7 Tenze par kapalin. Obr. 7.1 Obr. 7.2

Rozměr: px
Začít zobrazení ze stránky:

Download "7 Tenze par kapalin. Obr. 7.1 Obr. 7.2"

Transkript

1 7 Tenze par kapalin Tenze par (neboli tlak sytých, případně nasycených par) je tlak v jednosložkovém systému, kdy je za dané teploty v rovnováze fáze plynná s fází kapalnou nebo pevnou. Tenze par je nejvyšší tlak, při kterém může existovat látka v rovnovážném plynném stavu za dané teploty. Je to zároveň nejnižší tlak, při kterém může existovat látka v kapalném nebo pevném stavu za dané teploty. Tenze par látek s teplotou exponenciálně rostou (viz příklady na obr. 7.1). Obr. 7.1 Obr. 7.2 Je-li okolní tlak udržován na stálé hodnotě, potom kapalina může být ohřáta nejvýše na teplotu, při které je tlak nasycených par roven vnějšímu tlaku. Tuto dvojici hodnot teplota, tlak - nazýváme teplotou varu kapaliny. Normální teplota varu (T ntv ) je teplota, kterou má kapalina o daném složení ve fázové rovnováze se svou parou při normálním tlaku (tj. p n = 101,325 kpa). Jinými slovy - tenze par při normální teplotě varu je u všech látek rovna 101,325 kpa (viz obr. 7.1). Aby si soustava kapalina - pára zachovala při vypařování izotermní podmínky, přijímá od okolí teplo. Teplo spotřebované soustavou při vypaření jednotkového látkového množství kapaliny při konstantní teplotě a rovnovážném tlaku par se nazývá molární výparné teplo a je rovno molární výparné entalpii H m,výp. Závislost tlaku nasycených par na teplotě může být vyjádřena například Clausiovou - Clapeyronovou rovnicí kde p Ø je tlak nasycených par kapaliny, T je teplota, H m,výp je molární výparná entalpie, R je univerzální plynová konstanta (8,314 J K -1 mol -1 ). Za předpokladu, že molární výparná entalpie je v měřeném rozmezí teplot konstantní, získáme integrací rovnice (7.1) výraz 57

2 který lze přepsat do tvaru A a B jsou konstanty rovnice, které se obvykle vyhodnocují na základě experimentálních dat. Rovnice (7.3) reprezentuje přímkovou závislost ln p Ø na, kterou je možno v určitém teplotním rozmezí aproximovat skutečný průběh (viz obr. 7.2). Pro stanovení teplotní závislosti tenze par se používají ebuliometrické, statické a saturační metody. Stanovení teplotní závislosti tlaku nasycených par kapaliny a jejího středního molárního výparného tepla statickou metodou Metoda spočívá v tom, že tlak par látky uzavřené v baňce (izoteniskopu) sloupcem stejné kapaliny v U-trubici izoteniskopu je kompenzován vnějším tlakem, měřeným vhodným manometrem. Při vyrovnání hladin v U-trubici izoteniskopu, je vnější tlak shodný s tenzí par zkoumané látky v baňce izoteniskopu. Pokusné zařízení Celkové uspořádání aparatury je na obr Aparatura se skládá z izoteniskopu (A), který je temperován pomocí termostatu (B). Izoteniskop je přes chladič (C) spojen s vakuovou aparaturou. Tu tvoří vývěva (D), trojcestný zavzdušňovací ventil (E), uzavírací kohout (F), zavzdušňovací kohout (G) a vyrovnávací tlaková nádoba (H), která slouží k tlumení tlakových rázů. Tlak v aparatuře může být určován pomocí rtuťového U-manometru (I) nebo digitálního manometru (J). Měření Před sestavením aparatury naplníme izoteniskop (A) měřenou látkou. Plníme jej tak, že po malých množstvích naléváme kapalinu do U-trubice izoteniskopu a opakovaným nakláněním izoteniskopu ji vpravíme do válcovité nádobky, až se naplní asi dvě třetiny jejího objemu. Při poslední dávce ponecháme v U-trubici takové množství kapaliny, aby U-trubice byla zaplněná asi do jedné poloviny (pokud by hladiny byly vyrovnané). Izoteniskop ponoříme do termostatu, nasadíme chladič napojený na vyrovnávací tlakovou nádobu s manometrem. Termostat nařídíme na nejnižší teplotu teplotního rozmezí, ve kterém budeme měřit (je udáno asistentem). Po 15 minutách temperování zapneme membránovou vývěvu, otevřeme kohout (F) a uzavřeme zavzdušňovací kohout (G). Tlak v aparatuře se začne snižovat, což můžeme pozorovat pomocí Hg U-manometru. Jakmile tlak v aparatuře dosáhne hodnoty rovnající se tenzi par látky v izoteniskopu, kapalina začne vřít. Ta se většinou při varu nepohybuje, ale jen povrchově odpařuje. Dosažení bodu varu se pozná z větší rychlosti bublin procházejících během snižování tlaku kapalinou v U-trubici. V tomto okamžiku přerušíme spojení mezi aparaturou a vývěvou uzavřením kohoutu (F). Kapalinu ponecháme asi 5 minut vřít proto, aby se vypudil vzduch z izoteniskopu. Potom zavzdušňovacím 58

