovní teplotě a hloubce založení, což je dle ČSN 7 050-, tabulky H.5 v rozmezí -6 C až +5 C. Oproti interiéru i tohle je rozdíl teploty, který má vliv na celkovou tepelnou ztrátu. Ideálním řešením by tedy bylo obalit úplně celou stavbu do tepelné izolace. A opravdu, v současné době se nové objekty do tepelné izolace prakticky celé balí. Nicméně je logické, že tepelné ztráty budou při rozdílu teploty z 0 C na 0 C či z -5 C na 0 C jinak velké a tedy i požadavky na zateplení zde budou rozdílné. K rozdílu teploty celkem 5 C (tento rozdíl je závislý na nadmořské výšce a zeměpisném umístění stavby) dochází například u zmiňovaných fasád a střech, a právě proto by se zde měla kvalita a tloušťka tepelné izolace volit co možná nejvyšší, ale i provedení montáže by mělo být podle určitých zásad dle ČSN 7 90 (Provádění vnějších tepelně izolačních kompozitních systémů ETICS). Samozřejmě nesmíme opomíjet i kvalitu oken a dveří a taktéž řešení detailů a zabránit vzniku tepelných mostů v konstrukci.

Obr. : Zateplení všech částí domu tepelnou izolací - obr. byl použit z prospektů firmy Saint-Gobain Orsil s.r.o. Obr. : Řešení zateplení podsklepené části stavby. Obr. : Řešení zateplení provětrávané fasády.

SOUČASNÉ A BUDOUCÍ LEGISLATIVNÍ POŽADAVKY Jak tedy zvolit optimální řešení? Ideální stav samozřejmě je otevřít si příslušnou platnou normu a v ní si zjistit jaké jsou kladeny nároky na zateplení pro tu či onu část budovy. Pro naše potřeby je to norma ČSN 7 050, která uvádí, jaký musí mít ta či ona konstrukce součinitel prostupu tepla U N [W m - K- ], což je hodnota, která názorně ukazuje, jak rychle teplo uniká z objektu pryč. Ideální by samozřejmě bylo, aby tato hodnota byla co možná nejmenší. V momentě, kdy by tato hodnota byla rovna 0,0 W m - K-, by z objektu nikdy žádné teplo neuniklo. To by bylo docela zajímavé, jednou bychom vytopili na 0 C a měli bychom tuto teplotu prakticky stále a hlavně, díky teplu produkovanému lidmi, zvířaty a spotřebiči, by se tato teplota ještě zvyšovala. Je to zajímavá myšlenka, ale v praxi neproveditelná (vždy jsou určité ztráty okny, dveřmi atd ) a i kdybychom toto čistě teoreticky úplně eliminovali, tak z fyzikálního hlediska je to nemožné (každý hmotný materiál vždy povede teplo, i když třeba jen minimálně). Nicméně se alespoň snažíme této hodnotě co nejvýše přiblížit. U pasivních domů se hodnoty blízké nule využívá to do té míry, že k vytápění se už nepoužívá žádné topné těleso, ale jen se částečně ohřívá vzduch vstupující vzduchotechnikou do vlastního objektu. Nicméně toto je ideální případ a pak se jedná o tzv. nulový dům. V praxi ale musíme splnit alespoň určitá minimální kritéria a ty jsou samozřejmě zakotveny v normách. Norma ČSN 7 050 ale není jen doporučená, jako je tomu dnes u většiny platných norem, ale k této normě se vztahují i předpisy zakotvené ve stavebním zákoně a jeho prováděcí vyhlášce MMR č.7/998 Sb., o obecně technických požadavcích na výstavbu a v zákoně č. 06/000 Sb., o hospodaření energií a jeho prováděcí vyhlášce MPO č. 9/00 Sb., kterou se stanoví podrobnosti účinnosti užití energie při spotřebě tepla v budovách. Norma ČSN 7 050 již za dobu své existence prošla řadou revizí. Z posledních let vzpomeňme velkou úpravu v roce 00 a další revize z roků 005 (ČSN 7 050- ZMĚNA