Preparation of semiconductor nanomaterials 2014/2015



Podobné dokumenty
E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2015, čtvrtek 15:50 (4 hod.): 1.10., 8.10.,

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

E. Hulicius: 12NT (Polovodičové) nanotechnologie, FJFI, Cukrovarnická 10, zasedačka v budově A, 2014, pondělí 15:30/45 18:50 (4 hod.): 22.9., 29.9.

Litosil - application

TechoLED H A N D B O O K

The Over-Head Cam (OHC) Valve Train Computer Model

Preparation of semiconductor nanomaterials

Czech Republic. EDUCAnet. Střední odborná škola Pardubice, s.r.o.

Obsah Contents. Předmluva / Preface

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Compression of a Dictionary

CZ.1.07/2.3.00/

Preparation of semiconductor nanomaterials

Projekt SPOLEČNÉ VZDĚLÁVÁNÍ PRO SPOLEČNOU BUDOUCNOST. Současná kosmonautika a kosmické technologie 2014

EXACT DS OFFICE. The best lens for office work

Kapitoly z nanoelektroniky Nanoelectronic Chapters (koordinuje prof. E. Hulicius, FZÚ AV ČR, v.v.i.)

Nanocon 1, Rožnov, 2009

Melting the ash from biomass

Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos

MTP-7-optické materiály. Optické vlastnosti materiálů

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

PC/104, PC/104-Plus. 196 ept GmbH I Tel. +49 (0) / I Fax +49 (0) / I I

Enabling Intelligent Buildings via Smart Sensor Network & Smart Lighting

SGM. Smart Grid Management THE FUTURE FOR ENERGY-EFFICIENT SMART GRIDS

GUIDELINES FOR CONNECTION TO FTP SERVER TO TRANSFER PRINTING DATA

Dynamic Development of Vocabulary Richness of Text. Miroslav Kubát & Radek Čech University of Ostrava Czech Republic

DC circuits with a single source

By David Cameron VE7LTD

Introduction to MS Dynamics NAV

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

VY_32_INOVACE_06_Předpřítomný čas_03. Škola: Základní škola Slušovice, okres Zlín, příspěvková organizace

Characterization of soil organic carbon and its fraction labile carbon in ecosystems Ľ. Pospíšilová, V. Petrášová, J. Foukalová, E.

WORKSHEET 1: LINEAR EQUATION 1

ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION

Just write down your most recent and important education. Remember that sometimes less is more some people may be considered overqualified.

T E S T R E P O R T No. 18/440/P124

USING VIDEO IN PRE-SET AND IN-SET TEACHER TRAINING

Biosensors and Medical Devices Development at VSB Technical University of Ostrava


Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

LED STANDARD 12V GU4, GU5.3, G53

where NANOSPIDERTM was born cxi.tul.cz

DATA SHEET. BC516 PNP Darlington transistor. technický list DISCRETE SEMICONDUCTORS Apr 23. Product specification Supersedes data of 1997 Apr 16

Seminář projektu Rozvoj řešitelských týmů projektů VaV na Technické univerzitě v Liberci Registrační číslo projektu: CZ.1.07/2.3.00/30.

Comparation of mobile

Středoškolská odborná činnost 2005/2006. Kvantové tečky

Energy vstupuje na trh veterinárních produktů Energy enters the market of veterinary products

VYSOKÁ ŠKOLA HOTELOVÁ V PRAZE 8, SPOL. S R. O.

SPECIFICATION FOR ALDER LED

Seznam publikací, Ing. Josef Půta, Ph.D.

Friction drives have constant or variable drives (it means variators). Friction drives are used for the transfer of smaller outputs.

Grafen. Nobelova cena za fyziku Ludvík Smrčka Fyzikální ústav AVČR v. v. i. Praha

SYSTEM OF ROAD SURFACE MEASUREMENT AND EVALUATION IN THE CZECH REPUBLIC, NEW TRENDS IN THIS FIELD

Laboratoř na čipu. Lab-on-a-chip. Pavel Matějka

Invitation to ON-ARRIVAL TRAINING COURSE for EVS volunteers

SEZNAM PŘÍLOH 11. SEZNAM PŘÍLOH

Číslo projektu: CZ.1.07/1.5.00/ Název projektu: Inovace a individualizace výuky

Table of contents. 5 Africa poverty reduction. Africa's growth. Africa - productivity. Africa - resources. Africa development

Zubní pasty v pozměněném složení a novém designu

Martin Vrbka 0/14. Institute of Machine and Industrial Design Faculty of Mechanical Engineering Brno University of Technology

Possibilities of removing H 2. S from gas from gasification of biomass

CHAIN TRANSMISSIONS AND WHEELS

TECHNIKY VYTVÁŘENÍ NANOSTRUKTUROVANÝCH POVRCHŮ ELEKTROD U MIKROSOUČÁSTEK TECHNIQUES TO CREATE NANOSTRUCTURED SURFACES OF ELECTRODES FOR MICRO DEVICES

UPM3 Hybrid Návod na ovládání Čerpadlo UPM3 Hybrid 2-5 Instruction Manual UPM3 Hybrid Circulation Pump 6-9

ARTEMIS & ENIAC výzvy kadlec@utia.cas.cz Tel

České vysoké učení technické v Praze. Fakulta jaderná a fyzikálně inženýrská. Nanotechnologie a polovodičové kvantové tečky

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

SEZNAM PŘÍLOH. Příloha 1 Dotazník Tartu, Estonsko (anglická verze) Příloha 2 Dotazník Praha, ČR (česká verze)... 91

Eurogranites 2015 Variscan Plutons of the Bohemian Massif

Ing. Pavel Staša, doc. Dr. Ing. Vladimír Kebo, Vladimír Strakoš V 2

LIGHT SOURCE FOR PUPILS EXPERIMENTS

Izolační manipulační tyče typ IMT IMT Type Insulated Handling Rod

TELEGYNEKOLOGIE TELEGYNECOLOGY

Radiova meteoricka detekc nı stanice RMDS01A

EM, aneb TEM nebo SEM?

