Počítačové sítě II. 11. IP verze 4, adresy Miroslav Spousta, 2006

Podobné dokumenty
11. IP verze 4, adresy. Miroslav Spousta, IP verze 4

Počítačové sítě pro V3.x Teoretická průprava II. Ing. František Kovařík

Protokoly: IP, ARP, RARP, ICMP, IGMP, OSPF

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

X36PKO Úvod Protokolová rodina TCP/IP

Y36PSI Protokolová rodina TCP/IP

Počítačové sítě. Lekce 4: Síťová architektura TCP/IP

Identifikátor materiálu: ICT-3-03

Počítačová síť. je skupina počítačů (uzlů), popřípadě periferií, které jsou vzájemně propojeny tak, aby mohly mezi sebou komunikovat.

Standardizace Internetu (1)

Architektura TCP/IP je v současnosti

Internet protokol, IP adresy, návaznost IP na nižší vrstvy

7. Aplikační vrstva. Aplikační vrstva. Počítačové sítě I. 1 (5) KST/IPS1. Studijní cíl. Představíme si funkci aplikační vrstvy a jednotlivé protokoly.

íta ové sít TCP/IP Protocol Family de facto Request for Comments

Síťová vrstva. RNDr. Ing. Vladimir Smotlacha, Ph.D.

Internet a zdroje. (ARP, routing) Mgr. Petr Jakubec. Katedra fyzikální chemie Univerzita Palackého v Olomouci Tř. 17. listopadu

4. Síťová vrstva. Síťová vrstva. Počítačové sítě I. 1 (6) KST/IPS1. Studijní cíl. Představíme si funkci síťové vrstvy a jednotlivé protokoly.

Inovace bakalářského studijního oboru Aplikovaná chemie

metodický list č. 1 Internet protokol, návaznost na nižší vrstvy, směrování

1 Protokol TCP/IP (Transmission Control Protocol/Internet Protocol) a OSI model

Inovace bakalářského studijního oboru Aplikovaná chemie

Telekomunikační sítě Protokolové modely

Počítačové sítě II. 15. Internet protokol verze 6 Miroslav Spousta, 2006

TÉMATICKÝ OKRUH Počítače, sítě a operační systémy

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Komunikační protokoly počítačů a počítačových sítí

Komunikace v sítích TCP/IP (1)

Historie, současnost a vývoj do budoucnosti Anna Biernátová, Jan Faltys, Petr Kotek, Pavel Pokorný, Jan Šára

OSI TCP/IP Aplikace a protokoly 7. aplikační 6. presentační 5. relační

Zásobník protokolů TCP/IP

Přednáška 3. Opakovače,směrovače, mosty a síťové brány

MODELY POČÍTAČOVÝCH SÍTÍ

POČÍTAČOVÉ SÍTĚ Metodický list č. 1

Routování směrovač. směrovač

Sada protokolů TCP/IP

3.17 Využívané síťové protokoly

Počítačové sítě II. 14. Transportní vrstva: TCP a UDP. Miroslav Spousta, 2005

Protokoly přenosu. Maturitní otázka z POS - č. 15. TCP/IP (Transmission Control Protocol/Internet Protocol)

aplikační vrstva transportní vrstva síťová vrstva vrstva síťového rozhraní

Stav IPv4 a IPv6 v České Republice

XMW3 / IW3 Sítě 1. Štefan Pataky, Martin Poisel YOUR LOGO

Vlastnosti podporované transportním protokolem TCP:

Architektura TCP/IP v Internetu

IP adresy. IP protokol shrnutí poznatků. IP adresa (IPv4)

Počítačové sítě I. 2. Síťové modely Miroslav Spousta, 2005

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Počítačové sítě. Miloš Hrdý. 21. října 2007

JAK ČÍST TUTO PREZENTACI

Obsah. O autorech 9. Předmluva 13. KAPITOLA 1 Počítačové sítě a Internet 23. Jim Kurose 9 Keith Ross 9

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Počítačové sítě II. 12. IP: pomocné protokoly (ICMP, ARP, DHCP) Miroslav Spousta,

Jak funguje internet. Jiří Peterka

Aktivní prvky: brány a směrovače. směrovače

Protokoly TCP/IP. rek. Petr Grygárek Petr Grygárek, FEI VŠB-TU Ostrava, Počítačové sítě (Bc.) 1

IPv6. RNDr. Ing. Vladimir Smotlacha, Ph.D.

