Biodegradace. Biodegradace. Biodeteriogeny. Biodegradace. Doc. Ing. Alena Vimmrová, Ph.D. Interakce materiálů a vnějšího prostředí

Podobné dokumenty
Degradace stavebních materiálů

Biodegradace. Biodegradace stavebních materiálů. Biodegradace. Biodeteriogeny. Doc. Ing. Alena Vimmrová, Ph.D.

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ OCHRANA DŘEVĚNÝCH KONSTRUKCÍ PŘED ZNEHODNOCENÍM část 2.

KOROZE KONSTRUKCÍ. Ing. Zdeněk Vávra

Poškození a ochrana dřeva

CHYBY V DŘEVOSTAVBÁCH

Látky jako uhlík, dusík, kyslík a. z vnějšku a opět z něj vystupuje.

Inovace výuky Člověk a svět práce. Pracovní list. Čp 06/12. Škůdci dřeva

Kvalita sanací historických krovů

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, , Karlovy Vary Autor: BOHUSLAV VINTER Název materiálu:

NAVRHOVÁNÍ DŘEVĚNÝCH KONSTRUKCÍ OCHRANA DŘEVĚNÝCH KONSTRUKCÍ PŘED ZNEHODNOCENÍM část 1.

BYTOVÝ DŮM: Mimoňská , Praha 9

05 Biogeochemické cykly

Zvyšování kvality výuky technických oborů

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Zvyšování kvality výuky technických oborů

Diagnostika staveb ING. PAVEL MEC VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ KATEDRA STAVEBNÍCH HMOT A DIAGNOSTIKY STAVEB

Atmosférická a biologická koroze dřeva Atmosférická koroze

TECHNIKA PRO ZPRACOVÁNÍ ODPADŮ (13)

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví

Koloběh látek v přírodě - koloběh dusíku

Biologické poškození sbírkových materiálů

CHEMICKÁ A BIOLOGICKÁ KOROZE STAVEBNÍCH HMOT... Biologická koroze (biokoroze) obecně Základní pojmy, členění, charakteristika Podmínky pro působení

Způsoby potlačení tvorby biofilmů event. jejich degradace. Doležalová Fehérová 2015/2016

Zvyšování kvality výuky technických oborů

Problematika ohrožení národních kulturních památek mikroorganismy. Hana Mlejnková

Sanace historických fasád

Ukazka knihy z internetoveho knihkupectvi

OBSAH 1 ÚVOD Výrobek a materiál Přehled a klasifikace materiálů pro výrobu ZDROJE DŘEVA... 13

Co to jsou stavební materiály (staviva)? materiály anorganického nebo organického původu používané k výstavbě budov

TECHNICKÁ ZPRÁVA SO 001 VLASTNÍ STAVBA. 1. Zemní práce. 2. Základy. 3. Svislé konstrukce. 4. Vodorovné konstrukce. 5. Úprava povrchů vnitřních

5. Nekovy sı ra. 1) Obecná charakteristika nekovů. 2) Síra a její vlastnosti

NANO ČISTIČKA VZDUCHU

Zvýšená vlhkost staveb. Tato prezentace vznikla za podpory projektu FRVŠ 2404/2012

Rozmnožování hub. Typy hniloby dřeva. Hlenky. Mechy. Lišejníky. Řasy

(Informace) INFORMACE ORGÁNŮ, INSTITUCÍ A JINÝCH SUBJEKTŮ EVROPSKÉ UNIE EVROPSKÁ KOMISE

SOLI. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Biologické čištění odpadních vod - anaerobní procesy

SYSTÉMY SANOVÁNÍ PLÍSNÍ. Katalog výrobků 2014

Katedra materiálového inženýrství a chemie IZOLAČNÍ MATERIÁLY, 123IZMA

Seznam technických návodů k NV č. 163/2002 Sb., ve znění NV č. 312/2005 Sb. pro rok 2016

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

kyslík ve vodě CO 2 (vápenato-)uhličitanová rovnováha alkalita

(Informace) INFORMACE ORGÁNŮ, INSTITUCÍ A JINÝCH SUBJEKTŮ EVROPSKÉ UNIE EVROPSKÁ KOMISE

Seminář dne Lektoři: doc. Ing. Jaroslav Solař, Ph.D. doc. Ing. Miloslav Řezáč, Ph.D. SŠSaD Ostrava, U Studia 33, Ostrava-Zábřeh