Z) a 007 (ČSN 7 050- ZMĚNA Z). Díky budoucím legislativním požadavkům tedy patrně opět dojde k dalšímu zpřísnění a tedy patrně ke snížení hodnot součinitele prostupu tepla ENERGETICKÝ U N pro jednotlivé konstrukce. Tyto opatření se dotknou ŠTÍTEK každého z nás, a bude nutno splnění těchto požadavků doložit například při prodeji nemovitosti. Týká se to především zákona 77/006 Sb., který bude mít platnost od. ledna 009 a dle jeho 6a o snižování energetické náročnosti budov bude nutno : OBÁLKY BUDOVY. zajistit splnění požadavků na energetickou náročnost u všech nových budov a větších změn existujících (Typ budovy, nad místní 000 moznačení) Hodnocení obálky. budovy. prokázat energetickou náročnost u existujících budov při změně vlastníka či nájemce průkazem (Adresa budovy) energetické náročnosti budovy (platnost 0 let) stávající doporučení CI 0,0 0,60,00,50,00,50 VELMI ÚSPORNÁ A B C D E F G --- --- MIMO ÁDN NEHOSPODÁRNÁ Průměrný součinitel prostupu tepla obálky budovy U em = H T / A, ve W/(m K) Obr. : Grafická část energetického štítku obálky budovy dle ČSN 7 050-, která slouží k hodnocení míry úspory řešené stavby s ohledem na požadované normové hodnoty průměrného součinitele prostupu tepla U em,rq a hodnoty průměrného součinitele prostupu tepla stavebního fondu U em,s. CI 0,0 0,60 (0,75),00,50,00,50

DODRŽOVÁNÍ NOREM A S TÍM SOUVISEJÍCÍ TLOUŠŤKA TEPELNÉ IZOLACE Díky tomu, že je norma ČSN 7 050 podpořena zákonem, se stává závaznou a jejím nedodržením se tedy porušuje zákon. Jak se postupuje při nedodržení platných zákonů, jaké jsou sankce či postihy atd. bych přenechal na výklad spíše nějakému právníkovi. Co by každého mělo zajímat je, jakou tloušťku tepelné izolace musíme použít, který typ z široké nabídky zvolit atd. Dnes je na trhu již řadu velmi dobrých izolačních materiálů. Pro následující hodnocení jsem vybral materiály od firmy Saint-Gobain Orsil. s.r.o, která je dle mého názoru špičkou v tepelně-izolačních materiálech na Českém i celosvětovém trhu. Nabízí také zatím jako jediná v České republice oba typy vláknitých tepelných izolací, jak kamennou tak skelnou minerální tepelnou izolaci. Pro ilustraci je zde uvedena tabulka z katalogu společnosti Saint-Gobain Orsil s.r.o., která má být orientační pomůckou projektantům při návrhu vlastní tepelné izolace a může sloužit i koncovým investorům jako jednoduché srovnání, zda jejich stávající konstrukce ještě vyhovuje dnes platným požadavkům či není vhodnější použít izolace více. Samozřejmě je stejně tak důležité i který typ izolace je nejvhodnější pro danou aplikaci. Tabulka je poměrně názorná a přehledná a řeší jak požadované (minimální), tak i doporučené (optimální) hodnoty zde použité tepelné izolace. Vysvětlivky k tabulce : Tabulkové hodnoty dle ČSN 7 050-:007 pro převažující návrhovou teplotu vnějšího vzduchu θ e = -5 C a převažující návrhovou vnitřní teplotu θ im = 0 C, v případě jiných teplotních a vlhkostních okrajových podmínek (φ i > 50%) se postupuje dle ČSN 7 050-:007 odst. 5.. Při výpočtu tloušťky izolace nebyl zahrnut tepelný odpor stávající konstrukce nebo dalších vrstev v konstrukci, stanovuje se pro každý případ zvlášť, viz. prospekty jednotlivých aplikací společnosti Saint-Gobain Orsil s.r.o. Uvažován součinitel tepelné vodivosti pro minerální