Stupeň oddělitelnosti dvousložek kapalnésměsi destilací pak vyjadřujetzv. relativnítěkavost = ))))))



Podobné dokumenty
REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

VYSOKOÚČINNÁ DESTILACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

Laboratoř oboru. Rektifikace. Ústav organické technologie (111) Vedoucí práce: Ing. Tomáš Sommer Umístění práce: budova A, místnost S31

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem,

DESTILAČNÍ ZKOUŠKA PALIV

Stanovení křivky rozpustnosti fenol-voda. 3. laboratorní cvičení

Fázové rovnováhy dvousložkové soustavy kapalina-kapalina


CHEMIE A CHEMICKÉ TECHNOLOGIE (N150013) 3.r.

LABORATORNÍ PRÁCE č.2

Destilace

Inovace bakalářského studijního oboru Aplikovaná chemie CZ.1.07/2.2.00/

Jazykové gymnázium Pavla Tigrida, Ostrava-Poruba Název projektu: Podpora rozvoje praktické výchovy ve fyzice a chemii

Stanovení měrného tepla pevných látek

DĚLÍCÍ METODY. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: Člověk a příroda / Chemie / Směsi

Destilace. Druhy destilací. Některá obecně platná pravidla pro úspěsné provedení destilace

METODY ČIŠTĚNÍ ORGANICKÝCH LÁTEK

PRŮMYSLOVÉ PROCESY. Přenos hmoty Kolony

5 Vsádková rektifikace vícesložkové směsi. 1. Cíl práce. 2. Princip

Stanovení dělící účinnosti rektifikační kolony

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem

T0 Teplo a jeho měření

Experiment C-16 DESTILACE 2

CHEMICKY ČISTÁ LÁTKA A SMĚS

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

Experiment C-15 DESTILACE 1

Stanovení počtu teoretických pater (PTP) rektifikační kolony

Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Rovnováha Tepelná - T všude stejná

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR

Stavové neboli fázové diagramy jednosložkových a dvousložkových systémů. Doc. Ing. Jiří Vondrák, DrSc

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

V i s k o z i t a N e w t o n s k ý c h k a p a l i n

Metodika stanovení kyselinové neutralizační kapacity v pevných odpadech

HYDROSTATICKÝ PARADOX

Měření měrné telené kapacity pevných látek

Stanovení hustoty pevných a kapalných látek

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Stanovení kritické micelární koncentrace

Krása fázových diagramů jak je sestrojit a číst Silvie Mašková

Rektifikace. I. Základní vztahy a definice: František Jonáš Rejl, Lukáš Valenz, Jan Haidl

KARBOXYLOVÉ KYSELINY

Obrázek 8.1: Základní části slunečního kolektoru

ρ = měrný odpor, ρ [Ω m] l = délka vodiče

Nauka o materiálu. Přednáška č.10 Difuze v tuhých látkách, fáze a fázové přeměny

látka Obr. k úkolům 1 a 2 Obr. k úkolu 3

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

Inovace výuky prostřednictvím šablon pro SŠ

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

Míchání. P 0,t = Po ρ f 3 d 5 (2)

Matematický model funkce aorty

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB.

006. Pokles teploty ochlazením - chladicí účinky sprejů

EU peníze středním školám digitální učební materiál

různorodé suspenze (pevná látka v kapalné) emulze (nemísitelné kapaliny) pěna (plynná l. v kapalné l.) mlha (kapalná l. v plynné l.

Laboratorní pomůcky, chemické nádobí

ZMĚNY SKUPENSTVÍ LÁTEK

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í LABORATORNÍ PRÁCE Č. 6 PRÁCE S PLYNY

HLUK. Cílem pokusu je měření hladiny hluku způsobeného ohřevem vody v rychlovarné konvici z počáteční teploty do bodu varu pomocí zvukového senzoru.

PROTOKOL O LABORATORNÍM CVIČENÍ - AUTOMATIZACE

Sešit pro laboratorní práci z chemie

HUSTOTA ROPNÝCH PRODUKTŮ

VÝROBA KYSLÍKU A DUSÍKU. Mgr. Jana Prášilová prof. RNDr. Jiří Kameníček, CSc.

Mechanika tekutin. Tekutiny = plyny a kapaliny

LEE: Stanovení viskozity glycerolu pomocí dvou metod v kosmetickém produktu

Zákony ideálního plynu

Názvosloví Kvalita Výroba Kondenzace Teplosměnná plocha

VISKOZITA A POVRCHOVÉ NAPĚTÍ

Důvody pro stanovení vody v potravinách

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.

