Ultrazvukové zkoušení materiálů DZM - 2013. http://1.bp.blogspot.com/-_rtpuuvjbdk/tggpeztxodi/aaaaaaaaac0/ncsuvkujp1m/s1600/1.jpg



Podobné dokumenty
Ultrazvuková defektoskopie. Vypracoval Jan Janský

Základy ultrazvuku. Tab. 6.1

- Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí.

Techniky detekce a určení velikosti souvislých trhlin

ULTRASONIC TESTING ÚVOD DOPORUČENÉ MATERIÁLY DEFINICE URČENÍ DÉKLA ŠKOLENÍ. Sylabus pro kurzy ultrazvukové metody dle systému ISO / 3

Zkoušení heterogenních a austenitických svarů technikou Phased Array a technikou TOFD

TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC

2. přednáška. Petr Konvalinka

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Ultrazvuková defektoskopie. M. Kreidl, R. Šmíd, V. Matz, S. Štarman

Základy ultrazvuku A. ZÁKLADY ULTRAZVUKU 10

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Rovinná harmonická elektromagnetická vlna

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Mechanické kmitání a vlnění

Optika pro mikroskopii materiálů I

Vliv struktury materiálu na hodnotitelnost ultrazvukovou defektoskopií

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Ultrazvuková kontrola obvodových svarů potrubí

TEST PRO VÝUKU č. UT 1/2 Specifická část QC

2. Vlnění. π T. t T. x λ. Machův vlnostroj

ÚVOD ZKOUŠENÍ PETROCHEMICKÉHO REAKTORU

TEST PRO VÝUKU č. UT 2/1 Všeobecná část

Ultrazvuková měření tloušťky stěny potrubních systémů

TEST PRO VÝUKU č. UT 2/2 Specifická část QC

Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MOŽNOSTI VYUŽITÍ ULTRAZVUKOVÉ IMPULSNÍ METODY VE STAVEBNÍ PRAXI POSSIBILITIES OF THE ULTRASONIC PULSE METHODS IN CONSTRUCTION PRACTICE

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz.

Elektrický signál - základní elektrické veličiny

4. Měření rychlosti zvuku ve vzduchu. A) Kalibrace tónového generátoru

OVMT Zkoušky bez porušení materiálu

elektrické filtry Jiří Petržela filtry založené na jiných fyzikálních principech

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN

TECHNICKÁ UNIVERZITA V LIBERCI FAKULTA STROJNÍ. Bakalářská práce VÝZKUM TLOUŠŤKOMĚRU DIO 570 V ULTRAZVUKOVÉ STRUKTUROSKOPII LITIN

Fyzikální podstata zvuku

Měření a analýza mechanických vlastností materiálů a konstrukcí. 1. Určete moduly pružnosti E z ohybu tyče pro 4 různé materiály

Fyzika II, FMMI. 1. Elektrostatické pole

Zvuk. 1. základní kmitání. 2. šíření zvuku

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů

Daniel Tokar

VÝUKOVÝ MATERIÁL Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0307 Anotace

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

Izolaní materiály. Šastník Stanislav. 2. týden

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

1.8. Mechanické vlnění

Kmity a mechanické vlnění. neperiodický periodický

Hlavní parametry rádiových přijímačů

Elektromagnetický oscilátor

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

Seznam platných norem z oboru DT k

Seznam platných norem NDT k

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

NEDESTRUKTIVNÍ ZKOUŠKY SVARŮ

Nedestruktivní zkoušení - platné ČSN normy k

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma

Jaký význam má kritický kmitočet vedení? - nejnižší kmitočet vlny, při kterém se vlna začíná šířit vedením.

Co se skrývá v ultrazvukové vyšetřovací sondě?

Kopírování pouze se souhlasem firmy Testima nebo Ing. Richarda Regazza

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Světlo je elektromagnetické vlnění, které má ve vakuu vlnové délky od 390 nm do 770 nm.

