Glaciální a periglaciální prostředí (reliéf)

Podobné dokumenty
Kryogenní procesy a tvary

Kryogenní procesy a tvary

Kryogenní procesy a tvary

Periglaciální modelace

Geologická činnost gravitace 1. kameny - hranáče

Geologickáčinnost ledovců, krasové jevy

1. Jaký vidíte aktuální přínos fyzické geografie a geoekologie pro společnost? Jaké otázky jsou aktuálně řešeny?

Ledovcové sedimenty (s.l.) geneticky spjaty s ledovcem

EXOGENNÍ GEOLOGICKÉ PROCESY

DUM č. 2 v sadě. 19. Ze-1 Fyzická a sociekonomická geografie Země

EROZE PROJEKT EU PENÍZE ŠKOLÁM OPERAČNÍ PROGRAM VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

LITOSFÉRA. OSNOVA: I. Struktura zemského tělesa II. Desková tektonika III. Endogenní procesy IV. Exogenní procesy

Geologie a pedologie

Maturitní otázky do zeměpisu

Geologický vývoj Evropy

Exogenní jevy (pochody)

Význam kryogenních jevů pro paleoklimatické a paleoekologické rekonstrukce kvartéru

Základní geomorfologická terminologie

VY_32_INOVACE_ / Činnost ledovce, větru Činnost ledovců

HYDROSFÉRA. Opakování

Základní geomorfologická terminologie

Základní geomorfologická terminologie

Environmentáln. lní geologie. Stavba planety Země. Ladislav Strnad Rozsah 2/0 ZS-Z Z a LS - Zk

EXOGENNÍ (VNĚJŠÍ) POCHODY

Učit se! Učit se! Učit se! VI. Lenin

STUPEŇ ZVĚTRÁNÍ HORNIN

Gymnázium Dr. J. Pekaře Mladá Boleslav. Zeměpis I. ročník LEDOVCE. referát. Jméno a příjmení: Ondřej MÍSAŘ, Jan GRUS

Přednáška č. 3. Dynamická geologie se zabývá změnami zemské kůry na povrchu i uvnitř

Sedimentární horniny. Přednáška 4. RNDr. Aleš Vaněk, Ph.D. č. dveří: 234, FAPPZ

LEDOVCOVÉ TVARY RELIÉFU A GLACIÁLNÍ DOBY

Fyzická geografie. Mgr. Ondřej Kinc. Podzim

REGIONÁLNÍ GEOGRAFIE ANGLOSASKÉ AMERIKY

HYDROSFÉRA = VODSTVO. Lenka Pošepná

Záznam klimatických změn v mořském prostředí. a) oscilace mořské hladiny b) variace izotopického složení hlubokomořských sedimentů

Jednotlivé tektonické desky, které tvoří litosférický obal Země

2. Geomorfologie. Geomorfologii lze dále rozdělit na specializace:

Plošná urychlená eroze (nesoustředěný odtok), plošný splach

Fyzická geografie. Cvičení 5. Ing. Tomáš Trnka

Seminář z Geomorfologie 3. Vybrané tvary reliéfu

TVARY VYTVOŘENÉ TEKOUCÍ VODOU

Základy fyzické geografie 2

Systémová a geomorfologická analýza. Pavel Mentlík

Tvorba povrchového odtoku a vznik erozních zářezů

Zakončení předmětu. KGG / GMFO (2 + 1) = 5 kreditů KGG/GMOR (2 + 0) = 4 kredity Forma zkoušky: Kombinovaná

Urychlení fluviálních procesů a procesů na vodních nádržích

CO JE TO KLIMATOLOGIE

R E G I O N ÁL N Í Z E M ĚP I S

Tundra a alpínské vysokohoří

STAVBA ZEMĚ. Mechanismus endogenních pochodů

Obsah. Obsah: 3 1. Úvod 9

Vznik a vývoj litosféry

Jaké jsou charakteristické projevy slézání na svahu?