Topic 2. Building Materials and Their Properties Grammar: Passive voice

Škola: Střední škola obchodní, České Budějovice, Husova 9. Inovace a zkvalitnění výuky prostřednictvím ICT

STUDY EDITS FOR BETTER TRANSPORT IN THE CENTRE OF NÁCHOD

UŽIVATELSKÁ PŘÍRUČKA

MEDIA RESEARCH RATINGS

PART 2 - SPECIAL WHOLESALE OFFER OF PLANTS SPRING 2016 NEWS MAY 2016 SUCCULENT SPECIAL WHOLESALE ASSORTMENT

Digitální učební materiál

Proč by se průmysl měl zabývat výzkumem nanomateriálů

Semiconductor (solid state) detectors

Configuration vs. Conformation. Configuration: Covalent bonds must be broken. Two kinds of isomers to consider

ZAŘÍZENÍ MAGNETICKÉHO CHLAZENÍ NA ČVUT FAKULTĚ STROJNÍ

technický list TRANSIL TM 1.5KE6V8A/440A 1.5KE6V8CA/440CA str 1

TESTOVÁNÍ VLIVU INDIKAČNÍCH KAPALIN NA KŘEHKOLOMOVÉ VLASTNOSTI SKLOVITÝCH SMALTOVÝCH POVLAKŮ

II/2 Inovace a zkvalitnění výuky cizích jazyků na středních školách

ALFA upgrade. Vít Vorobel

VŠEOBECNÁ TÉMATA PRO SOU Mgr. Dita Hejlová

MEDIA RESEARCH RATINGS

ActiPack rozšířil výrobu i své prostory EMBAX Od ledna 2015 jsme vyrobili přes lahviček či kelímků. Děkujeme za Vaši důvěru!

Problematika disertační práce a současný stav řešení

TECHSTA 2000 ČVUT PRAHA FAKULTA STAVEBNÍ KATEDRA TECHNOLOGIE STAVEB

Uživatelská příručka. Xperia P TV Dock DK21

BETON V ENVIRONMENTÁLNÍCH SOUVISLOSTECH

Transkript:

Preparation of semiconductor nanomaterials 2014/2015 (prof. E. Hulicius, FZÚ AV ČR, v.v.i.,)

11. Semiconductor lasers (LD). Lesson about fluent and step parameter LDs (and LEDs) improving due to introduction of nanostructures (Quantum Wells and Dots QW, QD). Inside of the LD and LED structures there are used very interesting nanostructures nowadays. Their more detail description can help students to understand principles of other devices. 12. Light emitting diodes (LED). The same as about LDs.

Applications according the spectral regions We can divide the spectrum fields according applications and materials: The main fields - visible and near infrared Here are known and mature materials and widely used applications under producer the applied research. Here is a field for important and interesting improvements, but I do not expect crucial break through. Adjacent spectral fields ultraviolet (nitrides, ZnO, diamond,...? many interesting applications) later) mid-infrared (will be described in detail

Definition of the spectral fields of LED and LD emission Below used function wavelenght, energy E, frequency f a wave number relations: m 1.24/E (ev), f (THz) = 300 / m (cm -1 ) = 10 000/ m Wavelength ( m) Energy (ev) Frequency (THz) Wavenumber (cm -1 ) Visible Near Infrared (NIR) Mid Infrared (MIR) Far Infrared (FIR or THz) mm Wave 0.4-0.7 0.7-2.0 2.0-20 20-1000 >1000 1.7-3.1 0.6-1.7 0.06-0.6 0.001-0.06 <0.001 400-750 150-400 15-150 0.3-15 <0.3 14000-25000 5000-14000 500-5000 10-500 <10

Applications according the spectral regions We can divide the spectrum fields according applications and materials: The main fields - visible and near infrared Here are known and mature materials and widely used applications under producer the applied research. Here is a field for important and interesting improvements, but I do not expect crucial break through. Adjacent spectral fields ultraviolet (nitrides, ZnO, diamond,...? many interesting applications) mid-infrared (will be described in detail later)

Examples of optoelectronic applications in the visible region

Examples of optoelectronic applications in the visible region

Examples of optoelectronic applications in the visible region

Industrial MOVPE technology

Industrial MOVPE technology

Applications according the spectral regions We can divide the spectrum fields according applications and materials: The main fields - visible and near infrared Here are known and mature materials and widely used applications under producer the applied research. Here is a field for important and interesting improvements, but I do not expect crucial break through. Adjucent spectral fields ultraviolet (nitrides, ZnO, diamond,...? many interesting applications) mid-infrared (will be described in detail later)

Mid-infrared region of the electromagnetic radiation is usually defined from 2do20μm. It is important from application point of view: Detection and exact and sensitive concentration measurements of different materials (mainly atmospheric pollutants and industrial gases by laser absorption spectroscopy; In medicine - diagnostic composition and impurities in breath, And therapy activation of drugs by MIR radiation, which can penetrate into a body; Free space" communication (atmospheric window); Conversion of radiation to electric energy (thermophotovoltaics); Military atmospheric window for laser weapons; detectors; sensitive thermovision; detection of explosives poisons e.g.; MIR gates for advanced object protection. ------------------- The firs applications were developed for fluoride fibre communication in MIR region with much lower absolute signal attenuation to compare to quartz fibres (fibres Dianov in FIAN; lasers - FIAN, GIREDMET, )

Forbidden gap dependence on lattice constant for some semiconductor materials

In 1-x Ga x As y P 1-y Equation for parameters in general of quaternary semiconductors ( = linear combination of parameters of binar compounds): p(x,y) = (1-x)(1-y)p InP + (1-x)yp InAs + xyp GaAs + x(1-y)p GaP a(x,y) = 5.8688-0.4176x + 0.1895y - 0.0126xy Relation for forbidden gap of the quaternary semiconductors: E g (x,y) = 1.35 + 0.672x - 1.091y + 0.758x 2 + 0.101y 2 + 0.111xy - -0.58x 2 y - 0.159xy 2 + 0.268x 2 y 2