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz

6. Viskoelasticita materiálů

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

Fyzika - Sexta, 2. ročník

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

VÍŘIVÉ PROUDY DZM

EDDY CURRENT TESTING ÚVOD DOPORUČENÉ MATERIÁLY DEFINICE URČENÍ DÉKLA ŠKOLENÍ. Sylabus pro kurzy metody vířivých proudů dle systému ISO / 7

LOGO. Struktura a vlastnosti pevných látek

Použití techniky Phased Array pro stanovení reálných rozměrů necelistvostí ve svarech potrubních systémů

Diagnostické ultrazvukové přístroje. Lékařské přístroje a zařízení, UZS TUL Jakub David kubadavid@gmail.com

CZ.1.07/1.5.00/

Interference vlnění

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

Ultrazvukový defektoskop MFD800C

MĚŘENÍ RYCHLOSTI ŠÍŘENÍ ZVUKU V PLYNECH

Prováděcí plán Školní rok 2013/2014

Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění

P5: Optické metody I

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Akustický přijímač přeměňuje energii akustického pole daného místa na energii elektrického pole

Akustické vlnění

Fyziologická akustika. fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí

(test version, not revised) 16. prosince 2009

NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)

I. část - úvod. Iva Petríková

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

Seznam technických norem pro oblast svařování 3/2016

Jaký obraz vytvoří rovinné zrcadlo? Zdánlivý, vzpřímený, stejně velký. Jaký obraz vytvoří vypuklé zrcadlo? Zdánlivý, vzpřímený, zmenšený

Akustooptický modulátor s postupnou a stojatou akustickou vlnou

Nedestruktivní defektoskopie

Zvukové jevy ZVUKOVÉ JEVY. Kmitání a vlnění. VY_32_INOVACE_117.notebook. June 07, 2012

Transkript:

Ultrazvukové zkoušení materiálů DZM - 2013 1 http://1.bp.blogspot.com/-_rtpuuvjbdk/tggpeztxodi/aaaaaaaaac0/ncsuvkujp1m/s1600/1.jpg

Výhody použití ultrazvuku analýza vad povrchových i vnitřních možnost měření hlubších vrstev materiálu, než v ostatních metodách postačí přístup ke vzorku pouze z jedné strany přesné pro lokalizaci a odhad velikosti vad jednoduchá příprava okamžité výsledky obrazové zpracování získaných dat další použití například měření tloušťky, rychlostí, atd. 2

Omezení použití ultrazvuku nutnost přístupu k povrchu vzorku pro přenos ultrazvuku většinou je potřeba přenosové médium pro transmisi akustických vln do testovaného vzorku problematické pro hrubé, nepravidelné, malé, příliš tenké či nehomogenní vzorky vysoký podíl šumu a špatný přenos signálu pro materiály s hrubozrnnou strukturou lineární defekty paralelní ze zvukovým paprskem nemusí být detekovány nutné standardy pro kalibraci a charakterizaci chyb 3

Fyzikální principy ultrazvukové defektoskopie Vlnění Ultrazvukové vlnění je mechanické vlnění v oboru ultrazvukových frekvencí nad 20 000 Hz, šířící se prostředím v důsledku jeho elastických vlastností. Kmitočtová hranice slyšitelnosti je v rozmezí od 16 Hz do 20 khz a nazývá se slyšitelným zvukem. Vlnění pod pásmem slyšitelnosti (pod 16Hz) se nazývá infrazvuk a nad pásmem slyšitelnosti (nad 20kHz) ultrazvuk. Hlavní charakteristickou veličinou je délka vlny l Při frekvencích nad 100 khz se zvuková energie šíří ve svazku, který se může odrážet, lámat, ohýbat a absorbovat. Při extrémně vysokých frekvencích (řádově MHz) jsou zvukové vlny mimořádně tlumeny a vzduchem se nešíří. Mohou se však šířit v pevných látkách jako jsou např. kovy. Prostřednictvím vazby mezi jednotlivými elementy pružného prostředí se kmitavý pohyb šíří od částice k částici. 4

Hlavní charakteristickou veličinou je délka vlny l [mm]. Definují se následující veličiny kmitání: maximální výchylka (amplituda) A trvání kmitu (perioda) T frekvence - f l c T c kde c..je rychlost šíření vln [km/s], f.. je frekvence [MHz], T. je perioda [s,ms]. f T 1 f f 1 T Obvyklé frekvence se při zkoušení ultrazvukem pohybují v megaherzové oblasti. Pro kontaktní zkoušení se většinou využívají frekvence 2 5 MHz a pro imerzní zkoušení i frekvence vyšší až 25 MHz 5

