Ryzí (Au, Ag, Pt, Cu, ) Ve sloučeninách oxidy, sulfidy, halogenidy, uhličitany, sírany, )



Podobné dokumenty
Přechodné prvky, jejich vlastnosti a sloučeniny

PŘECHODNÉ PRVKY - II

Prvky 8. B skupiny. FeCoNi. FeCoNi. FeCoNi

Inovace profesní přípravy budoucích učitelů chemie

1 Chrom - Cr. prvky vedlejších skupin (1. 8.B) nemají zcela zaplněné d orbitaly (kromě Zn, Cd a Hg) mají velkou rozmanitost ox.

Modul 02 - Přírodovědné předměty

Přechodné kovy skupiny I.B a II.B

Inovace profesní přípravy budoucích učitelů chemie

Střední škola obchodu, řemesel a služeb Žamberk

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

EU peníze středním školám digitální učební materiál

Cu Zn Cr NEJ. Cuprum Zincum Chromium. Hustota [kg/m 3 ] Osmium Chrom 8,5 Wolfram 3 422

1. V jakých typech sloučenin se železo v přírodě nachází? 2. Jmenujte příklad jedné železné rudy (název a vzorec):

Podle vlastností rozdělujeme chemické prvky na. Periodická soustava prvků

Přechodné kovy přehled a elektrochemická řada kovů = Beketovova

Kovy a metody jejich výroby

Výroba surového železa a výroba oceli

EU peníze středním školám digitální učební materiál

1234,93 K, 961,78 C teplota varu 2435 K, 2162 C Skupina

Modul 02 Přírodovědné předměty

Ukázky z pracovních listů 1) Vyber, který ion je: a) ve vodném roztoku barevný b) nejstabilnější c) nejlépe oxidovatelný

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace. Digitální učební materiály

Modul 02 - Přírodovědné předměty. Hana Gajdušková. Projekt realizovaný na SPŠ Nové Město nad Metují

Prvky skupiny chromu

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Škola: Střední škola obchodní, České Budějovice, Husova 9

PERIODICKÁ TABULKA. Všechny prvky v tabulce můžeme rozdělit na kovy, nekovy a polokovy.

Gymnázium Chomutov, Mostecká 3000, příspěvková organizace Mgr. Monika ŠLÉGLOVÁ VY_32_INOVACE_06B_05_Vlastnosti kovů, hliník_test ANOTACE

Přechodné kovy skupiny III.B a VIII.B

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu INOVACE_32_ZPV-CH 1/04/02/18

Základy analýzy potravin Přednáška 1

Název školy: Číslo a název sady: klíčové aktivity: VY_32_INOVACE_131_Elektrochemická řada napětí kovů_pwp

Nejrozšířenější kov V přírodě se vyskytuje v sloučeninách - jsou to zejména magnetovec a krevel Ve vysokých pecích se z těchto rud,koksu a přísad

1H 1s. 8O 1s 2s 2p H O H

Příklad Sestavte rovnice následujících dějů: reakce hydroxidu sodného s kyselinou tetrahydrogendifosforečnou 4NaOH + H 4 P 2 O 7 Na 4 P 2 O 7

ZLÍNSKÝ KRAJ. Název školyě národního Obchodní akademie, Vyšší odborná škola a Jazyková škola s právem státní jazykové zkoušky Uherské Hradiště

Registrační číslo projektu: CZ.1.07/1.4.00/ Název projektu: Investice do vzdělání - příslib do budoucnosti. Číslo přílohy: VY_52_INOVACE_CH9.

Na Zemi tvoří vodík asi 15 % atomů všech prvků. Chemické slučování je děj, při kterém z látek jednodušších vznikají látky složitější.