Možné dopady měnícího se klimatu na území České republiky

Půdotvorní činitelé. Matečná hornina Klima Reliéf Organismy. Čas

Strukturní půdy ve studovaných oblastech střední Evropy stručná charakteristika. /Křížek, Treml, Engel/

Daniel Nývlt - pedagogická činnost na Přírodovědecké fakultě UK

Základy fyzické geografie 2

STAVBA ZEMĚ. Země se skládá z několika základních vrstev/částí. Mezi ně patří: 1. ZEMSKÁ KŮRA 2. ZEMSKÝ PLÁŠŤ 3. ZEMSKÉ JÁDRO. Průřez planetou Země:

Tundra v Krkonoších ve vazbě na neživou přírodu

Tvorba toků, charakteristiky, řečiště, sklon, odtok

Exogenní procesy a tvary. eroze transport akumulace

Eolické sedimenty (sedimenty naváté větrem)

Geografie. Tematické okruhy státní závěrečné zkoušky. bakalářský studijní obor

Exogenní procesy a tvary

Exogenní procesy a tvary. eroze transport akumulace

UNIVERZITA PALACKÉHO V OLOMOUCI

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Sedimentární horniny. Sedimentární horniny.

R E G I O N ÁL N Í Z E M ĚP I S

Průvodka. CZ.1.07/1.5.00/ Zkvalitnění výuky prostřednictvím ICT. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

Fyzická geografie. Zdeněk Máčka. Lekce 1 Litosféra a desková tektonika

PŘÍČINY ZMĚNY KLIMATU

Geografie. Tematické okruhy státní závěrečné zkoušky. bakalářský studijní obor

Základy fyzické geografie 2

Alfred Wegener (1912) Die Entstehung der Kontinente Und Ozeane. teorie kontinentálního driftu - nedokázala vysvětlit jeho mechanismus

Geomorfologické mapování

HYDROLOGIE Téma č. 6. Povrchový odtok

J i h l a v a Základy ekologie

Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/

Šablona č ZEMĚPIS. Výstupní test ze zeměpisu

Univerzita Karlova v Praze Přírodovědecká fakulta katedra fyzické geografie a geoekologie. Pedogeografie a biogeografie.

SKÁ VODA. Fyzikální a chemické vlastnosti

6. Paleoklimatologie. 6.1 Přírodní proxy data

Podobnosti. Krkonoše a Skandinávie. RNDr. M. Kociánová & RNDr. J. Vaněk, Správa KRNAP 2016

Postup pro vypracování exodynamické analýzy vývoje reliéfu a návrh pracovní legendy pro sestavení mapy exodynamického vývoje reliéfu oblast Šumava

Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Přírodopis Ročník: 9. Průřezová témata,

Strukturní jednotky oceánského dna

Strukturní jednotky oceánského dna

Klimatická změna její příčiny, mechanismy a možné důsledky. Změna teploty kontinentů ve 20. století

Učební osnovy vyučovacího předmětu přírodopis se doplňují: 2. stupeň Ročník: devátý. Tematické okruhy průřezového tématu

Život ve vyšších nadmořských výškách. Charakteristika horského prostředí. Alpinská zóna (alpine life zone) Ekologie horských ekosystémů

Sníh a sněhová pokrývka, zimní klimatologie

Vznik a vývoj horských údolí

Počasí a podnebí, dlouhodobé změny a dopady na zemědělskou výrobu Jaroslav Rožnovský

Obr. 1. Úspěšná instalace meteorologické stanice na vrcholu Mumien Peak (foto Jan Husák).

Předmět: ZEMĚPIS Ročník: 6. ŠVP Základní škola Brno, Hroznová 1. Výstupy předmětu

Jméno, příjmení: Test Shrnující Přírodní složky a oblasti Země

ATMOSFÉRA. Anotace: Materiál je určen k výuce zeměpisu v 6. ročníku základní školy. Seznamuje žáky s vlastnostmi a členěním atmosféry.