Příprava před zateplením fasády. 3. výběr typu fasádní omítky

Seznam technických návodů k NV č. 163/2002 Sb., ve znění NV č. 312/2005 Sb. pro rok 2015

Sada Životní prostředí UW400 Kat. číslo Stanovení obsahu kyslíku, nasycení kyslíkem a hodnoty BSK5

Přirozený rozklad dřevní hmoty

Bioremediace půd a podzemních vod

MIKROORGANISMY EDÍ. Ústav inženýrstv. enýrství ochrany ŽP FT UTB ve Zlíně

Střední odborná škola stavební a Střední odborné učiliště stavební Rybitví

ČISTÍCÍ ENERGIE SVĚTLA

Zvyšování kvality výuky technických oborů

Hodnoty fyzikálních veličin vybraných stavebních materiálů

Chemická a mikrobiologická laboratoř katedry pozemních. staveb

Střešní pláště - přehled

MYKOTOXINY. Jarmila Vytřasová. Univerzita Pardubice Fakulta chemicko-technologická Katedra biologických a biochemických věd

J i h l a v a Základy ekologie

ČSN EN 206. Chemické korozní procesy betonu. ph čerstvého betonu cca 12,5

JČU-ZF, KATEDRA KRAJINNÉHO MANAGEMENTU STAVEBNÍ MATERIÁLY A KONSTRUKCE (STMK)

Fasády. vyhotovil: Břetislav Bardonek

Biologické odstraňování nutrientů

KAPITOLA 13: TEPELNÉ IZOLACE Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

VLHKOST A PLÍSNĚ VE STAVBĚ

Odběr rostlinami. Amonný N (NH 4 )

Fouling a biofouling membrán při provozu MBR, metody potlačení Mgr. Ing. Bc. Lukáš Dvořák, Ph.D.

Biologické odstraňování nutrientů

Předsazené -předsazené před obvodový plášť - kotvené k vnitřními nosnému plášti pomocí ocelových spojek - svislý styk tvořen betonovou zálivkou -

AO 212 Centrum stavebního inženýrství, a.s

J. Kubíček FSI Brno 2018

PŘÍPRAVKY NA BÁZI LIGNOSULFONÁTŮ

Degradace stavebních nekovových materiálů

Vymazání tuku. Odporný vzhled. Cizí předměty

ZŠ ÚnO, Bratří Čapků 1332

Dokonalá ochrana dřeva

Modul 02 Přírodovědné předměty

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". 3. PEDOLOGIE

Ing. Alexander Trinner

Oceněné rostlinné hnojivo!

Fyziologie rostlin - maturitní otázka z biologie (3)

THERMANO TEPELNĚIZOLAČNÍ PANELY PIR


DEKOMPOZICE, CYKLY LÁTEK, TOKY ENERGIÍ

Lepení materiálů. RNDr. Libor Mrňa, Ph.D.

Zateplení konstrukcí dvouplášťových odvětraných střech metodou suché aplikace izolace CLIMATIZER PLUS. Ing. Miroslav Straka

Biodegradabilní plasty: současnost a perspektivy

Konopná izolace Lněná izolace Izolace z ovčí vlny Izolace ze slámy

11. Omítání, lepení obkladů a spárování

Biochemie, Makroživiny. Chemie, 1.KŠPA

Vliv teploty. Mezofilní mik. Termoofilní mik. Psychrofilní mik. 0 C 10 C 20 C 30 C 40 C 50 C 60 C 70 C teplota

2.4 Koroze a degradace stavebních materiálů

Do této skupiny patří dusík, fosfor, arsen, antimon a bismut. Společnou vlastností těchto prvků je pět valenčních elektronů v orbitalech ns a np:

tvrdé dřevo (v panelech) Vnitřní stěny, vnitřní podpory beton, přírodní kámen, cihly, klinkerové cihly, vápenopískové cihly

ROZDĚLENÍ A POŽADAVKY NA KATEGORIE FUNKCE VÝROBKU, KATEGORIE SLOŽKOVÝCH MATERIÁLŮ. Jana Meitská Sekce zemědělských vstupů ÚKZÚZ Brno