Fyzikální principy Elastické kmity se šíří prostředím rychlostí c, závislou na mechanických vlastnostech prostředí. Harmonický pohyb je potom charakterizován vlnovou rovnicí: c l f kde c je rychlost vlnění [km/s], l je délka vlny [mm] f je frekvence [MHz] Zjistitelná vada = ½ vlnové délky mat. ocel f = 4MHz l 5900m s 1 4000000Hz( s) 5900m s 1 4000000s 0,001475m 1,5mm V defektoskopii se používají harmonické kmity o velmi malém krajním vychýlení částice: A sin t kde ξ. okamžitá hodnota výchylky A amplituda kruhová frekvence t čas 6

Mezi délkou vlny l a frekvencí f je nepřímá úměrnost. 7

Akustická vazba 8

Tvar a druhy vln Šíření ultrazvukových vln prostředím je vždy prostorové, přičemž značný počet vzájemně sousedících částic kmitá ve stejné fázi. Kmitající částice ve stejné fázi tvoří vlnoplochu. Podélné vlnění (L longitudiální ) je takové vlnění, při němž částice kmitají ve směru šíření vlnění. Šíří se materiálem jako tlakové vlny. Podmínkou šíření jsou dostatečně velké rozměry tělesa vzhledem k délce vlny. Rychlost šíření L vln je vždy větší než ostatních druhů vln. 9

Příčné vlnění (T transverzální ) je takové vlnění, kdy částice kmitají kolmo na směr šíření. Může se šířit pouze v prostředí s rozměry mnohem většími než je délka vlny a které odolává napětí ve smyku, tzn. v tuhém prostředí. Při natočení zdroje kmitání se mění i rovina kmitání částic hovoříme o polarizovaném vlnění. 10

Rychlost šíření ultrazvuku v pevných látkách Rychlost šíření ultrazvukových vln závisí na elastických konstantách prostředí, kterým se vlny šíří. V tuhých látkách se vyskytuje několik typů vlnění. podélné vlny c L - mají nejvyšší rychlost příčné vlny c T - mají rychlost značně nižší než vlny podélné c T < c L povrchové vlny c R - rychlost šíření je vždy nepatrně menší než rychlost c T a to přibližně o 5 až 10 % Rychlosti šíření vln podélných, příčných i povrchových jsou v pásmu frekvencí používaných v defektoskopii 0,5 až 20 MHz, prakticky nezávislé na frekvenci. deskové vlny se však šíří rychlostí závislou na frekvenci vlnění a rozměrech prostředí (na rozdíl od výše uvedených vln) 11

Rychlost šíření podélného vlnění c L c L c T E1 m 1 m1 2m Rychlost šíření příčného vlnění c T G E 21 m Rychlost šíření povrchového vlnění c R kde E je modul pružnosti v tahu [ Pa ] G je modul pružnosti ve smyku [ Pa ] je hustota [ kg m -3 ] m je Poissonovo číslo [ - ] Poměr rychlosti šíření podélné a příčné vlny závisí pouze na Poissonově čísle: c c L T 1 2m 2 1 m c G R c T 0,87 1,112m 1 m Poznámka: E G 1 2 1 m E m 2G 12

U některých materiálů jako je např. šedá (LLG) a tvárná (LKG) litina, je rychlost šíření výrazně závislá na složení a je nutno ji v případě potřeby stanovit měřením. Pro měření rychlosti je možno použít buď vhodný ultrazvukový přístroj nebo tloušťkoměr. Nejpřesnější je stanovení rychlosti pomocí interferometru. Na základě znalosti rychlosti šíření podélných a příčných vln je pak možno výpočtově určit moduly pružnosti v tahu a ve smyku E a G na litinovém odlitku. Platí, že: E 3 c 4 c T L c 1 c T L 2 2 G G c T 2 13