Spojte správně: planety. Oblačnost, srážky, vítr, tlak vzduchu. vlhkost vzduchu, teplota vzduchu Dusík, kyslík, CO2, vodní páry, ozon, vzácné plyny,

Příloha č. 1: Základní geometrické charakteristiky výzkumných povodí

Transkript:

Glaciální a periglaciální prostředí (reliéf) (kryogenní reliéf) Marek Křížek Katedra fyzické geografie a geoekologie Přf UK, krizekma@natur.cuni.cz Souhrnné označení souboru tvarů zemského povrchu v oblastech vyšších zeměpisných šířek a ve velehornatinách s negativní tepelnou bilancí. Kryosféra /teplota pod bodem mrazu stále (2 roky)/ 1923 Dobrowolski glaciální procesy = modelace ledovci periglaciální procesy = v periglaciální zóně - v nezaledněných oblastech - mrazové zvětrávání - tvary vzniklé v permafrostu

S tím jak se měnily klimatické podmínky v kvartéru, tak se měnilo rozšíření glaciální a periglaciální zóny (fluktuace rozsahu permafrostu).

Doby ledové V dějinách Země je mnoho cyklů oteplování a ochlazování Poslední série ochlazování a oteplování začala před 2 mil. let Mimo jiné docházelo v důsledku zalednění k poklesu hladiny světového oceánu

140 ka 90 ka 20 ka Před 20 000 lety

PŘÍČINY GLACIÁLŮ proměnlivost v přísunu a distribuci (sluneční) energie Fluktuace přísunu sluneční energie: kolísání slunečního výkonu - zablokování dopadu slunečního záření změny v atmosféře - vulkány Narušení cirkulace proudů ve světovém oceánu / Pangea - rozpad/ Milankovičovy cykly rozpětí 0,0007-0,0658, současná hodnota je 0,01671. Perioda změn excentricity je cca 98 000 let. Rozpětí 65-70. Současná hodnota cca 66,5. Perioda, se kterou kolísá sklon zemské osy je cca 41 000 let. perioda cca 26 000 let - přísluní i odsluní nastává v různých částech roku. Perihelum nastává kolem 3. ledna, se každým rokem posunuje o 50,256.

Zalednění území ČR ENGEL, Z. (2004): Pleistocénní ledovce na území Česka. Geografické rozhledy, roč. 14, č.2, s. 32-33.

A-O systémy: J. Jeník Přísun energie, energetický potenciál tvaru

období před posledním glaciálem? (trog Labského dolu) poslední glaciál doloženo morénami rozpad ledovce v oblasti karu v pozdním glaciálu (9,6 ± 0,1 BP Hloubka (cm) Stáří 14 C (BP) 205 4080 ± 49 215-251 4380 ± 148 354 5024 ± 53 438 5272 ± 57 797 8216 ± 94 963 9572 ± 54 Profil 519 cm, 390 12840+-40BP

Ledovce - ledovcový led ledovec představuje masu ledu, která se pohybuje v důsledku vlastní hmotnosti klimatické podmínky - srážky, teplota rozšíření polární oblasti až vysoké polohy v tropických oblastech vzniká ze sněhu metamorfózou, diagenezí (zhutňování) zvyšující se statický tlak vyvolaný vahou nadložních poloh zvýšení hustoty v hrubozrnný agregát: firn (0,55-0,84 g/cm 3 ) objemová hmotnost: 0,85 g/cm 3 0,90 g/cm 3 = ledovcový led obvykle při mocnosti 35-75 m sněhové pokrývky! průměrná roční teplota < 0 C + aktivní hydrologická bilance voda vázaná v ledovcích představuje 1,7 % vody hydrosféry

Glaciální modelace, reliéf pevninské (kontinentální) - všesměrný pohyb (odstředivě se roztéká) horské - jednosměrný pohyb svahový karový údolní - alpského typu údolní splazového typu ledovcové čapky radiální ledovce piedmontní (úpatní)

Ledovce s teplou bází izoterma 0 C se nachází při bázi ledovce (horské ledovce), tavná voda na bázi ledovce působí jako lubrikant Voda zvýšený erozní účinek ledovce podledovcová údolí Ledovce s chladnou bází izoterma 0 C se nachází v podloží, pohyb uvnitř ledovce, ledovec je přimrzlý k podloží, (polární oblasti)

glaciální eroze - spočívá v abrazi DETERZE = obrušování, ohlazování EXARACE = brázdění souvky DETRAKCE = odlamování PLUCKING = tříštění - plošná detrakce a deterze pevninských ledovců zcela odstraní zvětralinový plášť typické tvary: oblíky Horské ledovce - vazba splazů na starší údolní síť základní tvary: KAR TROG (FJORD)