BIODEGRADACE SPECIFICKÝCH POLUTANTŮ ZÁKLADNÍ PODMÍNKY

6.Úprava a čistění vod pro průmyslové a speciální účely

Spotřeba: 3 4 kg předpřipraveného nátěru / m² na dvě vrstvy, nanáší se štětcem nebo ocelovým hladítkem

Transkript:

Interakce materiálů a vnějšího prostředí Biodegradace Doc. Ing. Alena Vimmrová, Ph.D. Biodegradace Definice: změna vlastností materiálů podmíněná činností živých organismů biologické procesy způsobující narušení, znehodnocení nebo úplný rozklad materiálů a předmětů z nich vyrobených ve stavebním díle nežádoucí, pro přírodu však v zásadě potřebná bakterie řasy houby (plísně) lišejníky vyšší rostliny vyšší živočichové Biodeteriogeny Biodegradace způsobena živými organismy, ale důsledky se projevují jako fyzikální degradace nebo chemická koroze v praxi lze obvykle pouze obtížně odlišit účinky biodegradace na materiály od jiných degradačních dějů napadány mohou být jak organické, tak i anorganické stavební materiály 1

Místa největší aktivity biodeteriogenů Mikroorganismy okenní skla krovy, okenní rámy střešní krytina bakterie, plísně, řasy podlahoviny dřevěné stropy, podlahy vnitřní omítky vnější fasáda P plísně, B bakterie, A řasy, L lišejníky H dřevokazné houby, DH dřevokazný hmyz Podmínky biodegradace mikroorganismy Vlhkost Zdroje vlhkosti v budovách vlhkost substrátu se vyjadřuje součinitelem hygroskopické rovnováhy a w a w = poměr tlaku vodní páry v hygroskopickém materiálu ke tlaku vodní páry v čisté vodě kromě a w růst závisí i na vlhkosti vzduchu mikroorganismy: a w = 0,60 0,99 bakterie: a w = 0,93 0,99 plísně: a w = 0,8-0,9 2

Produkce vodních par v objektu Podmínky biodegradace mikroorganismy Teplota - mikroorganismy jsou zcela závislé na teplotě okolí (minimální, optimální, maximální růstová teplota) - psychrofilní (max. < 20 C, optimum 6 10 C, min < 0 C) - mezofilní (max. < 45 C, optimum 26 40 C, min < 5-10 C) - termofilní (optimum 40 55 C, min < 20 C) -extrémně termofilní (max.< 250 C, optimum 80 110 C) Podmínky biodegradace mikroorganismy ph optimální ph pro růst mikroorganismů je 4 10 vysoké ph růst zastavuje výjimky: sirné bakterie (ph 0-1) bakterie rostoucí v čerstvém betonu (ph 12) mikroorganismy jsou schopny ph substrátu výrazně měnit Podmínky biodegradace mikroorganismy EMG záření, O 2, CO 2 sluneční záření pro většinu mikroorganismů destruktivní (zejména UV složka) O 2 většina organismů na stavebních materiálech je aerobní změny v koncentraci O 2 příliš nehrají roli CO 2 organismy většinou odolné i vysokým koncentracím 3

Degradace mikroorganismy Bakterie z chemického hlediska nejnebezpečnější k růstu potřebují zdroj živin a energie uhlík, dusík, minerální prvky, životní podmínky velmi široké optimální teploty 5 35 C maximální růst při vlhkosti nad 10 % přímé sluneční světlo většinou potlačuje růst Dělení bakterií Podle zdroje energie a uhlíku autotrofní C výhradně z CO 2 heterotrofní - C z organických látek (soli org. kyselin, sacharidy,tuky, bílkoviny..) chemotrofní oxidace anorg. i org. látek fototrofní ze sluneč. záření Podle potřeby O 2 striktně aerobní striktně anaerobní fakultativně anaerobní Působení bakterií Spodní část stavby převážně redukční, anaerobní bakterie Redukované sloučeniny síry a dusíku jsou transportovány vodou vzhůru Oxidace aerobními bakteriemi vzniklé soli působí korozně + jsou využívány vyššími rostlinami Sirné bakterie (thiobacilly) na anorganických substrátech - všude, kde je zdroj síry (prach, ptačí trus,půda spodní voda) optimální ph 7 teplota 25 30 C postupně oxidují sloučeniny obsahující síru v nižším oxidačním stupni až na sírany, případně kyselinu sírovou (až 5 %) stavební a dekorační kámen fasády hist. objektů beton (síranová koroze) koroze kovů 4