Y36PSI IPv6. Jan Kubr - 7_IPv6 Jan Kubr 1/29

Josef J. Horálek, Soňa Neradová IPS1 - Přednáška č.6

Počítačové sítě IP multicasting

Počítačové sítě Transportní vrstva. Transportní vrstva

Přednáška 9. Síťové rozhraní. Úvod do Operačních Systémů Přednáška 9

Registrační číslo projektu: CZ.1.07/1.5.00/ Elektronická podpora zkvalitnění výuky CZ.1.07 Vzděláním pro konkurenceschopnost

Adresování v internetu

Počítačové sítě 1 Přednáška č.5

Počítačové sítě. Počítačová síť. VYT Počítačové sítě

Zásobník protokolů TCP/IP

Komunikační sítě a internetový protokol verze 6. Lukáš Čepa, Pavel Bezpalec

PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO KATEDRA INFORMATIKY BAKALÁŘSKÁ PRÁCE. Vizualizace a demonstrace IP fragmentace.

WrapSix aneb nebojme se NAT64. Michal Zima.

5. Směrování v počítačových sítích a směrovací protokoly

Počítačové sítě 1 Přednáška č.4 Síťová vrstva

Směrovací protokoly, propojování sítí

Počítačové sítě. Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI. přednášky

Počítačové sítě ve vrstvách model ISO/OSI

Architektura adres v síti internet Formát IP adres Nehospodárnost VSLM CIDR NAT Adresa protokolu IPv6

ZPS 3 Standardizace počítačových sítí, zásobník TCP/IP, model ISO/OSI, vybrané protokoly

Analýza protokolů rodiny TCP/IP, NAT

Inovace a zkvalitnění výuky prostřednictvím ICT Počítačové sítě Vrstvový model TCP/IP Ing. Zelinka Pavel

Počítačové sítě IP směrování (routing)

Rodina protokolů TCP/IP, verze 2.5. Část 3: IP adresy

překrýt konkrétní přenosové technologie jednotnou pokličkou která zakrývá specifické vlastnosti přenosových technologií

Velikost a určení IP adresy

Úvod do analýzy. Ústav informatiky, FPF SU Opava Poslední aktualizace: 8. prosince 2013

Eva Hladká. jaro 2017

Obsah Počítačová komunikace Algoritmy a mechanismy směrování v sítích Řízení toku v uzlech sítě a koncových zařízeních...

POČÍTAČOVÉ SÍTĚ 1. V prvním semestru se budeme zabývat těmito tématy:

1. Směrovače směrového protokolu směrovací tabulku 1.1 TTL

Model ISO - OSI. 5 až 7 - uživatelská část, 1 až 3 - síťová část

6. Transportní vrstva

Měření kvality služeb. Kolik protlačíte přes aktivní prvky? Kde jsou limitní hodnoty ETH spoje? Data Hlas Video. Black Box Network Infrastructure

Příklad materiálů pro kurz Zá klády poč í táč ovy čh sí tí (TCCN-IP1)

Internet a jeho služby. Ing. Kateřina Ježková

e1 e1 ROUTER2 Skupina1

OpenVPN. Uvedené dílo podléhá licenci Creative Commons Uved te autora 3.0 Česko. Ondřej Caletka (CESNET, z.s.p.o.) OpenVPN 3. března / 16

Desktop systémy Microsoft Windows

Konfigurace síťových stanic

Úvod Bezpečnost v počítačových sítích Technologie Ethernetu

Střední průmyslová škola, Bruntál, příspěvková organizace. Praktická maturitní práce

Technologie počítačových sítí 5. přednáška

12. Virtuální sítě (VLAN) VLAN. Počítačové sítě I. 1 (7) KST/IPS1. Studijní cíl. Základní seznámení se sítěmi VLAN. Doba nutná k nastudování

Technologie počítačových komunikací

Transkript:

Počítačové sítě II 11. IP verze 4, adresy Miroslav Spousta, 2006 <qiq@ucw.cz>, http://www.ucw.cz/~qiq/vsfs/ 1