Rychlosti šíření ultrazvuku ve vybraných látkách Látka c L c T c R [ 10 3 kg m -3 ] [ m s -1 ] ocel 7,8 5 850 3 230 3 000 hliník 2,7 6 260 3 080 2 800 cín 7,3 3320 1 670 litina 6,9-7,3 3 500 5800 2 200 3 200 měď 8,9 4 700 2 260 2 100 mosaz 8,1 4 430 2 120 wolfram 19,1 5 460 2 870 2 650 plexisklo 1,18 2730 1430 glycerin 1,26 1 920 voda 1 1 483 sklo 3,2 3760-5570 2220-3520 14

Akustický tlak Při postupném rozkmitávání se sousední částice dostávají do pohybu s fázovým zpožděním, takže vznikají oblasti zvýšeného a sníženého tlaku. Tlak vznikající při šíření vlny nazýváme akustickým tlakem. Akustickému tlaku je úměrné elektrické napětí resp. amplituda (výška) echa, která se využívá při hodnocení velikosti vady. Přístroje pro UT zkoušení umožňují logaritmicky měnit výšku echa pomocí zesílení a jeho velikost vyjádřit v db. Pokud se výška echa vyjadřuje v db, rozumí se tím nastavení atenuátoru, při kterém dosahuje výška echa od reflektoru dané velikosti zvolenou úroveň (nejčastěji 40% výšky obrazovky). Vztah mezi rozdílem zesílení v db a poměrem výšek ech V 20 log H H 1 2 [ db] H 1. výchozí výška echa v % BSH H 2. nová výška echa v % BSH Poměr výšky ech Rozdíl zesílení Faktor 0,5-6 db 2,0 +6 db 0,25-12 db 4,0 +12 db 0,2-14 db 5,0 + 14 db 0,1-20 db 10,0 +20 db +6 db 50% BSH 100% BSH 15

Akustický tlak Vada se chová jako sonda rozkmitá se a vrací akustický tlak zpět k sondě 16

Odraz ultrazvukové vlny od reflektoru Zadní stěna (odrazový povrch) musí být podstatně větší než průřez svazku V Zákon vzdálenosti: 20 log S S 2 1 [ db] Změna V při zdvojnásobení dráhy = 6 db 17

Odraz ultrazvukové vlny od reflektoru Ploché dno vývrtu Zákon vzdálenosti (D=konst.): V 40 log S S 2 1 [ db] V Zákon velikosti (s=konst.): 40 log D D 1 2 [ db] Změna V při zdvojnásobení vzdálenosti = 12 db Změna V při zdvojnásobení průměru = 12 db 18

Odraz ultrazvukové vlny od reflektoru Příčný (boční) vývrt Zákon vzdálenosti (D=konst.): V 30 log S S 2 1 [ db] V Zákon velikosti (s=konst.): 10 log D D 1 2 [ db] Změna V při zdvojnásobení vzdálenosti = 9 db Změna V při zdvojnásobení průměru = 3 db 19

ÚTLUM ULTRAZVUKOVÝCH VLN Prochází-li vlna prostředím, dochází k jejímu útlumu a to vlivem: absorpce, při níž dochází k pohlcování energie vnitřním třením a elastickou hysterezí a následnou přeměnou ultrazvukové energie na jiné druhy energie (obvykle na tepelnou), rozptylu, při němž dochází k odrazu ve struktuře (zrna, póry, fázové změny v kovu) materiálu, k difrakci (tj. ohybu vlnového pole) a k lomu ve směru šíření vlny na rozhraní, Pochopení fyzikální podstaty útlumu v materiálu je podstatné pro optimalizaci frekvence z hlediska odstupu signálu od šumu (poměr signál/šum), a tím i pro stanovení minimálního rozměru detekovatelné vady v souvislosti s hloubkou vady od povrchu. V 2 2 Součinitel útlumu: V S 2 1 V S 1 s [ db / m] V 1,V 2. zesílení pro zvolená koncová echa v [db] V s. ztráta rozevřením svazku v [db] S 1, S 2 dráha koncového echa v [m] 20