Desulfurikační bakterie redukují sloučeniny obsahující síru ve vyšším oxidačním stupni až na sulfan a získaný kyslík využívají pro svůj růst v půdě, spodní vodě ph 3-9 (optim. 7), t = 30 37 C přísun sirných sloučenin síranovým bakteriím Nitrifikační bakterie oxidují amoniak nebo amonné soli až na dusičnany (případně na HNO 3 ) ph 8-9, t = 25-30 C reakce s vápennými složkami stav. materiálů zvýšená porosita, ztráta soudržnosti rozpad asbestocementové krytiny v zem. objektech (kravíny) Silikátové bakterie bakterie (odlišných rodů), schopné uvolňovat draslík z těžko rozpustných draselných alumosilikátů, hornin a minerálů produkují organické kyseliny (citronovou, jantarovou, jablečnou..) ESP = extracelulární polymerní substance biofilm na povrchu materiálu, zvýšení porozity a permeability a tím i vlhkosti porušení mrazem vylučování org. kyselin vyluhování pojiva, ztráta soudržnosti vylučování EPS (= extracelulární polymerní substance) 5

Bakterie na dřevě Mikroorganismy na kameni menší vliv ve srovnání s houbami a hmyzem napadají hemicelulózu a celulózu změna zbarvení, vyšší porozita pokles pevnosti přispívají ke korozi dřeva napadeného houbou 1880 1993 Socha anděla z katedrály v Kolíně nad Rýnem Mikroorganismy na kovech měď - bakterie Desulfovibrio vulgaris uhlíkatá ocel - desulfurikační bakterie, ESP Mikroorganismy na polymerech Projevy: estetické změny - barevné skvrny, zešednutí povrchu degradace aditiv (plastifikátory, retardanty, antioxidanty) zkřehnutí plastu enzymatický rozklad polymerů ztráta pevnosti vůči ataku mikroorganismů jsou obecně odolnější: PE, PP, PS, PVC, polyamidy, polyestery, PUR 6

Ochrana betonu vůči mikrobiální biodegradaci Plísně (mikromycety) zamezení přístupu vody do konstrukce použití vhodného pojiva (s pucolány či struskou) či pucolánové příměsi omezení organických přísad zvýšení nepropustnosti betonu (w/c 0,5) vhodný povrch betonu biocidní přísady (spíše pro sanaci) fotokatalytický beton použití cementu s TiO 2 Kostel Dives in misericordia, Řím 2003 potřebují k životu vlhký substrát bohatý na organický C (odumřelé buňky řas a bakterií) i > 90%, t = 15 30 C Korozní aktivita na kameni: zpráškování dekoračního kamene rozpouštění, rekrystalizace a redepozice kalcitu komplexolýza ( produkty metabolizmu uvolňují z minerálů prvky za vzniku vodorozpustných sloučenin) Plísně na kameni Plísně na dřevě vytváří plísňové povlaky nerozkládají složky dřeva, štěpí pouze jednodušší polymery, nezpůsobují zásadní ztrátu pevnosti vytvářejí organické kyseliny, které způsobují měkkou hnilobu nevratné zbarvení dřeva Kolonie plísní na mramorové soše Side, Turecko 7

Dřevozabarvující houby rozkládají průvodní látky, nikoliv však složky buněčných stěn mohou zvýšit sklon dřeva k napadení dřevokaznými houbami někdy způsobují měkkou hnilobu Ligninovorní houby depolymerizace ligninu václavka obecná, pevník chlupatý, choroše bílá (voštinová) hniloba pomalejší rozklad než celulózovorní houby Celulózovorní houby depolymerizace celulózy a hemicelulóz dřevomorka domácí koniofora sklepní trámovka plotní Dřevomorka domácí Merulius Lacrymans hnědá (červená) hniloba postupné hnědnutí, ztráta hmotnosti, pevnosti, rozpad na prášek prorůstají i zdivo velmi obtížná likvidace 8