Kovy budoucnosti zlato, platina, titan Druh učebního materiálu: Prezentace s interaktivitou Časová náročnost:

Platinové kovy. Obecné vlastnosti. Ruthenium a osmium. Jméno: Jana Homolková UČO:

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

K O V Y. 4/5 všech prvků

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

ŘADA KOVŮ, LP č. 1 REAKCE KOVŮ

Prvky - systematicky d-prvky

6. OT CHEMICKÉ PRVKY KOVY - 3

Kovy jsou hojně průmyslově využívány pro svoje ojedinělé fyzikální vlastnosti a pro snadnou zpracovatelnost

DUM č. 6 v sadě. 24. Ch-2 Anorganická chemie

Kovové prvky v periodické soustavě

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace

Modul 02 - Přírodovědné předměty

Moravské gymnázium Brno s.r.o. a) určeno pro učitele b) obsahuje základní informace stříbru a zlatu c) Vhodné pro shrnutí a zopakování učiva

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.

KOVY. I. Výskyt a zpracování kovů. II. Stručný přehled vlastností nejvýznamnějších kovů. 1. s-kovy

Ústřední komise Chemické olympiády. 54. ročník 2017/2018. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ TEORETICKÉ ČÁSTI: 70 BODŮ

Síra a její sloučeniny

SOLI A JEJICH VYUŽITÍ. Soli bezkyslíkatých kyselin Soli kyslíkatých kyselin Hydrogensoli Hydráty solí

III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

Horniny a minerály II. část. Přehled nejdůležitějších minerálů

2. MINERALOGICKÁ TŘÍDA- SULFIDY:

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pořadí DUMu v sadě 07

Redoxní reakce - rozdělení

HÁDANKY S MINERÁLY. Obr. č. 1

KOVY A JEJICH SLITINY

SMĚSI. 3. a) Napiš 2 typy pevné směsi:... b) Napiš 2 typy kapalné směsi:... c) Napiš 2 typy plynné směsi:... krev

atomová hmotnost S + O 2 -> SO 2 Fe + S -> FeS

STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace. Digitální učební materiály

Prvek Značka Z - protonové číslo Elektronegativita Dusík N 7 3,0 Fosfor P 15 2,2 Arsen As 33 2,1 Antimon Sb 51 2,0 Bismut Bi 83 2,0

Přechodné prvky d-prvky

Otázky a jejich autorské řešení

Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Ústřední komise Chemické olympiády. 52. ročník 2015/2016. ŠKOLNÍ KOLO kategorie D. časová náročnost 60 min ŘEŠENÍ ŠKOLNÍHO TESTU

Gymnázium Jana Pivečky a Střední odborná škola Slavičín. III/2 Inovace a zkvalitnění výuky prostřednictvím ITC

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220 Název materiálu INOVACE_32_ZPV-CH 1/04/02/19 Autor

Návod k laboratornímu cvičení. Kovy a elektrochemická(beketovova) řada napětí kovů

Drahé kovy. Fyzikálně-chemické vlastnosti drahých kovů. Výskyt a těžba drahých kovů

Zařazení kovů v periodické tabulce [1]

Název: Příprava stříbra snadno a rychle

Soli kyslíkatých kyselin

05 Technické materiály - litina, neželezné kovy

Kovy a kovové výrobky pro stavebnictví

Výukový materiál zpracován v rámci projektu EU peníze školám

Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KONTROLNÍ TEST ŠKOLNÍHO KOLA kategorie C. ZADÁNÍ: 60 BODŮ časová náročnost: 120 minut

4. CHEMICKÉ ROVNICE. A. Vyčíslování chemických rovnic

Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 29. květen Název zpracovaného celku: REDOXNÍ REAKCE REDOXNÍ REAKCE

Dusík a fosfor. Dusík

ANORGANICKÁ CHEMIE CHEMIE SLOUČENIN OSTATNÍCH PRVKŮ, KROMĚ UHLÍKU

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN prostřednictvím ICT

HOŘČÍK KOVY ALKALICKÝCH ZEMIN. Pozn. Elektronová konfigurace valenční vrstvy ns 2


Alkalické kovy. Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín

Cín s kosočtverečnou strukturou: vzniká zahřátím cínu s krychlovou strukturou nad 161 C. Velmi křehký, snadno práškovatelný.