3 kohoutem (G) opatrně připouštíme do aparatury vzduch (tzn. zvyšujeme tlak) tak, aby se hladiny v U-trubici izoteniskopu vyrov- Obr. 7.3 naly. Zavzdušňovací kohout (G) pak s citem uzavřeme. Pokud je izoteniskop řádně vytemperován a aparatura je dostatečně těsná, hladiny kapaliny v U-trubici by se neměly pohybovat. Netěsnost aparatury se projeví pohybem menisku kapaliny směrem do baňky izoteniskopu. V tomto případě mírně pootevřeme uzavírací kohout (F), čímž se aparatura spojí s vývěvou a netěsnost se může kompenzovat. Protože se při předchozím odpařování měřená kapalina v baňce izoteniskopu ochlazovala, počkáme asi dvě minuty na vyrovnání teplot mezi termostatem a obsahem baňky (při udržování téměř vyrovnaných hladin v U-trubici izoteniskopu). Potom hladiny v U- trubici izoteniskopu vyrovnáme přesně 6, odečteme na digitálním teploměru teplotu v termostatu (s přesností ± 0,1 C) a tlakový údaj na rtuťovém a ev. digitálním manometru. Pak mírně pootevřeme kohout (F) uzavírající přívod k vývěvě a měření opakujeme, dokud nezískáme aspoň tři hodnoty tlaku kolísající jen v rozmezí přesnosti odečítání na Hg manometru, tj. ± 0,5 mm. Jestliže během vyrovnávání hladin proniknou bublinky vzduchu z prostoru zásobníku tlaku do baňky izoteniskopu, je nutno nejméně pětiminutové vyvaření kapaliny opakovat. Potom zvýšíme teplotu lázně v termostatu cca o 5 C a provedeme měření při nové teplotě. Nastavení jednotlivých teplot volíme tak, abychom v teplotním rozmezí udaném asistentem změřili minimálně 7 hodnot. Pomocí rtuťového manometru naměříme rozdíl mezi atmosférickým tlakem a tlakem v aparatuře 7. Provedeme to tak, že sečteme odchylky od nulové polohy v obou sloupcích 6 Protože používáme jako manometrickou kapalinu látku, jejíž hustota ρ je mnohem menší než hustota rtuti ρ Hg (přepočet na tlak měřený Hg sloupcem je dán násobením poměrem ρ/ρ Hg ), je nutná přesnost vyrovnání hladin manometru izoteniskopu cca 13-krát menší než je přesnost čtení na rtuťovém manometru. 59

4 7 Při měření tlaku je nutno se vyhnout chybě způsobené při odečítání paralaxou. Při odečítání musí oko a meniskus rtuťového sloupce být ve stejné výšce. Jsou-li vyžadovány hodnoty porovnatelné s literárními manometru. Měřenou hodnotu tlaku tudíž odečítáme v mm Hg sloupce, tj. výsledek dostaneme v torrech (1 Torr = 133,322 Pa). Absolutní hodnotu tlaku v aparatuře (a tím i tenzi par při dané teplotě) vypočteme odečtením získané hodnoty od atmosférického tlaku, který zjistíme na barometru. Údaj odečtený na digitálním manometru vynásobíme kalibrační korekcí a získáme tak přímo absolutní hodnotu tlaku v aparatuře. Po zakončení celého měření otevřeme zavzdušňovací kohout (G) a vypneme termostat a rotační olejovou vývěvu. Před vypnutím přívodu elektrického proudu je nutno vývěvu odpojit pomocí ventilu (E) od aparatury a spojit se vzduchem. Zpracování naměřených dat Podle pokynů asistenta odečítáme během měření údaje jen z jednoho manometru (rtuťového nebo digitálního), nebo paralelně z obou. Naměřené hodnoty uspořádáme do tabulky: Tab. 7.1 p atm = torr = kpa Rtuťový manometr Digitální manometr t [ C] T [K] Δh [mm] Δh kor [mm] [kpa] Displej [kpa] A = t ntv = B = ΔH m,výp = Pro výpočet můžeme použít počítač s programem" Lineární regrese", do kterého zadáme proměnné T a p Ø. Transformací souřadnic získáme požadovaný linearizovaný tvar rovnice kde X = T a Y = p Ø. Program nám metodou nejmenších čtverců vypočte konstanty A, B a umožní zobrazení a vytisknutí výsledků v grafické formě. Hodnotu molární výparné entalpie pak určíme z výrazu který získáme porovnáním rovnic (7.2) a (7.3). Výpočet normální teploty varu provedeme pomocí rovnice (7.3) dosazením hodnoty p Ø = 101,325 kpa a vypočtených konstant A a B. 60