IP verze 4 základní protokol Internetu, RFC 791 v současnosti nejrozšířenější síťový protokol součást síťové vrstvy architektury TCP/IP první verze (1, 2, 3) se používaly během vývoje v letech 1977 1980 v budoucnu se počítá s nasazením IP verze 6 (IPv6) dnes experimentální sítě, pomalu se prosazují volny.cz, cesnet, XS26 IPv5 byl streamovací protokol, neujal se existují i další verze protokolu IPv7 a IPv8 neujaly se 2

Vrstvy TCP/IP Aplikační Prezentační Relační Transportní Síťová Linková (spojová) Fyzická Aplikační Transportní Vrstva internetu Vrstva síťového rozhraní TCP/IP neřeší 3

(mezi-)síťová vrstva: IP Transportní vrstva Open Shortest Path First (OSPF) [RFC 2328] Internet Control Message Protocol (ICMP) [RFC 792] Internet Group Management Protocol (IGMP) [RFC 3376] Internet protocol (IP) [RFC 791] Address Resolution Protocol (ARP) [RFC 826] Reverse Address Resolution Protocol (RARP) [RFC 903] Linková vrstva 4

IP: Nespojovanost IP je nespojovaný protokol (není třeba předem navazovat spojení) obrovská výhoda: bezestavovost: jednodušší architektura síťových prvků vhodné pro řídké přenosy (většina datových přenosů) spojovaný přenos mohou zajišťovat vyšší vrstvy každý datagram (paket) je samostatná jednotka k cíli cestuje nezávisle na ostatních po cestě může vzniknout potřeba paket rozdělit (pokud to linková vrstva vyžaduje) jednotlivé fragmenty se stávají pakety a opět cestují nezávisle na sobě sestavení fragmentů provede cílový uzel 5

IP: Nespolehlivost IP je nespolehlivý protokol není zaručeno dodání ani zachování obsahu paketů pakety mohou přijít v jiném pořadí, než byly odeslány, případně mohou přijít vícekrát spolehlivost není nikdy 100%, bývá spojena s nemalou režií nespolehlivost umožňuje jednodušší přenosovou architekturu nespolehlivost vadí u multimédií, jinak lze poškozená data poslat znovu spolehlivost mohou zajišťovat vyšší vrstvy (TCP) IP protokol nekontroluje korektnost dat (kontrolní součet je jen pro IP hlavičku) 6

Maximální snaha princip maximální snahy (best effort) ale nezaručeného výsledku snaha vyhovět všem požadavkům, pokud je to možné není-li, může s daty nakládat jak uzná za vhodné ale musí se ke všem chovat stejně problém s multimediálními přenosy, částečné řešení je navýšení přenosové kapacity alternativní k QoS (Quality of Service) zajišťují, že služba bude mít předem určené vlastnosti vhodné pro multimediální přenosy 7

Poklička IP bylo vyvinuto jako jednotná nadstavba nad síťovými technologiemi umožňuje fungovat nad mnoha rozličnými síťovými technologiemi od Ethernetu po ATM IP protokol tvoří pokličku, pod kterou není vidět výjimka: síťová vrstva bere ohled na maximální velikost linkového rámce důsledek: IP používá adresy nezávislé na linkových adresách musí existovat převodní mechanismy (protokoly ARP, RARP) adresy vyjadřují pohled na svět skrz brýle TCP/IP: skládají se z adresy sítě a adresy počítače v rámci sítě 8

Představa pokličky Aplikace... Transportní Síťová (IP) Síť. rozhraní poklička Síťová (IP) Síť. rozhraní Aplikace... Transportní Síťová (IP) Síť. rozhraní 9

Adresace každý uzel má právě jednu unikátní adresu v ideálním případě, směrovač má více adres, některé počítače nemají unikátní adresu adresy jsou abstraktní, všude stejné (nezávislé na linkových adresách) adresy mají 32 bitů, zapisují se desítkově po bajtech skládají se z části označující síť a z části označující uzel v dané síti vychází z pohledu TCP/IP na propojení sítí každé dva uzly jsou propojeny přes řetězec sítí a směrovačů 10