. Dependence of energy of forbidden gap on compound composition

Some of older IR materials:

MIR region is very interesting from the material engineering and nanotechnoology. There are used quantum effect for new type of devices: "W" structures of heterojunctions of type II. elimination of the undesirable Auger recombination; Quantum cascade lasers evidently of the current most sophisticated semiconductor devices; wavelength is controlling by geometry and architecture of structure. negative luminescence remarkable effect with interesting applications;

LED Light Emitting Diode

1907(!) The first electroluminescent diode - SiC, H.J. Round (c) (Rediscovered by Losevem at 1928). 1936 - Destriau - LEDs from ZnS. 1952 - Welker introduction of A III B V (GaAs). 1962 - Lasers (RCA, GE, IBM, MIT). 60-80-th- Expansion of epitaxial technologies. 70-90-th Implementation of heterostructures and quantum wells. 1977 Solving of the laser degradation and diodes (dislocation free substrates).

Recombination and biases

Electroluminescent materials

Heterojunctions other point of view

(a) well (trap) for electrons and holes (not yet quantum) (b) quantum well with electron levels

LED structure with triple quantum well and electron blocking layer

Emmisson spektrum of LED?

The main problem of LEDs is a light exit!!

How to solve it??

Heterostructure has influence also for LEDs not only form the boundary (confine) of its active layer and...?

?... It is transparent, but

... It is necessary to do something with shape -

And external efficiency will be improved.?

And what about contacts...

... Also its geometry is important.

Sometimes there are troubles with absorbed substrate.?

Antireflex covering improve efficiency and also lifetime.

Mirrors, which are a part of the resonator can be also created in the structure.

But we have to be careful about lifetime and internal strain.

Colours have fundamental importance for applications. It can be solved not only by materials (composition of ternary and quaternary compounds), but in the case of nanostructures also by its size and geometry. Visible and Near Infrared regions are mainly commercional task now. Mid and Far IR or ultraviolet regions are subject of intensive research.

Improving of LEDs in time:

Blue LEDs why so late? The road to white.

White diodes.

Two-colour diodes (in one chip!)

Also LEDs can work with resonator.

What is a cost of one lumen?

Spectral sensitivity of eye and LEDs properties.

LD Laser Diode and Semiconductor lasers it is nearly the same, but not quite (there are also semiconductor lasers without P-N junction pumped by light).

Laser jako prvek se zpětnou vazbou. Pásová struktura jednoduchý p-n přechod, injekce elektronů. Laserový čip hetrorostruktura, vlnovod, rezonátor. Vlnovod.

Heterogenous structures (heterostructures) - clasical" Not only heterosturctures with P-N junctions, there are use homo-heterostructures with Eg junctions or fluent changes of forbidden gaps, refraction index with strong improvement of device parameters. Figures from Scientific American at 1971!! Obr Junctions type I., II. (a III.). Obr Strained junctions. Obr

Pásová struktura a index lomu. Proužková geometrie a vlnovod. Tvar výstupního optického svazku.

Types of the laser resonators:

Stripe geometry Confinement by: -Contact. - Contact and etching. -Cross P-N junction. - contact + etching + P-N junction + the second epitaxy,.

Spontaneous and stimulated emission Gain and loss in dependence on photon energy for different electron concentrations in the active layer. Lasing starts at long wave site of spectrum (due to absorption).

Heterojunctions can create region where inversion of carrier population can be created more easy.

Due to heterojunctions can be created a waveguide:

Watt/Amper (exactly Watt/Watt) characteristic From it we can establish threshold, power, pumping energy, efficiency, differential efficiency and quantum differential efficiency.

Density of threshold current Jth State equation dn/dt = J/ed G(n)S n/τ n, e = concentration electrons, d = thickness of the active layer, G = gain, S = optical density, τ = lifetime of electrons, τ = lifetime of photons can be described under threshold: and in equilibrium (d/dt = 0) is dn/dt = J/ed n/τ n = J τ/ed When electron concentration n increase to threshold concentration nth it is possible to write threshold current : Jth = ednth /τ Threshold concentration of the electrons nth it is possible to write: nth = 1/Γgτ + n0 Γ = is optical bonding factor, g = coefficient of differential gain. Than it is: Jth = ednth /τ = ed/τ (1/Γgτ + n0)

Thickness of active region define region where inversion of carrier population can be created more easy. It defined also thickness of waveguide. x = amount of Al in AlGaAs barrier

Output from waveguide Fabry-Perrot resonator: R = reflectivity; T = transmitivity P = optical power; L = length of resonator.

Temperature dependency of threshold current Empirically found temperature dependency of threshold current The hotter the temperature the later the lasing (and usually worse efficiency). Dependence on material is visible. Jth = Jth0exp(Tj/T0) Tj = temperature of active region. T0 = characteristic temperature, which show dependence of Jth on temperature. T0 can be different foe different temperature regions (Eg = f(t)). Tc = break point.

Cooperation with FEL ČVUT a FZÚ AV ČR: Optical Power [a.u.] 733 7 InAs layers S L ~7.9 nm 25 C 30 C 40 C 50 C 60 C 70 C 80 C 90 C 100 C Current Threshold Density [A/cm 2 ] 1000 100 5 Ls T 0 ~ 90 K T 0 ~ 160 K 0,5 0,4 0,3 0,2 0,1 Differential Quantum Efficiency 0,0 0,2 0,4 0,6 0,8 1,0 Current density [ka cm -2 ] The temperature variations of the dependence of laser optical output power on excitation current density for lascer with 7 InAs layers and thickness of S L ~7.9 nm. 10 0,0 0 50 100 150 200 250 300 350 Temperature [K] Temperature dependence of threshold current density and differential quantum efficiency for laser with 5 InAs layers.