NOVÉ NÁMĚTY PRO DEMONSTRAČNÍ POKUSY. Ondřej Maca, Tereza Kudrnová

Plyn. 11 plynných prvků. Vzácné plyny. He, Ne, Ar, Kr, Xe, Rn Diatomické plynné prvky H 2, N 2, O 2, F 2, Cl 2

7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

Laboratorní cvičení z kinetiky chemických reakcí

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK C) REGULAČNÍCH VENTILŮ

Měření teplotní roztažnosti

Bezpečnost práce, měření proudu a napětí, odchylky měření

1 Tlaková ztráta při toku plynu výplní

Účinky elektrického proudu. vzorová úloha (SŠ)

HYDROGENAČNÍ RAFINACE MINERÁLNÍCH OLEJŮ

ADU 5. Destilační automat. ::: Volatility... Distillation

Sylabus 5. Základní vlastnosti zemin

Molekulová fyzika a termika. Přehled základních pojmů

Sada Elektřina a magnetismus. Kat. číslo

Sada Látky kolem nás Kat. číslo

CHROMATOGRAFIE ÚVOD Společný rys působením nemísících fází: jedna fáze je nepohyblivá (stacionární), druhá pohyblivá (mobilní).

Vlastnosti kapalin. Povrchová vrstva kapaliny

CELKOVÉ OPAKOVÁNÍ UČIVA + ZÁPIS DO ŠKOLNÍHO SEŠITU část 03 VNITŘNÍ ENERGIE, TEPLO.

Pracovní list žáka (ZŠ)

Rektifikace. I. Celkový přehled práce: Základní vztahy a definice: František Jonáš Rejl, Lukáš Valenz, Jan Haidl

Základy chemických technologií

Pomůcky, které poskytuje sbírka fyziky, a audiovizuální technika v učebně fyziky, interaktivní tabule a i-učebnice

7. Fázové přeměny Separace

Základy chemických technologií

2. Měření odporu rezistoru a volt-ampérové charakteristiky žárovky

Transkript:

Úlohy č. 6 8 DESTILACE Obecnýúvod Destilace je dělící pochod, založený na rozdílu ve složení kapaliny a páry z ní vytvořené. Užívá se nejčastěji kčistění kapalných látek, tj. jejich oddělení od méně čivíce těkavých příměsí nebo kdělení směsí kapalných látek orůznéteplotě varu. Při prosté destilaci se kapalná látka převádí zahříváním na teplotu varu do plynnéhoskupenstvíaunikajícípárykondenzujívoddělené části destilačního přístroje. Teplotyvaru (bodu varu) kapalina dosáhne tehdy, když setlak její nasycenépáryprávě rovná vnějšímu (okolnímu) tlaku. Připrosté destilaci dosáhneme úplného oddělení jen tehdy, je-li příměs zcelanetěkavánebo je-li rozdíl vteplotách varu dělených složek dostatečně velký, alespoň 150 C. Přidělení složek směsiomenším rozdílu teplotvaru (nazvěmejelátkyaab) musíme uvažovat jejich t ě kavost,která vyjadřuje poměr mezi zastoupením složky (v hmotnostních %)vrovnovážnéplynné(g)akapalné(l)fázix(a) g ax(a) l x(a) g x(b) g B = )))))) B = )))))) x(a) x(b) l Stupeň oddělitelnosti dvousložek kapalnésměsi destilací pak vyjadřujetzv. relativnítěkavost B = )))))) A V případě, že do čitatele zlomku dosadíme hodnotu těkavosti níževroucí složky, vyjadřuje koeficient obohaceníplynnéfázetěkavější složkou. Rozdílnésloženíkapalinyapáryse často vyjadřujegrafickými metodami, kteréslouží ipřiposuzování,jakémnožstvíjednotlivých složek sepřidestilaci oddělí. l Obr.60 Izobarickýfázovýdiagramsměsi dvou neomezeně mísitelných kapalin A, B -71-