Vzácné plyny prvky.. skupiny. 8) Napiš řadu vzácných plynů pomocí chemických symbolů podle jejich vzrůstajícího protonového čísla

STEJNOSMĚRNÝ PROUD Galvanické články TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

Ukázky z pracovních listů B

Transkript:

Přechodnékovy = prvky 3. 11. skupiny Nemají zcela zaplněné d-orbitaly valenční vrstvy K tvorbě vazeb využity elektrony z valenční vrstvy (tj. el. konfigurace ns, (n-1)d, n=4-7) Velká rozmanitost oxidačních čísel, v některých komplexních sloučeninách i záporné hodnoty Většina sloučenin je barevná (absorpce světla) (ionty s plnými nebo prázdnými orbitaly jsou bb) Malé at. poloměry, vysoká hustota, vysoké tt a tv, tvrdost, pevnost, el. a tepelná vodivost

Výskyt a výroba Výskyt: Ryzí (Au, Ag, Pt, Cu, ) Ve sloučeninách oxidy, sulfidy, halogenidy, uhličitany, sírany, ) Těžba energeticky náročná Výroba (předchází jí separace tj. procesy zvyšující obsah kovu v surovině př. plavení, sedimentace, chem. reakce) Tepelný rozklad Redukce (uhlíkem, vodíkem, metalotermicky) Elektrolýza (pro elektropozitivní kovy)

Nejvýznamnějšíkovy Chrom Nejtvrdší elementární kov Mimořádně nízká reaktivita a vysoká chemická odolnost Stálý na vzduchu užití k pochromování Fe-předmětů Ferrochrom = slitina se železem (přidává se do ocelí vys. tvrdost a odolnost proti korozi) např. výroba lopatek turbín Slouč. v ox. stupni VI karcinogenní Slouč. v ox. stupni III neškodné (metabolismus cukrů)

Cr2O3 zelený (pigment do vodovek), amfoterní Vzniká termickým rozkladem dichromanu Cr2O7 2- (NH 4 ) 2 Cr 2 O 7 N 2 +Cr 2 O 3 + 4 H 2 O (umělásopka) Cr(OH)3 šedozelená srženina Amfoterní: Cr(OH) 3 + 3 HCl CrCl 3 + 3 H 2 O Cr(OH) 3 +NaOH Na[Cr(OH) 4 ]

Mangan Stříbrolesklý tvrdý kov Nejvýznamnější ruda - MnO2 = burel Nejelektropozitivnější po s-kovech a Al Nejvýzn. ox. čísla II, IV, VII Užití složka ocelí, slitin - např. dural (Mn, Mg, Cu, Al) KMnO4 červenofialová krystalická látka dobře rozp. ve vedě Silné oxidační činidlo desinfekční prostředek (zdravotnictví, potravinářství, úprava pitné vody) Tepelným rozkladem vzniká kyslík 2KMnO4 K2MnO4 + MnO2 + O2

Triáda železa

Železo Nejvýznamnější přechodný kov Měkký, kujný, stříbrolesklý 4. nejrozšířenější prvek na Zemi (po O, Si a Al) Výskyt: Ryzí výjimečně (meteoritický původ) Rudy: hematit (krevel) Fe2O3 magnetit Fe3O4 (FeO.Fe2O3) limonit (hnědel) 2Fe2O3. 3H2O pyrit FeS2 siderit (ocelek) FeCO3

hematit magnetit limonit siderit pyrit Meteorické železo

Rozpustné ve zředěných roztocích kyselin (HCl, H2SO4 ) za vzniku vodíku Fe + H2SO4 H2 + FeSO4 V koncentrované H2SO4 2Fe + 6H2SO4 (konc.) Fe2(SO4)3 + 3SO2 + 6H2O V kyselině dusičné se pasivuje