Adresace směrovače se rozhodují podle příslušnosti cílové adresy daného paketu k síti tedy ne na základě celé adresy cílového uzlu zmenšuje směrovací tabulky, zjednodušuje směrování je třeba umožnit z adresy extrahovat síťovou část a číslo počítače v síti adresy jsou fyzicky jednolité (32 bitové), logicky dvousložkové původně bylo z adresy možné zjistit přímo rozdělení rozlišovaly se tzv. třídy adres dnes se rozdělení uvádí explicitně (maskou, příp. počtem bitů) např 194.113.31.128/26 nebo 194.113.31.128/255.255.255.192 11

Přidělování IP adres IP adresy nemohou být přidělovány nahodile musí být respektováno rozdělení na sítě (celková topologii) uzly ve stejné síti musí mít stejnou síťovou část adresy uzly v různých sítích musí mít různou síťovou část adresy IP adresa patří rozhraní uzlu, ne celému uzlu IP adresy se musí přidělovat po celých blocích (po sítích) jak rozdělit adresu (po kolika bitech?) raději více malých sítí nebo málo velkých sítí? zamezit zbytečnému plýtvání IP adresami (musí se přidělovat po sítích) 12

Přidělování IP adres je potřeba více adres uzlů než adres sítí. Kde zvolit hranici? pevná hranice (např. 16 bitů) by nevyhovovala pro síť s 200 počítači by bylo přiděleno 65534 adres výsledné rozdělení: 126 sítí velkých, v každé z nich až 16 miliónů adres uzlů (2^24-2) 16384 sítí středních, v každé z nich maximálně 65534 adres uzlů (2^16-2) více než dva milióny sítí malých (2^21), v každé maximálně 254 adres uzlů (2^8-2) v dobách počátku Internetu se to zdálo rozumné dneska nepoužitelné (došlo k vyčerpání rozsahů) 13

Třídy adres IPv4 7 bitů 24 bitů A 1.x.x.x 126.x.x.x 0 adresa sítě adresa uzlu 14 bitů 16 bitů B 1 0 adresa sítě adresa uzlu 128.0.x.x 191.255.x.x 21 bitů 8 bitů C 1 1 0 adresa sítě adresa uzlu 192.0.0.x 223.255.255.x 14

Další třídy adres kromě tříd A, B, C existují ještě další speciální třídy adres třída D, která je určená pro multicasting 224.0.0.0 239.255.255.255 třída E, která je oficiálně určená pro budoucí použití 240.0.0.0 255.255.255.255 adresy D a E nejsou dvousložkové (přidělují se po 1) v rámci sítě existují adresy se speciálním významem adresující všechny počítače v síti, danou síť, atd. 15

Speciální adresy 0 0 tento počítač 0 x počítač v této síti x 0 tato síť jako celek x 1...1 všechny počítače v síti (broadcast) 1...1 1...1 všechny počítače v této síti (broadcast) 127 0.0.1 loopback (rozhraní, které nejde ven) 16

Problém s vyčerpáním adres každá adresa je přidělena maximálně jednou v Internetu nesmí existovat dva uzly se stejnou adresou adresy přiděluje centrální autorita distribuce ICANN -> RIPE (ARIN, APNIC) -> ISP ICANN přiděluje celé bloky, RIPE přiděluje adresy B a C došlo k velkému plýtvání každý žadatel dostal aspoň rozsah C (254 adres) ICANN RIPE ARIN APNIC kdokoliv potřeboval více dostal více rozsahů C nebo rozsah B (65534 adres) adresy začaly docházet, co s tím? ISP 17

Řešení vyčerpání adres zapomenout na třídy a hranici adresa sítě/adresa uzlu v síti posouvat libovolně (po bitech) původní mechanismy práce s adresami na to nebyly připravené tedy spoléhaly na třídy adres je nutné zavést tzv. masku sítě jednoznačně určuje rozhraní adresy sítě/uzlu udává se buď počtem bitů nebo přímo jako maska (pro operaci AND) např 194.113.31.128/26 nebo 194.113.31.128/255.255.255.192 194.113.31.129 AND 255.255.255.192 = 194.113.31.128 18