External resonator (a) noticeable improves monochromaticity (b), but device lost the advantage of miniaturity, compactness (it is better to solve it inside the structure) (c). (c)

Solving of space coherence tasks in the case of miniature semiconductor lasers (Far-field spectra). (It is general trouble of the small cavities.)

Strain in the structures can influence a threshold current.

Resume LED relatively cheap, efficient, notdegrading light sources Further increasing of efficiency (to 90%) and power (up 10 W per chip). Cheap white colour, (tuneability of the colour temperature from blue to yellow); fundamental energy savings. Wavelength expansion to UV and MIR. Multicolour chips for white colour. LD versus classical lasers = analogy vacuum electronics versus transistors? Wavelength expansion to UV and MIR (we are engaged in it),... Further increasing of efficiency (more than 90%) and power (over 20W per chip). Multicolour chip; parallel optical communication. Controlling of colour; laser spectroscopy. One photon sources for quantum communications,... ; Lifetime, cost,

Thank you for your attention

Appendix Our results in this field

Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

GaAs: buffer 230 nm AlGaAs-n typ 570 nm AlGaAs 400 nm GaAs 150 nm AlGaAs 320 nm AlGaAs-p typ 570 nm GaAs 700 nm GaAs:Te substrate SPSLS 12x (InAs / GaAs)

Srovnání laserů s ternární a supermřížkovou (MQW) aktivní oblastí Ternární InGaAs QW laser InAs/GaAs laser se supermřížkou Optical Power [a.u.] 200 150 100 50 0 Intensity 1.0 0.8 0.6 0.4 0.2 0.0 EL I ex =2 A I ex =2.25 A I ex =2.5 A I ex =3 A T=300 K 1.1 1.2 1.3 1.4 Emission Energy [ev] T 0 = 109 K laser A 25 o C 40 o C 50 o C 60 o C 70 o C 80 o C 85 o C Optical Power [ W] 120 100 80 60 40 20 0 Intensity 1.0 0.8 0.6 0.4 0.2 0.0 PL EL I ex =0.46A T=300K 1.1 1.2 1.3 1.4 Emission Energy [ev] T 0 = 126 K laser B 25 C 35 C 45 C 55 C 65 C 75 C 85 C 0 1000 2000 3000 4000 5000 6000 Current Density [A/cm 2 ] 0 100 200 300 400 500 600 Current Density [A/cm 2 ]

Vlastnosti laserů s MQW v aktivní oblasti

Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

Podobně jako u LED je viditelná a blízká IČ oblast převážně průmyslová záležitost. Příprava LD pro střední a vzdálenou IČ i ultrafialovou oblast je velkou výzvou pro badatele. Často je také důležité nahradit stávající typy LD novými s výrazně lepšími parametry. Kvantové jámy (QW) Heteropřechody druhého typu Struktury s napnutými vrstvami Kvantové tečky (QD)

Výhody KT Hustota stavů ve tvaru delta funkcí snížení nezářivé rekombinace (Auger a IVBA) Nižší prahová proudová hustota v laserech s KT Lepší teplotní stabilita prahového proudu Snížení nezářivé rekombinace na zrcadlech KT umožňují dosáhnout emitované vlnové délky 1.3 m v systémech InAs/GaAs

Proč jsou KT tak intenzivně studovány? KJ KT Hustota stavů v objemovém polovodiči, kvantové jámě a kvantové tečce (E) 3D 2D 0D E 1 E 2 E 3 E 4 E

Stranski-Krastanowův mód růstu Vysoce napnuté struktury: rozdíl v mřížkových konstantách kolem 7% InAs GaAs

Charakterizace a diagnostika epitaxního růstu a nanostruktur Mikroskopie meziatomárních sil AFM (Atomic Force Microscopy) Je vhodná i pro nevodivé vzorky. Nepožadujeme-li atomární rozlišení, je to relativně malá aparatura (ceny od 2 do 10 MKč) Rastrovací tunelová mikroskopie STM (Scanning Tunneling Microscopy) Je zapotřebí vzorky alespoň trochu vodivé. Dává atomární rozlišení, ceny podle vybavení od 0,5 do 20 MKč)

Zdroj: http://www.fzu.cz/texty/brana/atomy/spm1.php

TEM AFM 7 vrstev KT, oddělovací vrstvy 7.5 nm 3 vrstvy KT, oddělovací vrstvy 3.7 nm

3 QD TEM 7 QD 7 QW

Kvantové tečky

Technologie přípravy: MOVPE 7. GaAs krycí vrstva 6. GaAs oddělovací vrstva 5. Přerušení růstu 30 s 4. InAs napnutá vtstva (1.4 ML) 3. GaAs podklad. vrstva 500 o C 2. GaAs podklad. vrstva 650 o C 1. GaAs substrát GaAs vrstvy: Prekursory TMGa a AsH 3, celk. tlak 70 hpa, celk. průtok 8 l/min, teplota 650 o C a 500 o C, poměr V/III 150 a 43. InAs vrstvy: 50 ml/min H 2 /TMIn, poměr V/III 85, čas růstu 9 s, přerušení růstu 30 s.

KT překryté InGaAs Původní KT KT překrytá GaAs KT překrytá InGaAs

Dosažená vlnová délka FL InAs/InGaAs KT

FL InAs/GaAs KT překrytých InGaAs InGaAs 23% In 45000 I PL (arb.u.) 40000 35000 30000 25000 20000 15000 10000 5000 0-5000 0.80 0.85 0.90 0.95 1.00 1.05 1.10 1.15 E PL (ev) 1508B bez ternaru 1524B 13%In I*70 1527B 23%In 1526B 6%In I*35 InAs GaAs Základní stav: 0.86 ev 1.44 m 1. excitovaný stav: 0.93 ev 1.3 m

AFM picture of InAs/GaAs QDs

GaAs: buffer 230 nm AlGaAs-n typ 570 nm AlGaAs 400 nm GaAs 150 nm GaAs 150 nm AlGa As 320 nm AlGaAs-p typ 570 nm GaAs 700 nm GaAs:Te substrate SPSLS 12x (InAs / GaAs)

Our diagnostic methods: Nanocharacterisation - STM, AFM, TEM, Photo and electroluminescence, Magnetophotoluminescence, Transport, Photovoltaic absorption measurement, Photocurrent spectroscopy, were used as the characterisation methods for the studying of parameters and optimisation of growth.