kar stěna karu hrana karu stupeň karu dno karu

Ledovcová údolí většinou jsou tvaru U, ale ne vždy!!!! Ledovcové údolí tvaru V- Devon Ledovcové údolí tvaru U- Snowdonia

glaciální akumulace sediment: till (tillit) - směs glacigenního detritu různých rozměrů - špatně vytříděný - složení tillu odpovídá minerálnímu složení zdrojových hornin - nejsou přítomny jílové minerály - tilly morén nejsou zvrstvené základní tvar: MORÉNY čelní moréna, boční moréna, vnitřní moréna, střední moréna, spodní moréna, svrchní moréna Kamy výplně meziledovcových prostor v kontaktní zóně ledovce Drumliny - asymetrické elevace tvořené nekonsolidovaným glacigenním sedimentem Fluvioglaciální akumulace sandry, eskery, varvy

Potenciál zachování ledovcových uloženin je velmi nízký

nivace = e+a působení sněhu sněžníky (trvalé, tzn. min 2 roky) nivační deprese Nivační deprese (nivation hollows) Nivační terasy (nivation terraces) Nivační valy (protalus ramparts) sněžná čára - hranice, která omezuje část zemského povrchu se souvislou sněhovou pokrývkou

Periglaciální zóna není jednoznačně klimaticky definována, je vymezována na základě výskytu periglaciálních tvarů. Dvě základní všeobecně uznávaná kritéria, která charakterizují periglaciální oblast: cyklus mrznutí a tání povrchu přítomnost permafrostu, stále zmrzlého povrchu Základní klimatologické charakteristiky periglaciální zóny

Permafrost /dlouhodobě zmrzlá půda/ jsou horniny a zeminy zemské kůry, jejichž teplota je více než 2 roky pod bodem mrazu. Maximální mocnost permafrostu, pohoří Udokan 1600 m, Aljaška 400 500 m, na území ČR v pleistocénu kolem 300 m (Moravská brána 220 m). V hloubce 15 m má permafrost nejnižší teplotu; je blízká prům. roční teplotě a během roku se nemění (v hloubce 15 m: Aljaška -10ºC, SV Sibiř u S.l.o. -13ºC). Permafrost může být produktem současného podnebí recentní permafrost nebo permafrost fosilní /Západosibiřská nížina/. činná vrstva povrchová vrstva permafrostu, kde během roku dochází aspoň jednou k vzestupu teploty nad 0ºC a tedy i fázové změně vody/. Činná vrstva vysoce dynamická s intenzivními periglaciálními procesy. Mocnost činné vrstvy závisí kromě teploty na charakteru substrátu a vegetace (rašeliniště 10-20 cm, tundra 30-50cm, suché štěrky 2-3 m /max.10 m/). Agradace permafrostu Degradace permafrostu - termokras

Periglaciální zóna v nížinném reliéfu Periglaciální zóna v horském reliéfu

Pro periglaciální zónu je typické mrazové zvětrávání (kongelifrakce), které je způsobeno střídavým mrznutím a táním vody, tzv. regelací, která je obsažena v horninách a zeminách. Voda při změně skupenství z tekutého na pevné zvětší objem o 1/11 (cca 9%). Ledové klíny se mohou spojovat v polygony ledových klínů o průměru 3-20m (jejich vznik je typický pro oblasti s prům. roční teplotou 7º až - 8ºC)

Mrazové klíny Němčany, Psohlávky, Podřipsko, Holešov Podle mrazových resp. ledových klínů lze určovat klimatické poměry, např. J. Karte (1983, 1990). L.K. prům. roční teplota 4 až 8 0 C, nejstudenější měsíc prům. teplota 20 0 C. Mrazové klíny s primární výplní eolického písku, prům. roční teplota 12 až 20 0 C a ročním úhrnu srážek menším než 100 mm.

