Buněč ěčné dělení
BUNĚČ ĚČNÝ CYKLUS
ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU cykliny a na cyklinech závislé proteinkinázy (Cyclin-Dependent Protein Kinases; Cdk-proteinkinázy) - proteiny, které jsou součástí řídícího systému buněčného cyklu 8 cyklinů (A, B, C, D, E, F, G a H) - v jednotlivých fázích buněčného cyklu jsou přítomny určité typy cyklinů 7 typů Cdk-proteinkináz - Cdk proteiny vykazují odlišné funkce v závislosti na fázích buněčného cyklu fosforylují seriny a threoniny cílových proteinů účinnost Cdk-proteinkináz závisí na vytvoření komlexu s cykliny, dále na vazbě s PCNA (Proliferating Cell Nuclear Antigen) inhibovány jsou působením inhibitorů proteinkináz
ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU - gen RB1 tumor-supresorový gen Rb1 - aktivní téměř ve všech somatických buňkách, v průběhu buněčného cyklu se pouze střídá fosforylace a defosforylace Rb proteinu Rb protein (prb) - jaderný transkripční faktor, regulace buněčného cyklu, diferenciace, indukce apoptózy inhibiční usměrňování přechodu z G 1 do S fáze nefosforylovaný prb je aktivní - váže se s multifunkčními transkripčními faktory rodiny E2F - inhibuje jejich činnost komplex prb-e2f potlačuje transkripci genů - například cyklin D a E neaktivní fosforylovaná forma Rb proteinu vede k uvolnění prb z vazby s faktory E2F fosforylace proteinu Rb (inaktivace) je vyvolána cyklin-dependentními kinázami po vzniku komplexu Cdk-cyklin interakce Cdk - cyklin je vyvolána vazbou růstových faktorů k receptorům
ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU tumor-supresorový gen TP53 - pozastavení buněčného cyklu v kontrolním bodě G 1 indukce apoptózy - reakce na poškození DNA a různé typy stresu (hypoxie, nedostatek růstových faktorů atp.) - zvýšená exprese a zvýšení stability (prodloužení poločasu degradace) proteinu p53 protein p53, jaderný fosfoprotein - transkripční faktor pro několik cílových genů se zásadním významem pro regulaci buněčného cyklu (CIP1/WAF1), reparaci poškození genetického materiálu (GADD 45 - Growth Arrest and DNA Damage), navození apoptózy (BAX ) CIP1/WAF1 - protein 21 (p21), váže se k cyklin-dependentním proteinkinázám a inhibuje jejich aktivitu jak v G 1 tak G 2 kontrolním bodě p21 může tlumit replikaci zpomalením postupu replikační vidlice, inhibuje katalitickou aktivitu PCNA-dependentní-DNAplolymerázy-delta GADD 45 - protein Gadd 45 podněcuje excizní reparaci přímo a nebo v kooperaci s PCNA Gen BAX (proapoptotickýčlen rodiny Bcl-2) - navození apoptózy
ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU
ŘÍZENÍ BUNĚČ ĚČNÉHO CYKLU
Interfáze probíhá metabolismus a tvorba proteinů specifická pro daný typ buňky replikace DNA reparace chyb v genomu
Struktura chromosomu chromatin, euchromatin, heterochromatin kondenzace, dekondenzace centromera, telomera, chromatida
Mitóza dělení somatických buněk (2n) dvě buňky dceřiné (2n) shodná genetická výbava s mateřskou buňkou fáze: profáze metafáze anafáze telofáze cytokineze Mitóza zajišťuje genetickou identitu dceřiných buněk
Profáze kondenzace chromosomů stále patrné jako dlouhé tenké struktury tvorba mitotického vřeténka mikrotubuly + proteiny iniciace rozpadu jadérka a jaderného obalu kinetochor -část chromosomálních centromer se uchytí k mikrotubulům mitotického vřeténka centrioly se pohybují směrem k pólům buňky
Metafáze maximální kondenzace chromosomů jsou seřazené v ekvatoriální rovině v této fázi se chromosomy nejčastěji vyšetřují
Anafáze chromatidy každého chromosomu se rozcházejí k opačným pólům buňky - chromosomy dceřinných buněk k opačným pólům buňky táhne chromatidy achromatické vřeténko