Naše výsledky a výstupy

MOVPE laboratory co-operations in 2005 1) ČVUT Praha - FEL 2) VUT Brno - FStavební 3) Montpellier University, France 4) NanoPLUS, Germany 5) VŠCHT Praha - FCHI - ÚFCH 6) EMF Limited, UK 7) ÚFCH AVČR Praha 8) MU Brno - PřF - ÚFPF 9) EU SAV Bratislava Slovakia 10) Budapešť, Hungary 11) FTI A.F.Ioffe St. Petersburg Russia 12) MFF UK Praha 13) ÚRE AVČR Praha 14) Univ. Porto, Portugal 15) S-Y-S University, Kao-Shung, Taiwan Red = MidInfrared, (Partly) Blue - other cooperations (QD mainly)

Current results of the MOVPE laboratory, red = midinfra B Publications in the Refereed Scientific Journals in 2005/2006 (9 x z 16) [1] Pavel Hazdra, Jan Voves, Eduard Hulicius and Jiří Pangrác, Optical characterisation of MOVPE grown δ-inas layers, in GaAs, phys. stat. sol. (c) 2 (2005) 1319-1324 1) ČVUT Praha - FEL [2] Chobola Z., Juránková V., Vaněk J., Hulicius E., Šimeček T., Alibert C. Rouillard Y., Werner. R, Noise spectroscopy measurement of 2.3 µm CW GaSb based laser diodes, Elektronika 1 (2005), pp.70-73, Poland ISSN 0033-2089 2) VUT Brno - FStavební, 3) Montpellier University, France, 4) NanoPLUS, Germany [3] M. Fulem, K. Růžička, V. Růžička, T. Šimeček, E. Hulicius J. Pangrác, J. Becker, J. Koch, A. Salzmann, Vapour pressure of Di-tert-butylsilan, J. of Chemical and Engineering Data C 50 (2005) 1613-1615 5) VŠCHT Praha - FCHI - ÚFCH, 6) EMF Limited, UK [4] S. Civiš, V. Horká, T. Šimeček, E. Hulicius, J. Pangrác, J. Oswald, O. Petříček, Y. Rouillard, C. Alibert, and R. Werner, GaSb based lasers operating near 2.3 μm for high resolution absorption spectroscopy, Spectrochimica Acta Part A 61 (2005) 3066-3069 7) ÚFCH AVČR Praha, Montpellier University, France, NanoPLUS, Germany [5] M. Fulem, K. Růžička, V. Růžička, T. Šimeček, E. Hulicius, and J. Pangrác, Vapour pressure measurement of metal organic precursors used for MOVPE, in press in J. Chem. Therm. (2005) VŠCHT Praha - FCHI - ÚFCH, [6] K. Kuldova; V. Krapek, A. Hospodkova, O. Bonaventurova-Zrzavecka, J. Oswald, E. Hulicius, J. Humlicek, Photoluminescence and magnetophotoluminescence of circular and elliptical InAs/GaAs quantum dots, in print, Mat. Sci. Eng. C, (2005) 8) MU Brno - PřF - ÚFPF [7] P. Hazdra, J. Voves, Hulicius, J. Pangrác, and Z. Šourek, Ultrathin InAs and Modulated InGaAs Layers in GaAs Grown by MOVPE Studied by Photomodulated Reflectance Spectroscopy, in print Appl. Surf. Science (2005) ČVUT Praha - FEL [8] František Dubecký, Eduard Hulicius, Secondo Franchi, Andrea Perďochová-Šagátová, Bohumír Zaťko, Pavel Hubík, Enos Gombia, Pavel Boháček, Jirka Pangrác, and Vladimír Nečas, Performance study of radiation detectors based on semi-insulating GaAs with P+ homo- and heterojunction blocking electrode, in print in Nuclear Instruments and Methods (2005) 9) EU SAV Bratislava Slovakia, 10) Budapešť Hungary [9] S. Civiš, V. Horká, J. Cihelka, T. Šimeček, E. Hulicius, J. Oswald, J. Pangrác, A. Vicet, Y. Rouillard, A. Salhi, C. Alibert, R. Werner and J. Koeth, Room temperature diode laser spectroscopy of near 2.3 µm, Apl. Phys. B 81 (2005) 857-861 ÚFCH AVČR Praha, Montpellier University, France, NanoPLUS, Germany [10] J. Oswald, J. Pangrác, E. Hulicius, T. Šimeček, K. D. Moiseev, M.P. Mikhailova, and Yu.P. Yakovlev, Luminescence of type II broken gap P-Ga0.84In0.16As0.22Sb0.78/p-InAs heterostructures with high mobility electron channel at the interface, J. Appl. Phys. 98 (2005) 11) FTI A.F.Ioffe St. Petersburg Russia [11] K.D. Moiseev, A.P. Astakhova, G.G. Zebrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrác, K. Melichar, and T. Šimeček, Electroluminescence of AlSb/InAsSb/AlSb quantum well heterostructure grown by MOVPE, sent to Appl Phys Lett. (2005) FTI A.F.Ioffe St. Petersburg Russia [12] D. Kindl, P. Hubík, J. Krištofik, J.J. Mareš, E. Hulicius1, J. Pangrác, K. Melichar, Z. Výborný, and J. Toušková, Transport-controlling deep defects in MOVPE grown GaSb, sent to Semiconductor Science and Technology, (2006) 12) MFF UK Praha [13] A.Hospodková, K. Kuldová, E. Hulicius, J. Oswald, J. Pangrác, J. Zeman, V. Křápek, J. Humlíček, Luminescence and magnetophotoluminescence of vertically stacked InAs/GaAs quantum dot structures, sent to Phys Rev. B (2006) MU Brno - PřF - ÚFPF [14] K.D. Moiseev, A.P. Astakhova, G.G. Zebrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrác, K. Melichar, and T. Šimeček, Qauntum well InAsSbP/InAsSb/AlAsSb laser heterostructures grown by combined MOVPE technology, prepared for Appl Phys Lett. (2006) FTI A.F.Ioffe St. Petersburg Russia [15] V. Křápek, K. Kuldová, J. Humlíček, A.Hospodková, J. Oswald, J. Pangrác, K. Melichar, E. Hulicius, Shape of InAs/GaAs quantum dot structures, AFM, prepared for APL (2006) MU Brno - PřF - ÚFPF [16] E. Samochin, H.H. Huang, J. Toušková, E. Hulicius, L-W. Tu, J. Pangrác, K. Jurek, I. Drbohlav, Model of transport in heavily strained InAs/GaAs quantum dot structures, prepared for Mat. Res and Eng. (2006) 12) MFF UK Praha, 15) S-Y-S University, Kao-Shung, Taiwan