Subnetting rozdělení původního rozsahu sítě na několik částí proto subnetting např. jedna adresa třídy C na 4 podsítě (maska /26) rozdělení se provede v rámci jednoho subjektu navenek se síť tváří jako jediná síť třídy C je možné použít, pokud sítě mají jeden společný vstupní bod (např ISP) /24 /26 /26 /26 /26 19

Další metody dnes už se nepřidělují celé třídy, ale jen jejich části výrazně se omezila spotřeba adres IPv4 principiální řešení to ale není (stále je shora omezen počet aktivních uzlů maximálním počtem adres IPv4) konečné řešení má přinést IPv6 (podstatně více adres) rozvinuly se i další metody vedoucí k úspoře adres: CIDR (Classless InterDomain Routing použití privátních IP adres NAT (Network Address Translation) 20

Privátní adresy uzly v Internetu musí mít unikátní IP adresy, aby mohly komunikovat směrovače musí mít jasno, kam mají pakety pro daný uzel přeposílat tam, kde není nutná přímá komunikace, je možné adresy opakovat např. u počítačů za firewallem nebo aplikačním proxy serverem takové uzly mohou mít speciální, tzv. privátní adresy proxy server WWW IP adresa: 10.0.0.1 IP adresa: 10.0.0.1 IP 21

Privátní adresy speciální vyhrazené adresy, které nepatří do Internetu (RFC 1597) smí se vyskytovat pouze uvnitř privátních sítí, nesmí projít skrz router do Internetu router ani nesmí šířit směrovací informace o těchto adresách vně sítě teoreticky by v privátní síti bylo možné použít libovolné IP adresy ale není to vhodné (nešlo by rozlišit, zda je cílový uzel uvnitř privátní sítě nebo vně) privátní adresy je vhodné použít i u sítě, která není připojena k Internetu při spojení takových dvou sítí mohou vzniknout problémy 1 x třída A: 10.0.0.0 10.255.255.255 16 x třída B: 172.16.0.0 172.31.255.255 256 x třída C: 192.168.0.0 192.168.255.255 22

CIDR Classless InterDomain Routing, také supernetting původně platilo: co jeden záznam ve směrovací tabulce, to jedna adresa třídy A, B, C podobné jako subnetting, ale hranice se posouvá opačným směrem je možné přidělit více podsítí najednou do směrovacích tabulek se zaznamenávají kromě adresy také masky sítě v podstatě se jedná o slučování sousedních sítí síťová část je označena jako prefix tak vznikne tzv. CIDR blok IP adresy se dnes přidělují po CIDR blocích 23

CIDR CIDR umožňuje zmenšit objem směrovacích tabulek zvláště u páteřních směrovačů, které by jinak musely obsahovat položku pro každou síť v Internetu dochází ke sdružování záznamů se stejným prefixem další zmenšení: autonomní systémy IP adresy se stávají závislými na připojení neboli sítě již nemohou mít libovolné adresy při změně ISP se změní IP adresa opět zamezilo velkému plýtvání s adresami + 0 1 prefix 24

NAT Network Address Translation neboli překlad adres v privátní síti můžeme použít privátní adresy (vyhrazené rozsahy) brána přepisuje adresy v hlavičce IP na vnější adresy Internetu (1:1) pro pakety obráceným směrem musí přepsat adresy zpět pro počítače, které nekomunikují se světem nepotřebujeme vnější adresy statický NAT: vnější adresy jsou přiřazeny pevně dynamický NAT: adresy se mění podle potřeby 194.110.30.211 192.168.0.2 192.168.0.3 192.168.0.2 192.168.0.1 25

PAT Port Address Translation neboli překlad portů podobné jako NAT, ale překládá se zpravidla na jednu vnější adresu (1:N) jednotlivé spojení se rozlišují číslem portu na vyšší (transportní) úrovni celá síť se chová jako jeden počítač 194.110.30.211:100 <-> 192.168.0.3:2222 192.168.0.3:2222 192.168.0.2:3333 194.110.30.211:101 <-> 192.168.0.2:3333 192.168.0.1 26