Telofáze a cytokineze Telofáze opětná dekondenzace chromosomů začíná se tvořit jaderný obal ohraničující chromosomy Cytokineze začíná ve chvíli, kdy chromosomy doputují k pólu tímto procesem se oddělí cytoplazmy dceřiných buněk sesterské chromatidy se dosyntetizují až v S-fázi
Meióza Vznik gamet (n - haploidní) redukce počtu chromosomů z 2n (diploidní) dvě fáze: meióza I a meióza II období mezi meiózou I a meiózou II se nazývá interkineze meióza I heterotypické dělení (odlišné od klasické mitózy): profáze leptoten zygoten pachyten (crossing-over) diploten diakineze metafáze anafáze k pólům buňky se rozcházejí chromosomy jednotlivých párů telofáze meióza II homeotypické dělení (analogie mitózy)
Meióza
Meióza I profáze I obecně: začíná se tvořit dělící vřeténko, postupně se začíná rozpadat jaderná membrána a nucleolus, jednotlivé fáze průběhu profáze I: leptoten chromosomy začínají kondenzovat zygoten začínají se párovat homologní chromosomy, vytváří se synaptonemální komplex důležitý pro crossing-over pachyten chromosomy jsou již značně kondenzované a v mikroskopu patrné jako tetrády (4 chromatidy v bivalentu), odehrává se crossingover důležitý krok pro genetickou variabilitu populace diploten zaniká synaptonemální komplex, bivalenty se začínají rozcházet, chiasmata (místa překřížení) drží chromatidy u sebe diakineze maximální kondenzace
Meióza Profáze I
Meióza I metafáze I mizí jaderná membrána, homologní chromosomy tvoří chromosomální tetrády a ty se řadí v ekvatoriální rovině
Meióza I anafáze I probíhá disjunkce chromosomy se rozcházejí k opačným pólům buňky vždy jeden z páru tím se redukuje počet chromosomů rozchod chromosomů k opačným pólům je náhodný, náhodná kombinace chromosomů maternálního a paternálního původu nondisjunkce proces, kdy dochází k chybám v rozchodu chromosomů nebo chromatid meióza I nesprávný rozchod homologních chomosomů meióza II nesprávný rozchod chromatid může mít za následek například trisomii 21 chromozomu - podstata Downova syndromu (47,XX,+21 nebo 47,XY.+21) další syndromy: Turnerův sy 45, X0 Klinefelterův sy 47, XXY Patauův sy 47, XX/Y, +13 Edwardsův sy 47, XX/Y, +18 a další
Meióza telofáze I a cytokineze Telofáze I 2 haploidní sady chromosomů se seskupují u opačných pólů buňky Cytokineze buňka se rozdělí i s cytoplazmou vznikly 2 haploidní buňky a nastává krátká meiotická interfáze při vzniku vajíček a spermií je rozdíl v distribuci cytoplazmy do gamet
Meióza II homeotypické dělení stejné fáze jako v mitóze, ale dělí se haploidní buňka
Důsledky meiózy redukce počtu chromosomů v gametách náhodná segregace chromosomů / alel (nové kombinace maternální a paternální genetické výbavy) crossing-over, nové kombinace alel na homologních chromosomech
Gametogeneze tvorba pohlavních buněk z primordiálních zárodečných buněk jsou haploidní oproti somatickým
Spermatogeneze v semenných kanálcích testes od počátku pohlavní dospělosti spermatogonie 2n primární spermatocyt 2n sekundární spermatocyt 1n spermatida 1n spermie 1n přibližně 64 dní v jednom ejakulátu přibližně 200 milionů spermií
Spermatogeneze
Oogeneze na rozdíl od spermatogeneze probíhá převážně již v prenatální době oogonie 2n primární oocyt 2n sekundární oocyt 1n + 1 polární tělísko vajíčko + 1 polární tělísko při narození jsou primární oocyty ve stadiu profáze I (dictyoten) a tak setrvávají až do pohlavní dospělosti primární oocyt tak pokračuje v meióze I a rozdělí se na sekundární oocyt (1n) s většinou cytoplazmy a organelami a na polární tělísko meioza II je dokončena pouze v případě oplodnění
Oogeneze