5 Pokud není možné použít počítač, sestrojíme graf závislosti ln p Ø na 1/T na milimetrový papír. Výpočet konstant lineární rovnice (7.2) provedeme metodou nejmenších čtverců (viz kap. 2.4). údaji, je nutno přepočítat barometrické čtení tlaku na hodnoty při 0 C s ohledem na teplotní roztažnost Hg. Osnova postupu práce 1. Doplnění termostatu destilovanou vodou (po horní rysku s nápisem Water), zapnutí termostatu a nastavení počáteční teploty. 2. Naplnění vysušeného izoteniskopu vzorkem. 3. Sestavení aparatury a termostatování izoteniskopu cca 15 min. při počáteční teplotě. 4. Zapnutí vývěvy, nastavení průtoku chladicí vody a pomalé snižování tlaku v aparatuře, kontrola intenzity varu. 5. Vlastní měření tenzí par vzorku při daných teplotách. 6. Zavzdušnění aparatury, její rozebrání a vyprázdnění izoteniskopu. 7. Vypnutí termostatu a vývěvy (po zavzdušnění). 8. Vyhodnocení dat na počítači, tisk grafu. Přesnost a zdroje chyb Chyba měření v tomto uspořádání je asi ± 2%. Zdroje chyb: Z izoteniskopu nebyl dokonale vypuzen vzduch; výsledky měření jsou vyšší. Teplota v termostatu nebyla stálá; látka není přesně vytemperovaná na teplotu, při které měříme tenzi. Netěsnosti v aparatuře; rovnováha se obtížně stanovuje. Voda zkondenzovaná na chladiči prosákne zábrusem do izoteniskopu, výsledky jsou nižší a nereprodukovatelné. Upozornění Kohouty F a G (na panelu rozvodu plynu) jsou velmi jemné a nesnášejí hrubé zacházení. Je s nimi třeba manipulovat s velkým citem, aby nedošlo k jejich zničení, neboť pořizovací cena každého kusu činí cca 4000 Kč. Aparatura byla nově osazena elektronický teploměrem Greisinger, který nahradil klasický rtuťový teploměr znázorněný na obr Pořizovací cena teploměru Greisinger činí cca 9000 Kč. 61

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB.

HYDROSTATICKÝ TLAK. 1. K počítači připojíme pomocí kabelu modul USB. HYDROSTATICKÝ TLAK Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem

Více

Kalorimetrická měření I

Kalorimetrická měření I KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 6: Kalibrace teploměru, skupenské teplo Datum měření: 17. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Kalibrace rtuťového

Více

Fyzikální praktikum 1

Fyzikální praktikum 1 Fyzikální praktikum 1 FJFI ČVUT v Praze Úloha: č. 5 - Kalibrace teploměru, skupenské teplo Jméno: Ondřej Finke Datum měření: 6.10.2014 Kruh: FE Skupina: 4 Klasifikace: 1. Pracovní úkoly 1.1 - Kalibrace

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR

ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav počítačové a řídicí techniky Ústav fyziky a měřicí techniky LABORATOŘ OBORU IIŘP ÚLOHA S2 STATICKÁ CHARAKTERISTIKA KONDENZÁTORU BRÝDOVÝCH PAR Zpracoval:

Více

1 Tlaková ztráta při toku plynu výplní

1 Tlaková ztráta při toku plynu výplní I Základní vztahy a definice 1 Tlaková ztráta při toku plynu výplní Proudění plynu (nebo kapaliny) nehybnou vrstvou částic má řadu aplikací v chemické technoloii. Částice tvořící vrstvu mohou být kuličky,

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max.

PRAKTIKUM... Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Odevzdal dne: Seznam použité literatury 0 1. Celkem max. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM... Úloha č. Název: Pracoval: stud. skup. dne Odevzdal dne: Možný počet bodů Udělený počet bodů Práce při měření 0 5 Teoretická

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

PROCESY V TECHNICE BUDOV cvičení 3, 4

PROCESY V TECHNICE BUDOV cvičení 3, 4 UNIVERZITA TOMÁŠE ATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE UDOV cvičení 3, 4 část Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin.

1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 345 K metodou bublin. 1 Pracovní úkoly 1. Změřte teplotní závislost povrchového napětí destilované vody σ v rozsahu teplot od 295 do 35 K metodou bublin. 2. Měřenou závislost znázorněte graficky. Závislost aproximujte kvadratickou

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Měření Poissonovy konstanty vzduchu. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 4: Měření dutých objemů vážením a kompresí plynu Datum měření: 23. 10. 2009 Měření Poissonovy konstanty vzduchu Jméno: Jiří Slabý Pracovní skupina: 1 Ročník

Více

d p o r o v t e p l o m ě r, t e r m o č l á n k

d p o r o v t e p l o m ě r, t e r m o č l á n k d p o r o v t e p l o m ě r, t e r m o č l á n k Ú k o l : a) Proveďte kalibraci odporového teploměru, termočlánku a termistoru b) Určete teplotní koeficienty odporového teploměru, konstanty charakterizující

Více

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I.

KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. KLIMATIZACE A PRŮMYSLOVÁ VZDUCHOTECHNIKA VYBRANÉ PŘÍKLADY KE CVIČENÍ I. Ing. Jan Schwarzer, Ph.D.. Praha 2011 Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 Obsah 1 Obsah... 2 2 Označení...3

Více

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem

PŘENOS KYSLÍKU V BIOTECHNOLOGII. Úvod. Limitace metabolismu kyslíkem PŘENOS KYSLÍKU V BIOTECHNOLOGII Při aerobních procesech katalyzovaných buňkami nebo enzymy je nutné zabezpečit dostatečný přívod kyslíku do fermentačního média reaktoru (fermentoru). U některých organismů

Více

plynu, Měření Poissonovy konstanty vzduchu

plynu, Měření Poissonovy konstanty vzduchu Úloha 4: Měření dutých objemů vážením a kompresí plynu, Měření Poissonovy konstanty vzduchu FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 2.11.2009 Jméno: František Batysta Pracovní skupina: 11 Ročník

Více

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka

Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Experimentální metody EVF I.: Vysokovakuová čerpací jednotka Vypracovali: Štěpán Roučka, Jan Klusoň, Vratislav Krupař Zadání Seznámit se s obsluhou vysokovakuové aparatury čerpané rotační a difúznívývěvouauvéstjidochodu.

Více

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK

Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK Laboratorní úloha č.8 MĚŘENÍ STATICKÝCH A DYNAMICKÝCH CHARAKTERISTIK a/ PNEUMATICKÉHO PROPORCIONÁLNÍHO VYSÍLAČE b/ PNEUMATICKÉHO P a PI REGULÁTORU c/ PNEUMATICKÉHO a SOLENOIDOVÉHO VENTILU ad a/ Cejchování

Více

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ

STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ STANOVENÍ VLASTNOSTÍ AERAČNÍCH ZAŘÍZENÍ Zadání: 1. Stanovte oxygenační kapacitu a procento využití kyslíku v čisté vodě pro provzdušňovací porézní element instalovaný v plexi válci následujících rozměrů:

Více

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech 3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice

Více

ATMOSFÉRICKÝ TLAK A NADMOŘSKÁ VÝŠKA

ATMOSFÉRICKÝ TLAK A NADMOŘSKÁ VÝŠKA ATMOSFÉRICKÝ TLAK A NADMOŘSKÁ VÝŠKA Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti plynů Cílová skupina: Žák 7. ročníku základní

Více

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1)

pv = nrt. Lord Celsius udržoval konstantní tlak plynu v uzavřené soustavě. Potom můžeme napsat T, tedy V = C(t t0) = Ct Ct0, (1) 17. ročník, úloha I. E... absolutní nula (8 bodů; průměr 4,03; řešilo 40 studentů) S experimentálním vybavením dostupným v době Lorda Celsia změřte teplotu absolutní nuly (v Celsiově stupnici). Poradíme

Více

Základní pojmy a jednotky

Základní pojmy a jednotky Základní pojmy a jednotky Tlak: p = F S [N. m 2 ] [kg. m. s 2. m 2 ] [kg. m 1. s 2 ] [Pa] (1) Hydrostatický tlak: p = h. ρ. g [m. kg. m 3. m. s 2 ] [kg. m 1. s 2 ] [Pa] (2) Převody jednotek tlaku: Bar

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 2: Hysterezní smyčka Datum měření: 11. 3. 2016 Doba vypracovávání: 10 hodin Skupina: 1, pátek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zjistěte,

Více

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4

MĚŘENÍ Laboratorní cvičení z měření. Měření oteplovací charakteristiky, část 3-3-4 MĚŘENÍ Laboratorní cvičení z měření Měření oteplovací charakteristiky, část Číslo projektu: Název projektu: Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Sada: 20 Číslo materiálu: VY_32_INOVACE_

Více

4 Viskoelasticita polymerů II - creep

4 Viskoelasticita polymerů II - creep 4 Viskoelasticita polymerů II - creep Teorie Ke zkoumání mechanických vlastností viskoelastických polymerních látek používáme dvě nestacionární metody: relaxační test (podrobně popsaný v úloze Viskoelasticita

Více

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku

Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Úloha č.1: Stanovení molární tepelné kapacity plynu za konstantního tlaku Teorie První termodynamický zákon je definován du dq dw (1) kde du je totální diferenciál vnitřní energie a dq a dw jsou neúplné