VÝROBA: ve vysokých pecích redukcí rudy koksem

VSÁZKA = Fe-ruda + koks + vápenec (struskotvorná přísada) Kolem 900 C dochází k difúzi C do železa snižuje tt železa (nejnižší při 4,3% Fe) NÍSTĚJ = spodní část pece shromažďuje se zde surové železo Na povrchu surového železa je vrstva STRUSKY (obsahuje SiO2, CaO) chrání surové železo před zpětnou oxidací ODPICH = vypouštění surového železa a strusky

Surové Fe Obsahuje hodně příměsí (C, Si, Mn, P,.) Je křehké (dáno obsahem C) s vysokým obsahem C = LITINA, většina se ale zpracovává na OCEL (snížení obsahu C pod 2%) Výroba oceli V konvertorech příměsové prvky v surovém Fe jsou oxidovány vháněným vzduchem na oxidy, které se buď váží na vyzdívku konvertoru (SiO2) nebo unikají (CO2) V nístějových pecích zahřívány elektricky, k surovému Fe se přidá Fe-ruda, směs se taví, příměsové prvky se oxidují kyslíkem vázaným v oxidech Fe

Úprava vlastností oceli Tepelným zpracováním Kalení zahřátí a prudké ochlazení oceli vznik velmi tvrdé, ale křehké oceli Popouštění zahřátí a pomalé ochlazení oceli tvrdá a pružná ocel Legováním (přísadami) např. pružinováocel (Mn, Cr), nerezová ocel (Cr, Ni), vanadová ocel (V) Povrchovou úpravou vyhlazení povrchu, leštění

Největší výrobci oceli (Statistické údaje 2003 podle Handelsblat Die Welt in Zahlen 2005) Pořadí Země Mil.t/rok Pořadí Země Mil.t/rok 1 Čína 220,1 10 Itálie 26,7 2 Japonsko 110,5 11 Francie 19,8 3 USA 90,4 12 Taiwan 18,9 4 Rusko 62,7 13 Turecko 18,3 5 Jižní Korea 46,3 14 Španělsko 16,5 6 Německo 44,8 15 Kanada 15,9 7 Ukrajina 36,9 16 Mexiko 15,2 8 Indie 31,8 17 Anglie 13,3 9 Brazílie 31,1 18 Belgie 11,1 V ČR bylo v roce 2003 vyrobeno 6,7 mil. t surové oceli.

Sloučeniny Fe Především ox. čísla II, III (stabilnější konfigurace d 5 ) Fe 2+ - zelená barva barvení pivních lahví Fe 3+ - hnědá barva Železnaté soli jsou dobře rozpustné ve vodě, většinou jsou bezbarvé až světle zelené a snadno se oxidují na železité sloučeniny.

FeO Černý prášek, vzniká jako meziprodukt při výrobě Fe Při vyšších teplotách (nad 575 C) disproporcionuje 4FeO Fe + Fe3O4 FeSO4 Vzniká reakcí Fe s H2SO4 Z vodného roztoku krystalizuje jako heptahydrát = zelená skalice Užití: výroba inkoustu, hubení plevele, ochrana dřeva proti hnilobě

K 3 [Fe III (CN) 6 ] červenákrevnísůl Jedovatá (CN - jsou vázány slabě) 2K 3 [Fe III (CN) 6 ] + 3FeSO4 3K2SO4 + Fe II 3 [FeIII (CN) 6 ] 2 berlínská modř K 4 [Fe II (CN) 6 ]. 3H2O žlutákrevnísůl Stabilní 3K 4 [Fe II (CN) 6 ] + 4FeCl3 12KCl + Fe III 4 [FeII (CN) 6 ] 3 Turnbullova modř Fe(CO)5 Kapalný, velmi jedovatý, výbušný Výroba velmi čistého železa