Na obr. 60 jeznázorněnaideálnízávislostbodu varunasloženíkapalnésměsidvou složek Aa B.Zobr.60 lzevyčíst, žesměsobsahujícíb%složkyba(100 b)%složkyamábod varu T ajepřitétoteplotě vrovnovázesesměsíparzobrazenou bodemb. Tato plynnásměs obsahuje b %složky Ba(100 b ) %složky A. Destilát vzniklý ochlazením této směsi par obsahuje tedyb %této níževroucí složkybajevdaném případě touto složkou obohacen (b >b). Toto obohacení není obvykle tak velké, aby se jedinou destilací podařilo složky oddělit. Abychom zlibovolné směsi složek AaBdospěli kfázi, která se svým složením co nejvíce blíží níževroucí složce B, musíme destilaci mnohonásobně opakovat. Princip takového postupu je zřejmýzobr. 61. Obr.61 Schemakvýkladu frakčnídestilace(ideálnípřípad) Výchozí směs dvou složek A a B obsahující b % složky B zahřejeme k varu. Rovnovážnápáramápodlediagramu složení dané bodem B apřiochlazení poskytnekapalinu obsahující b %složkyb. Přivaru této kapaliny, kterýnastanepřiteplotě T, seuvolňujepárao složenízobrazenémbodem B, jejímžochlazenímsezískákapalinaobsahujícíb %složkyb. Dalšímmyšlenkovýmopakovánímtakových jednoduchýchdestilacídospějemetímblíže čisté složce B, čím větší počet destilací provedeme. Popsaný postup popisuje ideálně provedený proces nazývaný frakční destilace. Vreálném případě, kdy musíme vkaždém okamžiku uvažovat ioddestilované množství kapaliny, je obohacení posledního destilátu těkavějšísložkou vždymenšínežvideálním případě. Vpraxi se místo popsaných mnohonásobných destilací používá postup, přikterém konečná množství jednotlivých frakcí jsou vždy vsoučasné rovnováze (nebo stavu, který se rovnováze blíží)sesvou parou. Takovýpostup nazývaný rektifikace seprovádí natzv. destilačních čili rektifikačních kolonách. Kolona zvaná patrová je znázorněna na obr. 62a). Vkoloně je nad sebou určitýpočet prostorů, tzv. pater,spojených trubicemi, znichž jednou stoupá pára adruhou odtéká přebytek kapaliny. Kolona jeumístěnanadestilační baňce anahoře je kní připojena tzv. hlava kolony, obsahující chladič azařízení, které umožňuje -72-

kondenzát částečně do kolony vracet (tzv. reflux) a částečně odebírat. Poměr mezi částí kondenzátu vracenou do kolony ačástí odebíranou se nazývá refluxní poměr. Je-li všechen kondenzát vracen do kolony (úplný reflux), ustaví se vní rovnováha přibližně odpovídající diagramunaobr.61.vzhledemknedokonalému vyrovnáníteplot, tepelným ztrátámapod. není však rovnováha dokonalá arozdělení je horší než odpovídá počtu pater kolony, tj. počtu schodů na obr. 61. Proto se zavádí pojem počet teoretických pater, což je počet ideálních destilací, které vedou kestejnému rozdělení směsi, jakébylo dosaženo nadané koloně. U destilační kolony je tedy počet teoretických pater vždy menší než je počet skutečných pater. Obr.62. Destilačníkolonya)patrová, b) snáplnískleněných,kovových nebo keramických tělísek, c)vpichovaná Podobného účinku jako na patrových kolonách lze dosáhnout při použití tzv. náplňových kolon, vnichž jsou nasypánaskleněná, keramickánebo kovovátělíska (obr. 62 b) nebo užitím tzv. vpichovaných kolon, jejichž vnitřní povrch je zvětšen vpichy do stěn (obr. 62 c). Velkývnitřní povrch těchto kolon se přidestilaci pokryje filmem kapaliny, jež stéká dolů a jeneustálevestyku sestoupající parou. Vcelékoloně seustavíspojitárovnováhameziparami a zpětným tokem, která odpovídá souboru několika kroků popsaných na obr. 61. Charakteristikou takové kolony je opět počet teoretických pater, který závisí na druhu náplně, délce kolony ačástečně ina povaze dělené směsi. Výška kolony dělená počtem teoretických pater senazývá výškový ekvivalent teoretického patra. Čím je kolona kvalitnější, tím je tento ekvivalent menší. Laboratorní kolony běžných délek dosahují desítek ažstovek teoretických pater. Prostou afrakční destilaci lze provádět nejen za atmosférického tlaku, ale ivtakovém uspořádání, přiněmž snížímecelkovýtlak vaparatuře. Jak vyplývázdefiniceteplotyvaru aze závislostitenzepáryrůznýchkapalin nateplotě (obr. 63),vedesníženítlaku ikesníženíteploty varu destilující kapaliny(tenze párykapalinysevyrovná stlakem vaparatuře přinižší teplotě) aumožňuje destilovat ikapaliny, které mají za normálního tlaku teplotu varu tak vysokou, že sepřitéto teplotě již rozkládají. Tento způsob nazývaný destilace za -73-