Více

Laboratorní návod - Stanovení molární hmotnosti snadno těkavé látky metodou Viktora Meyera 1

Laboratorní návod - Stanovení molární hmotnosti snadno těkavé látky metodou Viktora Meyera 1 Laboratorní návod - Stanovení molární hmotnosti snadno těkavé látky metodou Viktora Meyera 1 Molární hmotnost M látky je definována jako podíl hmotnosti m a odpovídajícího látkového množství n Jednotkou

Více

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY

ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Ústav počítačové a řídicí techniky Ústav fyziky a měřicí techniky LABORATOŘ OBORU IIŘP ÚLOHA R1 REGULACE TLAKU V BRÝDOVÉM PROSTORU ODPARKY Zpracoval: Miloš Kmínek

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem Měření měrného skupenského tepla varu vody Datum měření: 30. 10. 2009 Jméno: Jiří Slabý Pracovní skupina:

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

12 Prostup tepla povrchem s žebry

12 Prostup tepla povrchem s žebry 2 Prostup tepla povrchem s žebry Lenka Schreiberová, Oldřich Holeček Základní vztahy a definice V případech, kdy je třeba sdílet teplo z média s vysokým součinitelem přestupu tepla do média s nízkým součinitelem

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

2.1 Empirická teplota

2.1 Empirická teplota Přednáška 2 Teplota a její měření Termika zkoumá tepelné vlastnosti látek a soustav těles, jevy spojené s tepelnou výměnou, chování soustav při tepelné výměně, změny skupenství látek, atd. 2.1 Empirická

Více

VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU

VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU VYUŽITÍ MULTIFUNKČNÍHO KALIBRÁTORU PRO ZKRÁCENOU ZKOUŠKU PŘEPOČÍTÁVAČE MNOŽSTVÍ PLYNU potrubí průtokoměr průtok teplota tlak Přepočítávač množství plynu 4. ročník mezinárodní konference 10. a 11. listopadu

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI

215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI 215.1.9 - REKTIFIKACE DVOUSLOŽKOVÉ SMĚSI, VÝPOČET ÚČINNOSTI ÚVOD Rektifikace je nejčastěji používaným procesem pro separaci organických látek. Je široce využívána jak v chemické laboratoři, tak i v průmyslu.

Více

PROCESY V TECHNICE BUDOV 8

PROCESY V TECHNICE BUDOV 8 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 8 Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO

FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEI VUT BRNO Spolupracoval Příprava Název úlohy Šuranský Radek Opravy Jméno Ročník Škovran Jan Předn. skup. B Měřeno dne 4.03.2002 Učitel Stud. skupina 2 Kód Odevzdáno

Více

T0 Teplo a jeho měření

T0 Teplo a jeho měření Teplo a jeho měření 1 Teplo 2 Kalorimetrie Kalorimetr 3 Tepelná kapacita 3.1 Měrná tepelná kapacita Měrná tepelná kapacita při stálém objemu a stálém tlaku Poměr měrných tepelných kapacit 3.2 Molární tepelná

Více

Měření měrného skupenského tepla tání ledu

Měření měrného skupenského tepla tání ledu KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření měrného skupenského tepla tání ledu Úvod Tání, měrné

Více

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu:

1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: 1 Pracovní úkoly 1. Okalibrujte pomocí bodu tání ledu, bodu varu vody a bodu tuhnutí cínu: a. platinový odporový teploměr (určete konstanty R 0, A, B) b. termočlánek měď-konstantan (určete konstanty a,

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV

TECHNICKÁ ZAŘÍZENÍ BUDOV Katedra prostředí staveb a TZB TECHNICKÁ ZAŘÍZENÍ BUDOV Cvičení pro bakalářské studium studijního oboru Příprava a realizace staveb Cvičení č. 7 Zpracoval: Ing. Zdeněk GALDA Nové výukové moduly vznikly

Více

2 - Kinetika sušení vybraného materiálu (Stanice sušení)

2 - Kinetika sušení vybraného materiálu (Stanice sušení) 2 - Kinetika sušení vybraného materiálu (Stanice sušení) I Základní vztahy a definice Sušení je děj, při kterém se odstraňuje kapalina obsažená v materiálu. Sušením se nejčastěji odstraňuje voda (složka

Více

Filmová odparka laboratorní úlohy

Filmová odparka laboratorní úlohy VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE Filmová odparka laboratorní úlohy Část 1 ÚLOHY PRO VÝUKU PŘEDMĚTU MĚŘICÍ A ŘÍDICÍ TECHNIKA Verze: 1.0 Prosinec 2004 ÚLOHA 1 Regulace tlaku v brýdovém prostoru

Více

Funkce - pro třídu 1EB

Funkce - pro třídu 1EB Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému

Více

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.