Příčiny výskytu dřevokazných hub v budovách zvýšená vlhkost objektu (nedostatečná péče a údržba) nesprávná konstrukční řešení zatékání střechou nedostatečná ochrana dřeva biocidy parotěsné uzavření dřev. podlah PVC zatékání vody při mytí PVC podlah použití nevhodného či příliš vlhkého dřeva Řasy potřebují světlo, min. látky a vlhkost nejvíce v místech, kde se hromadí voda agresivní vůči stavebnímu kameni svými metabolity (org. kyseliny, barviva) napadání uhličitanových složek a jejich rozpouštění estetické škody na fasádách - skvrny větrání kamene zadržováním vody mechanické narušování expanzí v trhlinkách povlaky na skle, živičných šindelích, plechové krytině Řasy Řasy socha Budhy (Sukhotai, Thajsko) 9

Lišejníky Lišejníky symbiotická forma řasy a houby pomalý vývoj velmi odolné extrémním teplotám (-268 100 C) mechanické odtržení podkladu vylučují organické kyseliny Mechy v místech s nahromaděným malým množstvím humusu stinná místa dobře se uchytávají na porézním materiálu (vápenné omítky a malty) mechanické poškození podkladu transport vody rhizoidy produkce organických kyselin Vyšší rostliny na málo udržovaných objektech kořeny vnikají do štěrbin a prasklin tlak až 30 MPa statické poškození stavby kořenové výměšky ( huminové kyseliny) změkčování hornin, transport kationtů z degradovaného materiálu do cévních svazků 10

Vyšší rostliny Hmyz u anorganických materiálů se na degradaci nijak podstatně nepodílí zhoršení vzhledu stavby např. pavučinami cedivečka zápřední (Dictyna Civica) Dřevokazný hmyz červotoči, tesaříci, pilořitky. vhodná teplota, vlhkost dřeva a přístup vzduchu vlhkost min. 10-12 %, optim. 25-30, max. 60-80 % podle chodbiček lze poznat druh hmyzu dřevo mezi chodbičkami zůstává zdravé Tesaříci T. krovový (Hylotropes bajulus), t. fialový (Callidium violaceum) délka 7 21 mm larva (2-30 mm) prodlouží při optimálních podmínkách chodbičku za 1 h o svou délku. larvy vyžírají dřevo a chodbičky za sebou zaplňují drtinami s výkaly většinou rozežírají povrchové vrstvy dřeva (bělové dřevo) při intenzivnějším napadení se zavrtávají hlouběji a 5-10 mm rozrušují i dřevo jádrové 11

Červotoči Č. umrlčí (Anobium pertinax), č. proužkovaný (Anobium punctatum) délka 3-5 mm tikání delší vývojový cyklus než tesařík (až 3 roky) výletové otvory kruhové č. umrlčí neškodí v čerstvém dřevě 1,5-5 mm Pilořitky P. velká (Urocerus gigas) délka 1-4 cm ( ) vajíčka do čerstvého (neoprac. dřeva), vývoj larev až 3 roky při výletu mohou poškodit i další vrstvy (koberce, tapety..) kruhové výletové otvory napadení se ve stavbě neopakuje 5-7 mm Mravenci mravenec dřevokaz (Camponotus ligniperdus) budují ve dřevě hnízda, méně se jím živí napadají většinou stavby v blízkosti lesa často se usazují ve dřevě, které již dříve napadl tesařík či červotoč Termiti Isoptera světlé zbarvení, světloplachost tropy a subtropy (v Evropě v jižních zemích) rozkládají i celulózu (symbiotické bakterie nebo bičíkovci žijící ve střevě + termitofilní houby) ničí i necelulózní materiály (plasty, měkké kovy, stavební tmely i méně kvalitní beton) působí obrovské škody (v teplých oblastech USA za jeden rok škody cca 1 mld. USD) 1 kolonie = 0,5 mil jedinců 5 tun dřeva/rok 12

Termiti Moli tepelné izolace z ovčí vlny Ptáci Holub domácí trus + déšť silně kyselý substrát vyzobávání kamínků z omítek a malt (grit - rozmělňování potravy v žaludku) přenos nemocí, v hnízdech a trusu paraziti, roztoči dokonalá rozpoznávací schopnost nalezení nik či skulin ve fasádě Ptáci strakapoud, datel vyklovávání fasád, zateplených polystyrenem jiřičky, rorýsi 13

Hlodavci Poškození hlodavci potkan, krysa, myš kanalizace, stoky, stáje vyhrabávání nor (beton, zdivo, dřevo, plasty, azbestocement) okusování elektroinstalace kuna poškození TI a podhledů močí a fekáliemi hluk, vytváření zásob mýval 14