Current results - 2005 D Papers at the International Conferences [67] P.Hazdra, J.Voves, E.Hulicius, J.Pangrác and Z.Šourek, Ultrathin InAs and modulated InGaAs layers in GaAs grown by MOVPE studied by photomodulated reflectance spectroscopy, Proc. of MRS meeting, Strasbourg 31.5. -3.6. 2005, p. P-18/32 [68] M.Fulem, K.Růžička, V.Růžička, T.Šimeček, E.Hulicius, J.Pangrác, Naphthalene as a Reference Material for Vapour Pressure Measurement, Thermodynamics 2005 6th-8th April 2005, Sesimbra, Portugal, Proc P. 12 [69] M.Fulem, K.Růžička, V.Růžička, T.Šimeček, E.Hulicius, J.Pangrác, Reliable extrapolation of vapour pressure data using simultaneous multi-property correlation for TMGa and TMAl, EW MOVPE XI, Lausane, June 6-8th 2005, Proc. p. 219-221 [70] A. Hospodková, V. Křápek, O. Bonaventurova, K. Kuldová, J. Pangrác, E. Hulicius, J. Oswald, T. Šimeček, Modification InAs/GaAs quantum dot shape in vertically correlated structures, EW MOVPE XI, Lausane, June 6-8th 2005, Proc. p. 87-89 [71] L. Dózsa, P. Hubik, A.L. Tóth, A. Pongrácz, E. Hulicius, A.A. Koós, Nanostrucure in In0.2Ga0.8As/GaAs quantum well structure, Hungarian Nanotechnolgy Symposium 2005, HUNS 2005, 21-22 March, 2005., Budapest, Hungary, ISBN 9637371176, Proc p. 52 [72] K.D. Moiseev, E.V. Ivanov, G.G. Zegrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, T. Simecek, Room-temperature electroluminiscence of InAsSbP/InAsSb/AlAsSb qauntum wells grown by MOVPE, presented at NGS-12, 2005, Toulouse, France [73] J. Cihelka, V. Horká, S. Civiš, T. Šimeček, E. Hulicius, J. Oswald, J. Pangrác, A. Vicet, Y. Rouillard, A. Salhi, C. Alibert, R. Werner, and J. Koeth, Laser diode photoacoustic spectroscopy near 2.3 μm, MIOMD VII conference, Lancaster 2005, Proc. p. 62 [74] K. Moiseev, K.D. Moiseev, E.V. Ivanov, G.G. Zegrya, M.P. Mikhailova, Yu.P. Yakovlev, E. Hulicius, A. Hospodkova, J. Pangrac, K. Melichar, T. Simecek, Electroluminescence AiSb/InAsSb/AlSb quantum well heterostructure grown by MOVPE, MIOMD VII conference, Lancaster 2005, Proc. p. 51 [75] L. Dózsa, P. Hubik, A.L. Tóth, A. Pongrácz, E. Hulicius, A.A. Koós, J. Oswald, NOrange-peel effect in InGaAs/GaAs anostrucure in In0.2Ga0.8As/GaAs quantum well structure, Hungarian Nanotechnolgy Symposium 2005, HUNS 2005, 21-22 March, 2005., Budapest, Hungary, ISBN 9637371192 ISBN 9637371184, Proc. p. 127-130 [76] F. Dubecky, [77] E. Hulicius, A. Hospodková, K. Kuldová, V. Křápek, J. Humlíček, J. Pangrác, J. Oswald, K. Melichar, and T. Šimeček, Characterization of MOVPE prepared InAs/GaAs quantum dots, accepted for Mezinárodní konference "Nanovědy, nanotechnologie a nanomateriály", NANO 05, 8. - 10. 11. 2005, Brno, VUT, Fak. stroj. inž., Abstr. booklet p. 29 [78] K.Kuldová, J. Oswald, E. Hulicius, A. Hospodková, J. Pangrác, and K. Melichar, InAs/GaAs Quantum Dots with Long Wavelength Emission, accepted for Mezinárodní konference "Nanovědy, nanotechnologie a nanomateriály", NANO 05, 8. - 10. 11. 2005, Brno, VUT, Fak. stroj. inž., Abstr. booklet p. 104 ==================================================== E Papers at the National Conferences [62] P.Hazdra, J,Voves, E.Hulicius, J.Pangrác, Ultrathin MOVPE Grown InAs Layers in GaAs Characterized by Photomodulated Reflectance Spectroscopy, Workshop 2005, Prague February 7-11, 2005 [63] J. Pangrác, J. Walachová, J. Vaniš, E. Hulicius, PROSTOROVĚ ROZLIŠENÁ BALISTICKÁ ELEKTRONOVÁ EMISNÍ SPEKTROSKOPIE BEES NA JEDNOTLIVÝCH KVANTOVÝCH TEČKÁCH InAs/GaAs UZAVŘENÝCH V AlGaAs/GaAs HETEROSTRUKTUŘE, NANOTEAM Kick-off meeting Brno, 21.4. 2005