Typy zobrazení při ultrazvukové kontrole Kromě zobrazení A, které se využívá běžně u všech typů přístrojů při ručním způsobu zkoušení, existují ještě další způsoby zobrazení, definované v ČSN EN 1330-4. Zobrazení A Na horizontální ose je vzdálenost (čas) a na vertikální ose výška signálu (amplituda) Zobrazení B U zobrazení B představuje jedna souřadnice vzdálenost a druhá polohu sondy. Jeví se tedy jako řez součástí, kolmý ke zkušebnímu povrchu. Zobrazení C Ukazuje půdorysné rozmístění reflektorů (vad) v součásti Zobrazení D Prostorové zobrazení, 3D zobrazení zkoušeného objemu. V každém bodě na zkušebním povrchu musí být zaznamenáno A-zobrazení. 21

Typy zobrazení při ultrazvukové kontrole Zobrazení TOFD TOFD je technika využívající dvě sondy v režimu vysílání-příjem. Používá se u tupých svarů, ale nejsou na to normy. Zobrazení Phased array Předností techniky Phased array je obraz prozvučovaného průřezu v reálném čase, ve kterém je možné lehčeji než v klasickém A zobrazení (peaky na obrazovce) odlišit relevantní indikace na pozadí šumu, jehož příkladem jsou difrakční signály vznikající na trhlinách. TOFD Phased Array 22

Jak Phased Array pracuje? Jednotlivé elementy jsou řízeny s různým časovým odstupem a tím se vytváří pohyb, úhel nebo fokusaci sondy Princip zajištění pohybu sondy Linear Array - Electronic Indexing Princip řízení úhlu a fokusace sondy. Klikněte na obrázky Phased Array - Electronic Steering Phased Array - Electronic Focusing http://www.testima.eu/

Zobrazení Phased array http://www.bercli.net 24

Zobrazení Phased array http://www.bercli.net 25

Zobrazení Phased array http://www.bercli.net 26

Typy sond pro zkoušení ultrazvukem 27

Typy sond pro zkoušení ultrazvukem 28

Typy sond pro zkoušení ultrazvukem Sondy přímé Sondy přímé se vyrábějí v mnoha typech a tvarech v závislosti na účelu použití. Většina sond využívá zdroj podélných vln. Přímé sondy je obecně používaný název pro sondy s měničem vysílajícím podélné vlny, používané pro kontaktní zkoušení, kdy svazek prochází materiálem v kolmém směru. Tyto sondy generují podélné vlny v materiálu a používají se také pro měření tloušťky a detekci vad typu zdvojenin. Vyrábějí se v provedení jak pro kontaktní, tak imerzní zkoušení. Pro zlepšení rozlišení blízko povrchu se používají přímé sondy s předsádkou (nástavcem). 29

Uz sondy Sonda přímá jednoduchá. Čelní sondy mají rovinu měniče rovnoběžnou s povrchem zkoušeného předmětu. Elektroakustický měnič je přitmelen na tlumicí tělísko zalité plastickou hmotou. Tlumící tělísko musí mít dostatečně vysoký vlnový akustický odpor, dostatečnou absorpci (aby se nevracely odrazy od jeho povrchu na měnič) a dokonalé spojení mezi měničem a tělískem. Jako materiál pro tlumící tělíska jsou výhodné umělé pryskyřice s přídavkem kovového prášku pro zvýšení útlumu. UZ přímá sonda je zapojena jako vysílač i přijímač UZ vlnění. Za počátečním impulsem V imp je na stínítku defektoskopu zobrazena řada pravidelně se opakujících koncových ech KE. Vyskytne-li se v materiálu vada, zobrazí se mezi V imp a KE, resp. mezi dvěma sousedícími KE poruchové echo PE. Vzdálenost PE od Vimp, resp. čas h nám určuje hloubku vady (necelistvosti) pod povrchem materiálu; vzdálenost 1.KE od V imp, resp. čas t nám určuje tloušťku zkoušeného předmětu. 30