izolace λ D = 0,00 W m - K -, pro izolaci Styrodur (XPS) λ D = 0,05 W m - K -. Pro konkrétní výpočet je nutné v souladu s ČSN 7 050- převést hodnoty λ D na hodnoty návrhové λ u (cca 0% zhoršení) a počítat konstrukci jako celek, včetně tepelných mostů a dalších vrstev v konstrukci. Výrobky se navzájem liší součinitelem tepelné vodivosti λ D, tvarem, rozměry nebo dalšími vlastnostmi, viz. technické listy. Návrh izolace může podléhat až třem kritériím: tepelnětechnické, akustické a protipožární. Pokud jsou na konstrukce a izolaci v nich kladeny požadavky z hlediska požární bezpečnosti nebo akustiky, typ a tloušťka protipožární a akusticky účinné izolace podléhá požadavkům výrobců systémových konstrukcí. V případě použití nesystémové konstrukce návrh spadá do kompetence projektanta - specialisty (akustik, požární technik). TLOUŠŤKY IZOLACÍ Z HLEDISKA PROSTUPU TEPLA 5 Lehká konstrukce (s nízkou tepelnou setrvačností): konstrukce s plošnou hmotností vrstev, od vnitřního líce k tepelně izolační vrstvě včetně, nižší než 00 kg m -. 6 Pro konstrukce přilehlé k zemině do vzdálenosti m od rozhraní zeminy a vnějšího vzduchu na vnějším povrchu konstrukce (viz. obr.) se uplatňují požadované hodnoty pro vnější stěny; ve větší vzdálenosti platí požadované hodnoty uvedené či stanovené pro podlahy a stěny přilehlé k zemině. Typ konstrukce (aplikace izolace) Součinitel prostupu tepla U n [W.m -.K - ] požadované hodnoty doporučené hodnoty pro požadovanou hodnotu Odpovídající tloušťka izolace (mm) z produktových řad Orsil, Isover, Styrodur pro doporučenou hodnotu doporučený produkt Střecha plochá nepochozí 70 50 Orsil T + Orsil S Střecha plochá pochozí 70 0 Styrodur 05 CS, 000 CS, 5000 CS Střecha plochá inverzní 0, 0,6 70 0 Styrodur 800 C Podlaha nad venkovním prostorem 60 50 Orsil TF, Orsil NF (z vnějšku) Střecha šikmá se sklonem do 5 včetně 70 50 Domo 5, Rio Strop pod nevytápěnou půdou se střechou bez tepelné izolace 0 00 Stěna vnější lehká 0,0 0,0 0 00 Orsil Uni, Fassil, Hardsil Střecha strmá se sklonem nad 5 lehká 5 0 00 Domo 5, Rio Stěna vnější težká 00 60 Orsil TF, Orsil NF Střecha strmá se sklonem nad 5 těžká 0,8 0,5 00 60 Domo 5, Rio Podlaha a stěna přilehlá k zemině 6 60 00 Styrodur 800, 05 CS, 000 CS, 5000 CS Strop z vytápěného do nevytápěného prostoru 0,60 0,0 60 00 Vnitřní stěna z vytápěného do nevytápěného prostoru 60 90 Orset, Uni, Piano, Rollino, Merino Strop z vytápěného do částečně vytápěného prostoru 50 80 Strop z částečně vytápěného do prostoru k venkovnímu 50 80 prostředí 0,75 0,50 Vnitřní stěna z vytápěného do částečně vytápěného prostoru 50 70 Orset, Uni, Piano, Rollino, Merino Stěna z částečně vytápěného do prostoru k venkovnímu prostředí 50 80 Orsil TF, Orsil NF Stěna mezi sousedními budovami 0 50 Orsil N Strop mezi prostory s rozdílem teplot do 0 C včetně,05 0,70 0 50 Stěna mezi prostory s rozdílem teplot do 0 C včetně,0 0,90 0 0 Orset, Uni, Piano, Rollino, Merino Strop vniřní mezi prostory s rozdílem tepla do 5 C včetně,0,5 0 0 Stěna vnitřní mezi prostory s rozdílem teplot do 5 C včetně,70,80-0 Orset, Uni, Piano, Rollino, Merino Tabulkové hodnoty dle ČSN 7 050-:005 pro převažující návrhovou teplotu vnějšího vzduchu θ e = -5 C a převažující návrhovou vnitřní teplotu θ im = 0 C, v případě 5: Orientační jiných