MOVPE projects 2005/2006 EC Gas laser analysis by infrared spectr. (GLADIS) Cost RTD IST-2001-35178 (2002-05) GAČR Kvantově rozměrné, napnuté polovodičové struktury připravené technologií MOVPE (garant postdoktorandského grantu - A Hospodková) 202/02/D069 (2002-2005) GAČR Kvantové tecky s dlouhovlnnou emisí (projekt J.Oswalda)-202/03/0413 (2003-05) GAAV Mechanismus zářivé rekombinace v subnanometrových InAs/GaAs laserových strukturách (spoluřešitel je FEL ČVUT) A1010318 (2003-2005) GAČR Měření tenze par organokovů (spoluřešitel prof. V. Růžičky)- 203/04/0484 (2004-06) EC Network of Excelence NoE - Photonic Integrated Components and Circuits (epix) - (koordinátor pracoviště přidruženého partnera č. 10) - (2004-2009) GAČR Emise z kvantových teček (účast na projektu J.Pangráce)- 202/05/... (2005-2007) GAČR Kvantové tečky - příprava, PL, teorie Oswald/Munzar/Hazdra- 202/06/... (2006-2008) GAČR Kvantové tečky příprava, tvar, teorie, Krapek/Hospodková - 202/06/... (2006-2007) EU STREP NEMIS 2006-9?? (Evaluace - 25.5 bodu, (23 práh), ale ) MŠMT Centrum CARDINAL 2006-10??

EU projekty, týkající se MID IR oblasti Control of Enviromental Pollution by Tunable Diode Laser Absorption Spectroscopy in the Spectral Range 2-4 µm ERB 3512 PL 940813 * (COP 813) (1994-1997) Actaris SAS, DE, Schlumberger Industries SA, FR, University of Montpellier, FR, Thales, FR, Nanoplus, DE, Gaz de France, FR,, Gas Natural, ES, Omnisens, CH Advanced Room Temperature Mid-infrared Antimony-based Lasers by MOVPE (ADMIRAL) ERB INCO COPERNICUS 20CT97*BRITE/EURAM III-BRPR-CT97-0466 (1997-2000) EPICHEM, Bramborough, UK, AIXTRON, Aachen, Germany, RWTH, Aachen, Germany, UM2 University of Montpellier, France Gas Laser Analysis by Infra-red Spectroscopy (GLADIS) IST-2001-35178 (2002-2005) UM2 University of Montpellier, France, Ioffe Physicotechnical Institute St. Petersburg, Russia, Fraunhofer Institute, Garmisch-Partenkirchen, Germany, Institute of Electron Technology, Warsaw, Poland, IBSG, St. Petersburg, Russia

Historicky první aplikačně zaměřené práce zdrojích v (blízké) MIR oblasti byly podníceny pracemi na fluoridových vláknech s ještě nižším absolutním útlumem než mají křemenná vlákna (Dianov FIAN). Ternární a kvaternární sloučeniny na bázi Sb (FIAN (GIREMET), později FTI, Bel Lab., Kobayashi, ) - vše LPE Ale, Jiné aplikace viz úvod. Naše první práce: (můj první kontakt antimonidy a MIR lasery byl v letech 1976/77, ale,..) V osmdesátých letech ve FTI Ioffe spolupráce již možná byla.

The NEMIS project aims at the development and realisation of compact and packaged vertical-cavity surface-emitting semiconductor laser diodes (VCSEL) for the 2-3.5 µm wavelength range and to demonstrate a pilot photonic sensing system for trace gas analysis using these new sources. The availability of electrically pumped VCSELs with their low-cost potential in this wavelength range that operate continuously at or at least near room-temperature and emit in a single transverse and longitudinal mode (i. e. single-frequency lasers) is considered a basic breakthrough for laser-based optical sensing applications. These devices are also modehop-free tuneable over a couple of nanometers via the laser current or the heatsink temperature. They are therefore ideal and unmatched sources for the spectroscopic analysis of gases and the detection of many environmentally important and/or toxic trace-gases, which is a market in the order of 10 million Euro today with an expected increase into several 100 million Euro with the availability of the new VCSELs

Optical Power [a.u.] 1400 1200 1000 800 600 400 200 25 C 50 C 0 0 10 20 30 40 50 Excitation Current [ma] 0-10 EL Intensity [db] -20-30 -40-50 -60-70 -80 T=25 C T=50 C T=70 C I ex =70 ma -90 2340 2360 2380 2400 2420 2440 2460 2480 Wavelength [nm]

Intensity (arb.u.) 1500-1500 0 T = 60 C, I = 100-120 ma 4334.5 4335.0 4335.5 1500 T = 60 C, I = 83-103 ma 0 4336.0 4336.5 4337.0 1500-1500 0 T = 52.7 C, I = 98-118 ma 4337.5 1500 T = 52.7 C, I = 79-99 ma 4338.0 4338.5 4339.0-1500 0 4339.0 4339.5 4340.0 4340.5 1500-1500 0 T = 46.4 C, I = 100-120 ma 4340.0 4340.5 4341.0 1500-1500 0 T = 44.1 C, I = 97-117 ma 4341.0 4341.5 4342.0 4342.5 1500-1500 0 T = 44.1 C, I = 78-98 ma 1500 0 1500 0 4344.5 4345.0 4345.5 4346.0 1500-1500 0 T = 34.8 C, I = 79-99 ma 4346.5 4347.0 4347.5 4348.0 1500-1500 0 T = 34.8 C, I = 60-80 ma 4348.0 1500 4348.5 T = 22.2 C, I = 98-118 ma 4349.0 4349.5-1500 0 4350.0 4350.5 4351.0 1500-1500 0 T = 22.2 C, I = 79-99 ma 3000 1500-1500 0 T = 40.7 C, I = 86-106 ma 4343.0 4343.5 4344.0 4343.5 4344.0 4344.5 T = 34.8 C, I = 98-118 ma 4351.5 4352.0 4352.5 4353.0 T = 22.2 C, I = 60-80 ma 4353.0 4353.5 4354.0 4354.5 EL Intensity [arb. units] 150 100 50 Absorption measurement CONDITIONS Ageing: T A =50 C, I A =100 ma Measuring: T M =25 C, I M =60 ma 0 1000 2000 3000 4000 5000 6000 Ageing time [hours]