Kobalt Modrý kov, málo reaktivní Odolnější vůči korozi než Fe Součást vit. B12 (kobalamin) nejčastěji se izoluje ze syrových jater) Významný pro krvetvorbu, nervový systém, tvorbu bun. membrán Nedostatek anémie, onemocnění nerv. soustavy, porucha růstu Výroba tvrdých slitin (speciální oceli výr. obráběcích strojů), barvení skla (CoO modré sklo)

Nikl 7. nejrozšířenější prvek na Zemi Výskyt: ryzí i ve sloučeninách Stříbrolesklý, kujný, tažný, za lab. teploty nereaktivní Vůči HNO3 se pasivuje Užití: Odolný proti působení hydroxidů alk. kovů výroba zařízení na výrobu NaOH Výroba akumulátorů Galvanické pokovení Katalyzátor při ztužování tuků Výroba slitin a ocelí (Monelův kov = 68%Ni, 32%Cu velmi odolný zařízení pro práci s F2) NiO zelené sklo

Platinovékovy Ru, Rh, Pd lehké platinové kovy Os, Ir Pt těžké platinové kovy

Obtížně tavitelné, odolné vůči kyselinám Ruthenium a osmium připomínají svými sloučeninami železo, rhodium a iridium kobalt Vyskytují se téměř vždy společně Užití: slitiny a katalyzátory Platina Kujná, tažná, v přírodě téměř vždy ryzí Užití: katalyzátory syntéz výroba šperků výroba chem. náčiní odolné vůči chemikáliím (Pt-kelímky, drátky pro plamenové zkoušky, )

Měď Měkký, načervenalý kov Dobrá vodivost výroba el. vodičů Výskyt: převážně ve sloučeninách chalkopyrit CuFeS2 kuprit Cu2O vzácně ryzí Biogenní prvek, nedostatek způsobuje anémii Slitiny: mosaz (Cu, Zn) bronz (Cu, Sn) dural

Ušlechtilý kov reaguje jen s oxidujícími kyselinami (konc. H2SO4, HNO3) Cu + 4HNO3 Cu(NO3)2 + 2NO2 + 2H2O Cu + 2H2SO4 CuSO4 + SO2 + 2H2O Stálá, na vzduchu se potahuje měděnkou CuCO 3.Cu(OH) 2 Sloučeniny nejstabilnější v ox. stupni II, často také I

CuSO4.5H2O skalice modrá Vzniká reakcí Cu s konc. kys. sírovou Bezvodý síran je bílý Užití: příprava měďnatých sloučenin součást fungicidních přípravků v zemědělství Cu(OH)2 Světle modrá sraženina Příprava: srážení měďnatých solí alkalickým hydroxidem

Stříbro Bílý, lesklý kov, tažný, kujný, nejlepší vodič tepla a proudu V přírodě vzácně ryzí, častěji ve sloučeninách argentit Ag2S Získává se jako vedlejší produkt při výrobě Cu, Pb, Zn (doprovází jejich rudy) Užití: výroba zrcadel, mincí, šperků elektrotechnika výroba fotograf. materiálů, CD, DVD příprava zubního amalgámu (slouč. s Hg) katalyzátor

Nejstabilnější sloučeniny v ox. č. I Reaguje pouze s oxidujícími kyselinami (viz. reakce Cu) AgNO3 Nejvýzn. sloučenina (příprava ostatních sloučeniny Ag) Bílá krystalická látka, dobře rozp. ve vodě V lékařství = lapis (kamínek určený k naleptávání a odstraňování některých kožních útvarů, vyroben z dusičnanu stříbrného)

AgCl, AgBr, AgI Citlivé na světlo rozklad za vyloučení kovového stříbra (užití ve fotografii) Čím více světla na vrstvu dopadne, tím víc Ag se vyloučí Odstraní se nezreagovaná sloučenina vzniká negativ