NAT/PAT výhody: využívá jen jednu adresu/málo adres bezpečnost(?): nelze navazovat spojení směrem dovnitř problémy: nelze navazovat spojení směrem dovnitř (P2P) FTP navazuje datové spojení směrem ke klientovi problém se službami/protokoly, které přenáší adresy i jinde než v hlavičkách např. IPSec řešení: rozpoznávat provoz a snažit se měnit informace i v paketech NAT boří jeden ze základních principů fungování TCP/IP: minimální intervence (přenášející vrstva se nestará o to, co přenáší) 27

Datagram IP 4b 4b 8b 16b verze délka záhlaví typ služby P P P D T R C 0 celková délka paketu identifikace DF MF ofset fragmentu TTL protokol kontrolní součet hlavičky zdrojová adresa cílová adresa volitelné rozšíření záhlaví data (max. 65535-délka hlavičky) 28

IP datagram verze: 4 délka záhlaví: po 4B, typicky 20B (bez rozšíření), max. 60B typ služby (ToS Type of Service): priority a kvality služby různá kritéria, nedoporučuje se používat více než dvě najednou dnes se používá pro QoS (Quality of Service) kód DSCP celková délka: v bajtech (včetně záhlaví) identifikace: pro podporu fragmentace, jednoznačně identifikuje datagram flags: 3 bity 0 DF MF, DF = nefragmentovat, MF = následují fragmenty číslo fragmentu: pozice od začátku původního datagramu TTL (Time To Live): počítadlo, dekrementuje se po průchodu směrovačem, pokud dosáhne 0, datagram se zahodí. Brání nekonečnému bloudění datagramu sítí (např. pri chybné konfiguraci) 29

ToS Aplikace min. zpoždění max. propustnost max. spolehlivost min. cena hodnot a (hex) telnet 1 0 0 0 10 FTP příkazy 1 0 0 0 10 FTP data 0 1 0 0 08 SMTP příkazy 1 0 0 0 10 SMTP data 0 1 0 0 08 DNS dotaz 1 0 0 0 10 SNMP 0 0 1 0 04 BOOTP 0 0 0 0 00 NNTP 0 0 0 1 02 30

IP datagram číslo protokolu: udává, který protokol se má použít na zpracování dat Protokol Popis Číslo protokolu ICMP chybové zprávy IP 1 IGMP řízení skupin 2 IP v IP tunelování IP v IP 4 TCP spolehlivý transportní protokol 6 UDP nespolehlivý tranportní protokol 9 ESP IPSec šífrování 50 AH IPSec integrita 51 OSPF směrovací protokol 89 31

IP datagram zabezpečení záhlaví: jedničkový doplněk hlavičky IP zdrojová, cílová adresa: IP adresy volitelné možnosti: zdrojová cesta, zabezpečení různá délka, ale v násobcích 4B (32bitů) nepoužívá se (náročné na zpracování ve směrovačích), směrovače zahazují data: vlastní data vyšší vrstvy nejsou zabezpečeny kontrolním součtem (je úkolem vyšší vrstvy!) 32

Fragmentace velikost IP datagramu může být až 65535 bajtů ale linková vrstva může mít podstatně menší MTU (Maximum Transmission Unit) maximální velikost rámce např. u Ethernet je to 1500B (+ hlavička a patička Ethernetu) je nutné datagram rozdělit do několika menších, které je možné přenést linkovým rámcem potřeba rozdělit datagram může vzniknout i po cestě k cíli např. při přechodu z jedné technologie na jinou fragmentaci provádí po cestě směrovače pokud to není zakázané nastavením bitu DF (Don't Fragment) v IPv6 provádí fragmentaci pouze zdrojová stanice fragmenty sestavuje vždy až koncová stanice 33

Fragmentace stanice i směrovač znají MTU jen pro lokální síť, nemohou vědět, jaká bude po cestě k cíli popsaný způsob umožňuje opětovnou fragmentaci fragmentů sítě by měly přenést aspoň 576 B nefragmentovaných (512B užitečných) MF: 0, ID: 1234 ofset: 0, délka: 1500B MF: 1, ID: 1234 ofset: 0, délka: 1000B MF: 0, ID: 1234 ofset: 1000, délka: 500B MF: 1, ID: 1234 ofset: 0, délka: 1000B MF: 0, ID: 1234 ofset: 1000, délka: 500B MTU: 1500B MTU: 1000B MTU: 1500B 34