3000 2500 2000 Methane Ethane x 10 Butane x 10 Intensity(a.u.) 1500 1000 500 0-500 4210.0 4210.5 4211.0 4211.5 Wavenumber(cm -1 )

Growth and properties of InAs/In x Ga 1-x As/GaAs quantum dot structures E. Hulicius 1, J. Oswald 1, J. Pangrác 1, J. Vyskočil 1,3, A. Hospodková 1, K. Kuldová 1, K. Melichar 1, T. Šimeček 1, T. Mates 1, V. Křápek 4, J.Humlíček 4, J. Walachová 2, J. Vaniš 2, P. Hazdra 3, and M. Atef 3 MOVPE laboratory 1 Institute of Physics AS CR, v. v. i., Cukrovarnická 10, 162 00, Prague 6, Czech Republic 2 Institute of Photonics and Electronics AS CR, v. v. i., Chaberská 57, 182 51 Prague 8, Czech Republic 3 CTU - FEE, Technická 2, 166 27, Prague 6, Czech Republic 4 MU - PřF, Kotlářská 2, 611 37 Brno, Czech Republic

Vertically correlated structures Lateral shape of InAs/GaAs quantum dots in vertically correlated structures We found ways to control the energy difference between PL transitions by adjusting properly the spacer thickness, the number of QD layers, and the growth conditions (e.g. V/III ratio). We also found an efficient way to control the emission wavelength by changing the number of QD layers. A. Hospodková, E. Hulicius. J. Oswald, J. Pangrác, T. Mates, K. Kuldová, K. Melichar, and T. Šimeček, Properties of MOVPE InAs/GaAs quantum dots overgrown by InGaAs, J. Cryst. Growth, 298 (2007), 582-585.

Spacer thickness Vertically correlated structures 1.8 QD elongation a/b 1.6 1.4 1.2 1.0 0.8 circular QD [-110] b [110] a Blue = InAs Yellow = GaAs 2 4 6 8 10 Spacer thickness [nm] Energy difference [mev] 70 E 6 4 60 2 0 50 0.8 0.9 1.0 1.1 PL intensity [a.u.] Energy [ev] 40 30 4 6 8 10 Spacer thickness [nm] J. Cryst. Growth 298 (2007) 582-585.

Kvantové tečky

Magnetophotoluminescence, elongation Elongation of InAs/GaAs QD determined from magnetophotoluminescence measurements We use magnetophotoluminescence for determination of the lateral anisotropy of buried quantum dots. While the calculated shifts of the energies of higher radiative transitions in magnetic field are found to be sensitive to the lateral elongation, the shift of the lowest transition is determined mainly by the exciton effective mass. This behavior can be used for determining both the effective mass and the elongation fairly reliably from spectra displaying at least two resolved bands. V. Křápek, K. Kuldová, J. Oswald, A. Hospodková, E. Hulicius, J. Humlíček, Elongation of InAs/GaAs quantum dots from magnetophotoluminescence measurements, Appl. Phys. Lett. 89 (2006) 153108.

Magnetophotoluminescence, elongation Fig. 1 MPL energies calculated for a) circular and b), c) elongated QDs. Parameters used in the calculations: m* = 0:045m 0, ħ x = 100 mev, a) ħ y = 100meV (L = 1:0), b) ħ y = 150meV (L = 1:5), c) ħ y = 200meV (L = 2:0). The energies of the lowest transition at zero field were set to 1.1 ev (corresponding to the vertical confinement energy). Appl. Phys. Lett. 89 (2006) 153108.

Magnetophotoluminescence, elongation Fig. 2 Energy of the lowest MPL transition against magnetic field for elongated QDs. The experimental values (squares) and calculated energies with parameters ħ x = 100 mev, ħ y going from 100meV (thinner lines) to 200meV (thicker lines), and effective masses 0:03m 0 (dashed), 0.04m 0 (dotted), 0.05m 0 (dash dotted), 0.06m 0 (dash dot dotted), indicated by the arrows. The best agreement with the experimental data has been obtained for ħ y = 160meV and m* = 0.045m 0 (thick solid line). Appl. Phys. Lett. 89 (2006), 153108.

Magnetophotoluminescence, elongation Fig. 3 Energy of the first higher MPL transition against magnetic field for elongated QDs. The experimental values (squares) and calculated energies with parameters ħ x = 100 mev, m* going from 0.045m 0 (thinner lines) to 0.05m 0 (thicker lines), and ħ y values of 100meV (dashed), 120meV (dotted), 140meV (dash dotted), 160meV (dash dot dotted), 180meV (short dashed), 200meV (short dotted). The best agreement with the experimental data has been obtained for ħ y = 160meV and m* = 0.045m 0 (thick solid line). Appl. Phys. Lett. 89 (2006), 153108.

Study of InAs quantum dots in AlGaAs/GaAs heterostructure by ballistic electron emission microscopy/spectroscopy BEEM / BEES J. Walachová, J. Zelinka, V. Malina, J. Vaniš, F. Šroubek, J. Pangrác, K. Melichar, and E. Hulicius, Study of InAs quantum dots in AlGaAs/GaAs heterostructure by ballistic electron emission microscopy/spectroscopy, Appl. Phys. Lett. 91 (2007) 042110 and Appl. Phys. Lett. 92 1 (2008) 012101-1.

BEEM (microscopy) AFM topography ballistic current (in pa at Itun = 2.5 na, V tun = 1.5 V)

BEES (spectroscopy), derivated from V-A characteristics of QD structure Appl. Phys. Lett. 91 (2007) 042110.

Thank you for your attention