Voda hraje, kromě vzniku zvětralin, důležitou roli při pohybu zvětralin. Kryoturbace pohyby vertikálního a horizontálního směru v činné vrstvě, typické jsou pro nehomogenní sedimenty, výsledkem jsou zvířené půdy

Jizerka kryoturbací zvířené zvětraliny Vysoká hole HJ Keprník, HJ.

vymrzání úlomků role vody, což je specifickým druhem mrazového třídění, na jehož základě vznikají tříděné strukturní půdy. Vymrzání úlomků, mrazové třídění, Vysoké kolo, Krkonoše Jehlový led

STRUKTURNÍ PŮDY tříděné netříděné Periglaciální mikrotvary, které na zemském povrchu vytvářejí více či méně symetrické struktury pruhy pruhy sítě mrazové kopečky kruhy polygony

https://portal.natur.cuni.cz/members/krizekma/vedecko-vyzkumna-cinnost/recentni-aktivita-strukturnichpud-ve-vybranych-oblastech-stredni-evropy-gaav-kjb301110804/

kdy vznikly a jsou aktivní? Indicie ukazující na recentní aktivitu strukturních půd, které procesy doprovázejí strukturní půdy; kryoturbace, vymrzání úlomků, jehlový led, kryoexpulze, objemová změna, různá stádia vývoje vznik nových, promrzání, tepelný chod Keprník, HJ. 26.5.2005 Tabulové kameny, HJ

Mrazové kopečky vs. kleč mechanické rozrušování tělesa mrazových kopečků změna v rozložení sněhu snižuje mocnost promrzlých horizontů a dobu promrznutí snížení teplotních extrémů zvýšení minim změna v morfologii - zplošťování, vznik koncentricky uspořádaných skupin půdních kopečků Na svazích s vysokou tepelnou dotací pak kleč dokonce může napomáhat k delšímu přetrvání půdního

Tory, mrazové sruby

Kryoplanací vznikají kryoplanační terasy terasovité tvary na svazích skládající se z plošiny terasy /1º-12º, nejčastěji 7º/ a stupně terasy /mrazový srub, mrazový sráz/. Rozměry kryoplanačních teras kolísají /šířka od několika metrů, délka desítky až stovky metrů/. Výška mrazových srubů 10 30 m. Severní Ural (délka 10 km, šířka 2-3 km). Kryoplanační terasy se vyskytují osamoceně nebo vytvářejí stupňoviny svahů (Čukotka 30 teras nad sebou).

Soliflukční proud, Hardangervidda Soliflukce /kongeliflukce, kryosoliflukce/ - pohyb činné /vodou nasycené/ vrstvy nebo její části po svahu. Typická pro sklon 8º, ale existuje i při menších sklonech. Putující bloky

Palsa Torneträsk, Swe

Kryopedimenty - ustupováním svahů a snižováním povrchu terénu shora v periglaciálním prostředí. Pohyb - mrazové vzdouvání Při vývoji kryopedimentů působí na příkrých svazích mrazové zvětrávání, mrazové klouzání suti, řícení. Úpatí podkopávají nivace, na mírném svahu působí mrazové vzdouvání, kryoturbace, soliflukce, sufoze.

Asymetrická údolí - nestejná intenzita svahových procesů v periglaciální zóně v závislosti na expozici. V mírné periglaciální zóně jsou J,Z svahy příkré a V,S mírné v drsné periglaciální zóně je tomu obráceně.

Úpady a suchá údolí ve všech typech reliéfu a ve všech horninách; chladná období pleistocénu; významná součástí systému transportu zvětralin. Nejčastější délka úpadů do 1,5 km, šířka 100 300 m, hloubka 10-15 m, sklon svahů do 10 0. Dna úpadů jsou často rozřezána holocenními stržemi. Hustota úpadů muže být někdy značná, např. Hlučínská pahorkatina 3-4 km/km 2. Úpady, Hlučínská pahorkatina.

Kamenné ledovce Kamenné ledovce jsou lalokovitá nebo jazykovitá tělesa zmrzlé sutě s intersticiálním ledem a ledovými čočkami, která se pohybují dolů po svahu deformací ledu, který obsahují (French, 1996). Krkonoše Polsko, Hrubý Jeseník (Petránek, 1952)??? Není vyloučeno ani zatím dokázáno, že některé kamenné proudy mohly v určitých obdobích fungovat jako kamenné ledovce.

Děkuji za pozornost