teplotních tabulka a k vlhkostních návrhu tepelné okrajových izolace podmínek - v tabulce (ϕjsou i Obr. > 50%) zahrnuty se postupuje jen parametry dle ČSN tepelné 7 050-:005 izolace bez odst. započtení 5.. vlivu konstrukce a tepelných mostů Při výpočtu tloušťky izolace nebyl zahrnut tepelný odpor stávající konstrukce nebo dalších vrstev v konstrukci, stanovuje se pro každý případ zvlášť, viz. prospekty jednotlivých aplikací Uvažován součinitel tepelné vodivosti pro minerální izolace λ = 0,00 W.m -.K -, pro izolaci Styrodur (XPS) λ = 0,05 W.m -.K - Výrobky se navzájem liší součinitelem tepelné vodivosti λ D, tvarem, rozměry nebo dalšími vlastnostmi, viz. technické listy. Návrh izolace může podléhat až třem kritériím: tepelnětechnické, akustické a protipožární. Pokud jsou na konstrukce a izolaci v nich kladeny požadavky z hlediska požární bezpečnosti nebo akustiky, typ a tloušťka protipožární a akusticky účinné izolace podléhá požadavkům výrobců systémových konstrukcí. V případě použití nesystémové konstrukce návrh spadá do kompetence projektanta - specialisty (akustik, požární technik).

VYHLÍDKY DO BUDOUCNA Jak je patrné z předešlé tabulky, tak například u šikmých střech, bez ohledu na vlastní konstrukci, je dle tabulky minimální doporučená tloušťka 50 mm za použití například tepelné izolace Orsil Domo 05. Kladu si proto otázku, kdo dnes má takovou tloušťku tepelné izolace ve střeše? A pokud někdo má, tak si nejsem jist, zda takhle kvalitní. Vždyť ještě před několika lety měly i ty nejlepší tepelné izolace hodnotu součinitele tepelné vodivosti λ D =0,0 W m - K -, takže starší izolace nám izolují o něco hůře než dnešní materiály. Ale i dnešních 50 mm nám vychází za předpokladu použití deklarovaných hodnot součinitele prostupu tepla λ D, který se ale v praxi přepočítává na hodnotu výpočtovou a ta je vždy o nějaké % horší než deklarovaná. Navíc doplňuji, že tyto hodnoty uvedené v tabulce jsou bez uvažování vlivu tepelných mostů. S uvažováním těchto vlivů se můžeme směle dostat i nad 00 mm. Vzhledem k informacím které čtu v literatuře či se dovídám od kolegů ze zahraničí, tak věřím tomu, že se tyto hodnoty během pár let ještě o několik desítek % navýší. Proto si kladu otázku, zda není lepší již dnes dělat zateplení nad doporučené hodnoty z normy a mít o cca 0-0% větší tloušťku tepelné izolace, abych si zajistil, že i za nějakých 5 let budu mít platný průkaz energetické náročnosti budovy a budu jí schopen vůbec prodat. Ale i kdyby ji někdo prodat nechtěl, jistě by díky menšímu zateplení a tudíž vyšším provozním nákladům její tržní cena klesala. Navíc když uvážím neustálý vliv zdražování energií, tak raději už dnes investuji o něco více za zateplení. To se mi během pár let s jistotou vrátí, vždyť investice do zateplení je investice na důchod. Volba je vždy jen na každém z nás. KAREL SEDLÁČEK Ing. Karel Sedláček (*979) absolvent FSv ČVUT v Praze, obor pozemní stavby a architektura. V současné době absolvuje studium doktorského programu na ČVUT - FSv v Praze, katedra konstrukcí pozemních staveb a pracuje ve společnosti Saint-Gobain Orsil s.r.o. jako produktový manažer. Recenzoval : Ing. Jiří Sedláček, CSc Literatura : ČSN 7 050 ČSN 7 90 ČSN EN ISO 056 ČSN EN 6 Zdroje : www.isover.cz http://epp.eurostat.ec.europa.eu 5