sníženého tlaku, používáme zejménaulátek pěnících alátek lehceoxidovatelných. Snížením tlaku přidestilaci lze navíc dosáhnout vněkterých případech zvětšení relativní těkavosti atímsnazšího rozdělenísložek směsi. Obr.63 Závislost tenzepáryněkterých kapalin nateplotě (1-hexan, 2-benzen, 3-voda, 4-kyselinaoctová, 5-diethylesterkyselinyšťavelové) Dalším způsobem, při němž lze při teplotě nižší než 100 C předestilovat látky steplotou varu podstatně vyšší (až 200 C) je destilace s vodní parou.tímto způsobem lze získat destiláty málo těkavých kapalin, jež se nemísí svodou nebo jsou sní mísitelné jen omezeně. Jak je vidět na obr. 64 pro soustavu voda brombenzen, kterou si uvedeme jako příklad, je podle Daltonova zákona parciálních tlaků výsledná tenze směsi par nad oddělenými fázemi vždyrovna součtu tenzí par čistých složek, tj. součtem tzv. parciálních tlaků. Tato výsledná tenze přitom nezávisí na poměrném zastoupení obou kapalin ve směsi. Vzhledemktomu jezadaného vnějšího tlaku takéteplotavarutakovéto soustavydvou kapalin stálá, nezávisí najejich poměrném zastoupení ajevždynižší než teplotavaru kterékoli zobou kapalin. Při zahřívání kapalin může dojít ktzv. utajenému varu,tj. kpřehřátí kapaliny nad teplotu varu, aniž nastane viditelný var (vývoj par vcelém objemu kapaliny). Když potom dojde kvaru, bývá velmi prudký. Stává se, že přitom kapalina vystříkne zvarné baňky do chladiče aznečistí destilát. Kapalina se přehřeje obyčejně tehdy, je-li zní vypuzen vzduch dříve, nežnastanevar. Je-li totižvkapalině dostatek vzduchových bublinek, stanou secentrem klidného vývoje par uvnitř kapaliny; vzduchová bublinka se nasytí parou, rychle zvětšuje svůj objem astoupá kpovrchu kapaliny. Utajenému varu bráníme proto buď tím, že na dno destilační baňky klademe předměty, které na svém povrchu zadržují vrstvičku vzduchu (varné kaménky, úlomky porézních keramických hmot askleněných kapilár apod.) nebo tím, že pod povrch zahřívané kapaliny zavádíme proud plynu. Varných tělísek užíváme udestilace za atmosférického tlaku ave vyvíječi vodní páry přidestilaci svodní parou. Proudem plynu -74-

(vodní párynebo vzduchu) míchámedestilovanou kapalinupřidestilaci svodní parou nebo při destilaci za sníženého tlaku, přiníž není možno použít varných tělísek, protože nad kapalinou je tak malý tlak vzduchu, ža varná tělíska nemohou zadržet dostatečné množství vzduchu na svémpovrchu. Obr. 64 Závislost tenzepárynateplotě vsoustavě voda(1) brombenzen (2) Průběh destilacezaznamenávámeobvykleveformě tabulky, vnížnejčastějiuvádíme: číslo frakce teplotu varu (popř.súdajemtlaku) objemzískaného destilátu souhrnnýobjem destilátu od počátku destilace. Místo objemu destilátu lze vtabulce zaznamenávat čas od počátku destilace. Přikontrole průběhu avýsledků destilace obvykle měříme ijiné fyzikální konstanty získaných frakcí, zejménaindex lomu nebo hustotu. Přehlednějinežztabulkyjevidětprůběh destilacezgrafického znázornění, tzv. destilační k ř ivky. Vynášíme tu zpravidla objem destilátu, příp. dobu od začátku destilace proti teplotě varu jednotlivých frakcí. Získámetak např. křivku (obr. 65) mající řadu méně čivícevodorovnýchstupňů, kteréodpovídajídestilaci čistýchsložek. Jednotlivéstupně jsou spojeny více nebo méně strmými křivkami tvaru S, značícími destilaci mezifrakcí. Vpřípadě, kdy některé stupně destilační křivky nejsou vodorovné, ale mírně stoupají, lze předpokládat, ženejdeofrakcejednotného složení. -75-