31

32

Typy sond pro zkoušení ultrazvukem vlnami. Sondy úhlové Sondy úhlové se využívají pro šikmé prozvučování příčnými nebo podélnými Vybuzení požadovaného typu vlny ve zkoušeném materiálu se dosáhne vlnovou transformací podélné vlny dopadající pod určitým úhlem na rozhraní. Při kontaktním zkoušení je úhel dopadu určen úhlem plexi klínu a při imerzním zkoušení nakloněním resp. vyosením sondy. V obou případech se využívá vztahů mezi dopadajícími a lomenými složkami definovanými Snellovým zákonem. 33

34

35

Sonda přímá dvojitá Typy sond pro zkoušení ultrazvukem (např. pro měření tlouštky - malé mrtvé pásmo) Dvojitá sonda má oddělený vysílač a přijímač jsou nutné 2 kabely pro připojení k defektoskopu. Měniče v této sondě mívají tvar půlkruhový nebo obdélníkový a jsou uspořádány buď v téže rovině (pro větší tloušťky materiálu malý střechový úhel), anebo mírně skloněné (pro malé hloubky velký střechový úhel). Při kalibraci časové základny je potřeba použít dvě různé kalibrační tloušťky (vzdálenosti), které zahrnují zkoušenou tloušťku. Výhodné jsou měniče půlkruhové, neboť jsou-li umístěny těsně vedle sebe tak, že se doplňují přibližně do kruhového tvaru, překrývají se jejich vyzařovací diagramy ve vzdáleném poli. Mají malé mrtvé pásmo a proto jsou výhodné pro zjišťování vad těsně pod povrchem. 36

Speciální typy sond 37

Odvalovací sonda (bantam) 38

Speciální typy sond Phased array 39

40

K1 K2 DS RC T1 a T2 Mierky pre kalibráciu UT prístrojov Pre správnu kalibráciu a nastavenie UT prístrojov je potrebné pred meraním každý prístroj správne nastaviť nakalibrovať. Za týmto účelom sa vyrába široký sortiment mierok. Ako základné kalibračné mierky slúžia: mierky K1 a K2, stupňové T1 a T2, mierka RC, mierka DS, ASME mierka B a BT, mierka CBV a iné. 41

Všechny indikace, které překročí určitou hranici, která se označuje jako úroveň pro hodnocení se musí vyhodnotit z hlediska přípustnosti. Hodnocení nepodléhají irelevantní indikace, které jsou vyvolány tvarem předmětu, vlnovými transformacemi, strukturou, apod. Ostatní relevantní indikace se musí vyhodnotit z hlediska přípustnosti podle příslušných norem nebo předpisů. Při hodnocení se uvažují následující charakteristiky vad: amplituda vadového echa a vzdálenost základní tvar a orientace reflektoru hodnocení velikosti buď přímým změřením rozměrů (plochy, délky, apod.) nebo jiného parametru (amplitudy indikace, náhradní velikosti) prostorové uspořádání vad (vzájemné rozteče, četnost na jednotku plochy, apod.) hodnocení pravděpodobné povahy vady (trhlina, vměstek), pokud je to možné. Posouzení typu vady usnadňuje znalost technologie výroby.

REFERENČNÍ MĚRKY

REFERENČNÍ MĚRKY 3mm malý útlum materiálu vyhodnocovací DAC přímka velký útlum materiálu

AVG (DGS) diagram Metoda AVG nevyžaduje speciální měrky, protože příslušné závislosti amplitudy echa na vzdálenosti a velikosti odrazné plochy (zadní stěna, ploché dno vývrtu) jsou již v AVG diagramu zachyceny. Vybraná křivka odpovídající určité náhradní velikosti (hranici registrace) může být v AVG diagramu přenesena na obrazovku a pro kalibraci citlivosti postačuje vhodný referenční reflektor, ke kterému se vztahuje výsledné registrační zesílení A 1 s N s A. poměrná vzdálenost, udaná jako násobky blízkého pole S v předdráha v sondě (mm) N. délka blízkého pole (mm) S. dráha v součásti (mm) G G D D KSR eff A G. poměrná velikost, vztažená k průměru měniče D KSR průměr plochého dna (mm) D eff. Efektivní průměr měniče (mm)

AVG (DGS) diagram

47

48

50

Chemický reaktor, r. v. 1942, průměr 1250mm, tl. stěny 100 120 mm 51

52

53

54