SEZNAM POKUSŮ TEPLO 1 NÁVODY NA POKUSY MĚŘENÍ TEPLOT. Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2. TEPLO TA1 419.0008 TEPLO 1 SEZNAM POKUSŮ MĚŘENÍ TEPLOT Měření teplot. Používání teploměru. (1.1.) Kalibrace teploměru. (1.2.) KALORIMETRIE Teplotní rovnováha. (2.1.) Studium kalorimetru. (2.2.) Křivka

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU

CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU CVIČENÍ 1 - část 2: MOLLIÉRŮV DIAGRAM A ZMĚNY STAVU VLHKÉHO VZDUCHU Co to je Molliérův diagram? - grafický nástroj pro zpracování izobarických změn stavů vlhkého vzduchu - diagram je sestaven pro konstantní

Více

Úloha 5: Kalibrace rtuťového teploměru plynovým varu vody

Úloha 5: Kalibrace rtuťového teploměru plynovým varu vody Úloha 5: Kalibrace rtuťového teploměru plynovým teploměrem, měření měrného skupenského tepla varu vody FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 9.11.2009 Jméno: František Batysta Pracovní skupina:

Více

Vakuová fyzika 1 1 / 40

Vakuová fyzika 1 1 / 40 Měření tlaku Měření celkových tlaků Měření parciálních tlaků Rozdělení měřících metod Vakuová fyzika 1 1 / 40 Absolutní metody - hodnota tlaku je určena přímo z údaje měřícího přístroje, nebo výpočtem

Více

5 Charakteristika odstředivého čerpadla

5 Charakteristika odstředivého čerpadla 5 Charakteristika odstředivého čerpadla František Hovorka I Základní vztahy a definie K dopravě kapalin se často používá odstředivýh čerpadel Znalost harakteristiky čerpadla umožňuje posouzení hospodárnosti

Více

Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých

Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých Úloha 6 02PRA1 Fyzikální praktikum 1 Kalibrace teploměru, skupenské teplo Abstrakt: V této úloze se studenti seznámí s metodou kalibrace teploměru a na základě svých měření i ověří Gay-Lussacův zákon.

Více

12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami

12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami 12 Fázové diagramy kondenzovaných systémů se třemi kapalnými složkami Kondenzovanými systémy se třemi kapalnými složkami jsou v této kapitole míněny roztoky, které vzniknou smísením tří čistých kapalin

Více

5 Vsádková rektifikace vícesložkové směsi. 1. Cíl práce. 2. Princip

5 Vsádková rektifikace vícesložkové směsi. 1. Cíl práce. 2. Princip 5 Vsádková rektifikace vícesložkové směsi Teoretický základ separačních metod založených na rozdílném bodu varu složek je fyzikální rovnováha mezi kapalnou a parní fází. Rovnováha je stav dosažený po nekonečné

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Název: Měření indexu lomu Jaminovým interferometrem Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III. Úloha č. 19 Název: Měření indexu lomu Jaminovým interferometrem Pracoval: Lukáš Vejmelka obor (kruh) FMUZV (73) dne 17.3.2014

Více

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech

3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech 3 Ztráty tlaku při proudění tekutin v přímém potrubí a v místních odporech Oldřich Holeček, Lenka Schreiberová, Vladislav Nevoral I Základní vztahy a definice Při popisu proudění tekutin se vychází z rovnice

Více

Přírodní vědy aktivně a interaktivně

Přírodní vědy aktivně a interaktivně Přírodní vědy aktivně a interaktivně Elektronický materiál byl vytvořen v rámci projektu OP VK CZ.1.07/1.1.24/01.0040 Zvyšování kvality vzdělávání v Moravskoslezském kraji Střední průmyslová škola stavební,

Více

Měření povrchového napětí

Měření povrchového napětí Měření povrchového napětí Úkol : 1. Změřte pomocí kapilární elevace povrchové napětí daných kapalin při dané teplotě. 2. Změřte pomocí kapkové metody povrchové napětí daných kapalin při dané teplotě. Pomůcky

Více

Vyjadřování přesnosti v metrologii

Vyjadřování přesnosti v metrologii Vyjadřování přesnosti v metrologii Měření soubor činností, jejichž cílem je stanovit hodnotu veličiny. Výsledek měření hodnota získaná měřením přisouzená měřené veličině. Chyba měření výsledek měření mínus

Více

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě.

Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě. oučinitel odporu Vyhodnocení součinitele alfa z dat naměřených v reálných podmínkách při teplotách 80 C a pokojové teplotě Zadání: Vypočtěte hodnotu součinitele α s platinového odporového teploměru Pt-00

Více

HYDROSTATICKÝ PARADOX

HYDROSTATICKÝ PARADOX HYDROSTATICKÝ PARADOX Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem

Více

Diagnostika těsnosti chladicí soustavy

Diagnostika těsnosti chladicí soustavy : Diagnostika těsnosti chladicí soustavy Obr. 1: Motor zahřejeme na provozní teplotu Obr. 2: Opatrně demontujeme uzávěr expanzní nádoby Obr. 3: Podle demontovaného uzávěru vybereme vhodné víčko Měřící

Více

2 Přímé a nepřímé měření odporu

2 Přímé a nepřímé měření odporu 2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 5: Měření Poissonovy konstanty a dutých objemů Datum měření: 10. 12. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: Část I Měření Poissonovy

Více

Přednáška 8. Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy. Martin Kormunda

Přednáška 8. Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy. Martin Kormunda Přednáška 8 Vývěvy s proudem pracovní tekutiny: vodní vývěva, ejektorové a difúzní vývěvy Vodokružní vývěva vývěva využívá rotační pohyb podobně jako rotační olejová vývěva obdobně vznikají uzavřené komory

Více

HUSTOTA PEVNÝCH LÁTEK

HUSTOTA PEVNÝCH LÁTEK HUSTOTA PEVNÝCH LÁTEK Hustota látek je základní informací o studované látce. V případě homogenní látky lze i odhadnout druh materiálu s pomocí známých tabulkovaných údajů (s ohledem na barvu a vzhled materiálu

Více

Teplota. fyzikální veličina značka t

Teplota. fyzikální veličina značka t Teplota fyzikální veličina značka t Je to vlastnost předmětů a okolí, kterou je člověk schopen vnímat a přiřadit jí pocity studeného, teplého či horkého. Jak se tato vlastnost jmenuje? Teplota Naše pocity

Více

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek

Univerzita obrany. Měření na výměníku tepla K-216. Laboratorní cvičení z předmětu TERMOMECHANIKA. Protokol obsahuje 13 listů. Vypracoval: Vít Havránek Univerzita obrany K-216 Laboratorní cvičení z předmětu TERMOMECHANIKA Měření na výměníku tepla Protokol obsahuje 13 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování: 7.5.2011

Více

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi

2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi 1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4

Více

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU

4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 4 STANOVENÍ KINEMATICKÉ A DYNAMICKÉ VISKOZITY OVOCNÉHO DŽUSU (KAPILÁRNÍ VISKOZIMETR UBBELOHDE) 1. TEORIE: Ve všech kapalných látkách

Více

9. MĚŘENÍ TEPELNÉ VODIVOSTI

9. MĚŘENÍ TEPELNÉ VODIVOSTI Měřicí potřeby 9. MĚŘENÍ TEPELNÉ VODIVOSTI 1) střídavý zdroj s regulačním autotransformátorem 2) elektromagnetická míchačka 3) skleněná kádinka s olejem 4) zařízení k měření tepelné vodivosti se třemi

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

TEPLO PŘIJATÉ A ODEVZDANÉ TĚLESEM PŘI TEPELNÉ VÝMĚNĚ

TEPLO PŘIJATÉ A ODEVZDANÉ TĚLESEM PŘI TEPELNÉ VÝMĚNĚ TEPLO PŘIJATÉ A ODEVZDANÉ TĚLESEM PŘI TEPELNÉ VÝMĚNĚ Vzdělávací předmět: Fyzika Tematický celek dle RVP: Energie Tematická oblast: Vnitřní energie. Teplo Cílová skupina: Žák 8. ročníku základní školy Cílem

Více

Obrázek 8.1: Základní části slunečního kolektoru

Obrázek 8.1: Základní části slunečního kolektoru 49 Kapitola 8 Měření účinnosti slunečního kolektoru 8.1 Úvod Sluneční kolektor je zařízení, které přeměňuje elektromagnetické sluneční záření na jiný druh energie. Většinou jde o přeměnu na elektrickou

Více

Měření měrné telené kapacity pevných látek

Měření měrné telené kapacity pevných látek Měření měrné telené kapacity pevných látek Úkol :. Určete tepelnou kapacitu kalorimetru.. Určete měrnou tepelnou kapacitu daných těles. 3. Naměřené hodnoty porovnejte s hodnotami uvedených v tabulkách

Více

Stanovení kritické micelární koncentrace

Stanovení kritické micelární koncentrace Stanovení kritické micelární koncentrace TEORIE KONDUKTOMETRIE Měrná elektrická vodivost neboli konduktivita je fyzikální veličinou, která popisuje schopnost látek vést elektrický proud. Látky snadno vedoucí

Více

Taková vrstva suspenze je nazývána fluidní vrstvou. Její existence je vymezena přesně definovanou oblastí mimovrstvové rychlosti tekutiny,

Taková vrstva suspenze je nazývána fluidní vrstvou. Její existence je vymezena přesně definovanou oblastí mimovrstvové rychlosti tekutiny, 8 Fluidace Lenka Schreiberová I Základní vztahy a definice Fluidace je děj, při kterém tekutina proudící ve směru opačném směru zemské tíže vytváří spolu s pevnými částicemi suspenzi. Suspenze může vyplňovat

Více

Stanovení hustoty pevných a kapalných látek

Stanovení hustoty pevných a kapalných látek 55 Kapitola 9 Stanovení hustoty pevných a kapalných látek 9.1 Úvod Hustota látky ρ je hmotnost její objemové jednotky, definované vztahem: ρ = dm dv, kde dm = hmotnost objemového elementu dv. Pro homogenní

Více

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen.