Zlato Měkký, žlutý kov, z kovů 11. skupiny je nejméně reaktivní, vynikající vodič Odolný vůči kyselinám i hydroxidům (rozpouští se v lučavce královské) Výskyt: především ryzí (těžba především rýžováním a z hornin chudých na zlato převod na amalgám) Užití: slitiny k výrobě šperků (zvýšení tvrdosti přídavkem stříbra) zubní lékařství Ryzost se udává v karátech čisté zlato má 24 karátů (ve šperkařství nejčastěji 14-ti karátové)

Sloučeniny před. v ox. st. III (také I) AuCl3 Vzniká rozpouštěním zlata v lučavce královské Užití: výroba Cassiova purpuru (jemně rozptýlené Au v kyselině cíničité) barvení skla rubínově červeně

12. skupina Zcela zaplněny d-orbitaly Podobné vlastnosti jako ostatní d-kovy Poměrně nízké tt zinek kadmium rtuť

Zinek V přírodě jen ve sloučeninách ZnS = sfalerit ZnO = zinkit Výroba 3 kroky: 1) převod ZnS na oxid pražením 2ZnS + 3O2 2ZnO + 2SO2 2) reakce se zřed. H2SO4 ZnO + H2SO4 ZnSO4 + H2O 3) elektrolýza síranu

Vlastnosti Biogenní prvek součást mnoha enzymů Neušlechtilý kov reaguje i s neoxidujícími kyselinami Zn + zřed. H2SO4 ZnSO4 + H2 Zn + konc. 2H2SO4 ZnSO4 + SO2 + H2O Amfoterní reaguje i s roztoky hydroxidů Zn + 2NaOH + 2H2O Na2 [Zn(OH)4] + H2 Užití: Galvanické pokovování (pozinkovaný plech), výroba slitin (mosaz), redukční činidlo

Sloučeniny ZnO bílý prášek (pigment zinková běloba) Amfoterní: ZnO + 2HCl ZnCl2 + H2O ZnO + 2NaOH + H2O Na2[Zn(OH)4] ZnSO4.7H2O (bílá skalice) Vzniká rozpouštěním Zn nebo ZnO v H2SO4 Pozn.: rozpustné zinečnaté sloučeniny jsou jedovaté!

Kadmium Výskyt: příměs v rudách zinku Neušlechtilý kov, reaguje i s neoxidujícími kyselinami (vývoj H2) Stříbrolesklý Sloučeniny kademnaté jsou mimořádně toxické (v lidském těle se hromadí v ledvinách a játrech, dochází k jejich selhání a nahrazení zinku v enzymech narušení metabolismu) CdS Žlutý prášek (pigment kadmiová žluť)

Rtuť Za lab. podmínek lesklá kapalina, velmi těkavá Ušlechtilý kov Ruda rumělka HgS Páry a sloučeniny jsou jedovaté (příznaky otravy slinění, červenání dásní, uvolňování zubů, křeče, nervové poruchy) Reaguje jen s oxidujícími kyselinami S některými kovy tvoří slitiny = AMALGÁMY (s Na, Ag, Au, Cu, Zn, Cd) Neslévá se s Fe, Co, Ni

Naleziště rtuti

Užití Náplně teploměrů Příprava amalgámů Zubní lékařství Hg+ Ag Likvidace Hg posypáním Zn nebo S amalgám se snadno odstraní

Sloučeniny Rtuťné(Hg 2I ) 2+ Dimerní, ionty spojené kovalentní vazbou Např. Hg2Cl2 kalomel - projímavé účinky (v lékařstvíse již nepoužívá, může být znečištěn HgCl2) RtuťnatéHg II Např. HgCl2 sublimát - prudký jed (smrt. dávka 20mg/kg), teratogenní Nejjedovatější jsou organokovové slouč. před. dimethylrtuť CH3-Hg-CH3 (smrt. dávka pro dospělého člověka je 0,1 ml)