Obr. 65 Příklad destilačníkřivky -76-

Úloha č. 6 FRAKČNÍ DESTILACE Obecnýúvod viz str. 71. Úkol Rozdělte rektifikací směs ethylesteru kyseliny octové atoluenu. Průběh závislosti teploty varu na čase vyjádřete grafickyaujednotlivých frakcí změřte jejich index lomu. Odhadnětezastoupení obou látek vevzorku, kterýdestilujete. Pracovnípostup 1.Destilační přístroj dleobr. 66 jejiž sestaven (kolonajevpichovaná); zásadně sjeho uspořádáním nemanipulujeme a nic neměníme na jeho postavení (s výjimkou postupu uvedeného vbodu 2). 2. Do varné baňky vpravíme vzorek určený kdestilaci(zaznamenat číslo vzorku); jeho objemje 100 ml aje připraven vbaňce. Přidáme varné kaménky a sestavíme aparaturu, přitom se zúčastňují oba členové skupiny. Jeden přidrží varnou baňku nasazenou na spodní zábrus kolony (zásadně nemažeme tukem), druhý vysune topné hnízdo do výšky, aby varná baňka dosedla na dno topného hnízda (křídlové matky dotahujeme scitem). Poté se přesvědčíme, že vtéto poloze nelzevarnou baňkou pootočit. 3. Pustíme vodu do chladiče takovou intenzitou, abychom na kuličkovém kontrolním průtokoměru mohli přijeho otáčení ještě rozeznatbarvykuliček. 4. Přesvědčíme se, že kohout refluxu je uzavřen a kpředloze, kde budeme jímat frakce, připravíme na otočném stojánku sadu předem vysušených zkumavek, označených čísly1až8. 5. Přívodní kabel topného hnízda zasuneme do zásuvky, na topném hnízdě zapneme oba spínače elektrického proudu a regulační potenciometr nastavíme otočením ve směru hodinových ručiček na doraz. Tím má topné hnízdo maximální výkon; přesvědčímese, zdasvítíkontrolní žárovka. 6.Sledujeme, kdy nastane var vbaňce akdy začne reagovat teploměr vhlavě destilační kolony. Po prvním skápnutí destilátu vhlavě kolony necháme Obr. 66 Aparatura na frakční destilaci přistále zavřeném kohoutu refluxu ustavit rovnováhu nakoloně po dobu 5minut. 7.Po ustavení rovnováhy na koloně otevřeme kohout refluxu tak, aby jímané frakce bylyodebíránydozkumavek přibližně vobjemu2kapkyza1sec. -77-

8.Při tomto režimu sledujeme čas a teplotu varu jímané frakce a výsledky zaznamenáváme do protokolu. Jímáme postupně l0 ml jednotlivých frakcí do zkumavek, označených jejich čísly; teplotu varu zaznamenávámepo 1minutě. 9.U každé ze získaných frakcí stanovíme index lomu způsobem uvedeným vnávodu kúloze 12. Zčasových důvodů je vhodné měření indexů lomu nízkovroucích složek provádět již vprůběhu destilace. Správnost postupu přiměření na refraktometru nejdříve ověříme stanovením indexu lomu etalonů (glycerin, toluen aethylester kyseliny octové) aověřením výsledků uvedoucího cvičení. 10. Vyhřívání topného hnízda vypneme vokamžiku, kdy je získáno 75 ml destilátu, tj. kdyžvezkumavce pro frakci č. 8 je5 ml kapaliny. Tepelnou setrvačností topnéhohnízda se do této zkumavky jímá zbytek této frakce. Přitomto režimu zůstane po vychladnutí kolony ve varnébaňcepřibližně 15 20 mlkapaliny. 11.Aparaturu po jejím vychladnutí rozebereme následujícím způsobem: jeden člen dvojice drží varnou baňku uspodního zábrusu kolony, druhý sesouvá topné hnízdo do spodní polohynamříži. 12. Zbytek nepředestilovaného vzorku vlijeme do zásobní láhve na pracovním stole a varnou baňku vypláchnemealkoholem, kterývylijemedo výlevky. 13.Destilačníkřivkuvzorkuvynesemenamilimetrovýpapír sudánímpořadových čísel frakcí, jejich teplot varu aindexů lomu. Na základě naměřených údajů odhadneme poměr, vněmž bylylátkyzastoupenyvevzorku. 14.Získané frakce ve zkumavkách 1až 8předložíme vedoucímu cvičení sudáním naměřených hodnotindexů lomu,teplot varu apoměru zastoupenísložek vevzorku. -78-