GEODÉZIE II. metody Trigonometrická metoda Hydrostatická nivelace Barometrická nivelace GNSS metoda. Trigonometricky určen. ení. Princip určen. Vysoká škola báňská technická univerzita Ostrava Hornicko-geologická fakulta Institut geodézie a důlního měřictví GEODÉZIE II Ing. Hana Staňková, Ph.D. 3. URČOV OVÁNÍ VÝŠEK metody Trigonometrická metoda

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou:

Systém vykonávající tlumené kmity lze popsat obyčejnou lineární diferenciální rovnice 2. řadu s nulovou pravou stranou: Pracovní úkol: 1. Sestavte obvod podle obr. 1 a změřte pro obvod v periodickém stavu závislost doby kmitu T na velikosti zařazené kapacity. (C = 0,5-10 µf, R = 0 Ω). Výsledky měření zpracujte graficky

Více

Funkce a lineární funkce pro studijní obory

Funkce a lineární funkce pro studijní obory Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK FYZIKÁLNÍ PRAKTIKUM III Úloha číslo: 16 Název: Měření indexu lomu Fraunhoferovou metodou Vypracoval: Ondřej Hlaváč stud. skup.: F dne:

Více

Termodynamika - určení měrné tepelné kapacity pevné látky

Termodynamika - určení měrné tepelné kapacity pevné látky I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 3 Termodynamika - určení měrné

Více

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par

12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par 1/18 12. Termomechanika par, Clausiova-Clapeyronova rovnice, parní tabulky, základni termodynamické děje v oblasti par Příklad: 12.1, 12.2, 12.3, 12.4, 12.5, 12.6, 12.7, 12.8, 12.9, 12.10, 12.11, 12.12,

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. stud. skup. FMUZV (73) dne 27.2.2013.

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. stud. skup. FMUZV (73) dne 27.2.2013. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. XII Název: Měření viskozity Pracoval: Lukáš Vejmelka stud. skup. FMUZV (73) dne 27.2.2013 Odevzdal dne: Možný

Více

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem,

kde p je celkový tlak par nad vroucí kapalinou, u atmosférické destilace shodný s atmosférickým tlakem, Destilace diferenciální bilance a posouzení vlivu aparaturních dílů na složení destilátu Úvod: Diferenciální destilace je nejjednodušší metodou dělení kapalných směsí destilací. Její výsledky závisí na

Více

E1 - Měření koncentrace kyslíku magnetickým analyzátorem

E1 - Měření koncentrace kyslíku magnetickým analyzátorem E1 - Měření koncentrace kyslíku magnetickým analyzátorem Funkční princip analyzátoru Podle chování plynů v magnetickém poli rozlišujeme plyny paramagnetické a diamagnetické. Charakteristickou konstantou

Více

ZMĚNY SKUPENSTVÍ LÁTEK

ZMĚNY SKUPENSTVÍ LÁTEK ZMĚNY SKUPENSTVÍ LÁTEK TÁNÍ A TUHNUTÍ - OSNOVA Kapilární jevy příklad Skupenské přeměny látek Tání a tuhnutí Teorie s video experimentem Příklad KAPILÁRNÍ JEVY - OPAKOVÁNÍ KAPILÁRNÍ JEVY - PŘÍKLAD Jak

Více

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials

Fázové rovnováhy I. Phase change cooling vest $ with Free Shipping. PCM phase change materials Fázové rovnováhy I PCM phase change materials akumulace tepla pomocí fázové změny (tání-tuhnutí) parafin, mastné kyseliny tání endotermní tuhnutí - exotermní Phase change cooling vest $149.95 with Free

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

VOLTAMPEROMETRIE. Stanovení rozpuštěného kyslíku

VOLTAMPEROMETRIE. Stanovení rozpuštěného kyslíku VOLTAMPEROMETRIE Stanovení rozpuštěného kyslíku Inovace předmětu probíhá v rámci projektu CZ.1.07/2.2.00/28.0302 Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace.

Více

Rovnováha Tepelná - T všude stejná

Rovnováha Tepelná - T všude stejná Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem

Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Fázové heterogenní rovnováhy Fáze = homogenní část soustavy, oddělná fyzickým rozhraním, na rozhraní se vlastnosti mění skokem Rovnováha Tepelná - T všude stejná Mechanická - p všude stejný Chemická -

Více