CZECH TECHNICAL UNIVERSITY IN PRAGUE Faculty of Civil Engineering Life Cycle Assessment of Building Products and Buildings Ing. Julie Hodková 2012
environmental impacts of construction sector
environmental impacts of construction sector Energy use 25 40% Raw materials 30% Water use 25% Resources Soil 10% CO2 emission Solid waste 30-40% 30 40% Loads Liquid waste 20% 0% 10% 20% 30% 40% 50% 60%
life cycle of a building from cradle to grave
life cycle of building - stages Usualy neglected Must be calculated
operational energy x embodied energy residential bulding (1927), masonry, no thermal insulation current residential house (1999), masonry low-energy house (2002), timbre frame 250 200 150 100 50 GJ/m2 250 250 200 GJ/m2 200 GJ/m2 1: 26 150 1: 21 150 100 100 1: 7 50 50 0 0 10 20 30 40 50 60 70 80 years 0 0 10 20 30 40 50 60 70 80 years 0 0 10 20 30 40 50 60 70 80 years values per 1m 2 of floor surface
life cycle of building materials - stages Production is crucial
Environmental impacts in legislation Standards from the field of building sustainability - EN 15643 1,2,3,4 - Regulation of the European Parliament and the EU Council No. 305/2011 Standards focused on calculation of environmental impacts - CEN/TR 15941 data quality - EN 15804 general rules for EPDs calculation - EN 15978 calculation of environmental profile of buildings
terms and definitions impact category x indicators equivalent emissions (CO 2,eq., etc.) embodied emissions (CO 2,eq., SO 2,eq., aj.) primary energy embodied energy
impact categories HF CFC NO 2 CH 4 CO 2 NH 3 SO 2 NO tetrachlor N 2 O HCl NO x HCFC SF 6 impact on the environment
impact categories SO 2 NO HF AP NO 2 CO 2 CH4 HCl NO x tetrachlor GWP N 2 O NH 3 materials freon HCFC SF 6 Envir. land energy POCP NP ODP impact category
impact categories
impact categories geographical context local level waste, emissions SO2,eq., (PO4)3,eq. regional level transport global level land use, water and energy resources consumption acidification eutrophication smog global warming ozone layer depletion
indicators impact categories - example Emissions to air aggregation Impact category Zdroj: Anders C. Schmidt a kol.: A Comparative Life Cycle Assessment of Building Insulation Products made of Stone Wool, Paper Wool and Flax, Part 2: Comparative Assessment
CO 2 emission X CO 2,eq. [kg/tj] boiler on natural gas boiler on brown coal boiler on wood electricity energy mix CZE (2008) Zdroj: GEMIS + Czech database (CityPlan)
primary energy nonrenewable x renewable primary energy final energy consumption not use to assess real expression of consumption! energy assessment, energy audit
energy conversion factor (ECF) extraction of primary energy resources production of electricity distribution final energy consumption ECF conversion factor = primary energy final energy consumption
conversion factor palivo faktor zemní plyn 1,4 elektrická energie - mix ČR 3,2 elektrická energie - fotovoltaika 0,2 elektrická energie - větrná energie 0,2 uhlí (hnědé, černé) 1,5 lehký topný olej 1,4 dřevěné pelety 0,15 kusové dřevo 0,05 bioplyn 0,12 Zdroj: GEMIS + česká databáze (CityPlan)
GEMIS electricity plants data
conversion factor Zdroj: GEMIS + česká databáze (CityPlan)
emission factor CO2,eq. [g/mj] Zdroj: GEMIS + česká databáze (CityPlan)
emission factor SO2,eq. [g/mj] Zdroj: GEMIS + česká databáze (CityPlan)
primary energy and passive houses energy consumption for heating 15 kwh/(m 2.a) primary energy for all appliances max. 120 kwh/(m 2.a) if uses only electricity for everything 42 x 3,0 > 120 kwh/(m 2.a) it is not a passive house!
final consumption of energy no matter what is the energy carrier konečná final energy spotřeba consumption energie [kwh/m2.a] [kwh/(m2.rok)] konečná spotřeba energie [kwh/(m2.rok)] 300 300 250 250 200 200 150 150 100 100 50 50 0 0 D 250 D 250 D 100 D 100 D 50 D 50 D 15 D 15 přídatná energy consumption spotřeba elektrické for house energie technologies přídatná spotřeba elektrické energie elektrospotřebiče electronic appliances vč. osvětlení and lightening elektrospotřebiče vč. osvětlení TV hot water TV vytápění heating vytápění
primary energy 500 450 895 400 350 300 250 200 150 100 50 0 D 250 ZE D 100 ZE D 50 ZE D 15 ZE D 250 EE D 100 EE D 50 EE D 15 EE D 250 PE D 100 PE D 50 PE D 15 PE D 250 PO D 100 PO D 50 PO D 15 PO primary spotřeba energy primární consumption energie [kwh/(m2.rok)] [kwh/m2.a] 120 kwh/(m 2.a) přídatná energy consumption spotřeba elektrické for technologies energie elektrospotřebiče electronic appliances vč. osvětlení and lightening TUV hot water vytápění heating Explanation: D100 ZE Energy source for other consumptions Energy source for heating and hot water Energy consumption for heating kwh/(m 2.a) Z natural gas E electricity from the grid P pellets O green electricity
D 250 ZE D 100 ZE D 50 ZE D 15 ZE D 250 EE D 100 EE D 50 EE D 15 EE D 250 PE D 100 PE D 50 PE D 15 PE D 250 PO D 100 PO D 50 PO 212 D 15 PO 120 100 80 60 40 20 0 global warming potential emise CO2,ekv. [kg/(m2.rok)]
D 250 ZE D 100 ZE D 50 ZE D 15 ZE D 250 EE D 100 EE D 50 EE D 15 EE D 250 PE D 100 PE D 50 PE D 15 PE D 250 PO D 100 PO 473 D 50 PO D 15 PO 250 200 150 100 50 0 acidification potential emise SO2,ekv. [kg/(m2.rok)]
embodied energy = primary energy consumption (PEI) of a product throughout its life cycle = primarily energy consumption for the extraction of raw materials and final product manufacture embodied emission (CO 2,eq., SO 2,eq. aj.)
embodied values of materials primary energy consumption (PEI) = embodied energy svázaná spotřeba energie [MJ/kg] 120 100 80 60 40 20 0 prostý beton pórobeton plná cihla malta písek, přírodní písek nepálená hlína - cihla (výroba v místě) nepálená hlína - cihla (dovoz) dřevovláknitá deska z měkého dřeva expandovaný polystyren extrudovaný polystyren ovčí vlna minerální vata řezivo, prkna PVC - podlahová krytina betonová taška měděný plech titan-zinkový plech PVC - izolační pás armovací ocel!!! Attention, you can not compare values for 1 kg, always elements with the same function must be compared Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999
embodied values of materials Global warming potential (GWP)= svázaná embodied produkce CO2,eq. emisí emissions CO2,ekv. [kg/kg] 6 5 4 3 2 1 0 prostý beton pórobeton plná cihla malta písek, přírodní písek nepálená hlína - cihla (výroba v místě) nepálená hlína - cihla (dovoz) dřevovláknitá deska z měkého dřeva expandovaný polystyren extrudovaný polystyren ovčí vlna minerální vata řezivo, prkna PVC - podlahová krytina betonová taška měděný plech titan-zinkový plech PVC - izolační pás armovací ocel!!! Attention, you can not compare values for 1 kg, always elements with the same function must be compared Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999
Example: embodied values of materials 250 svázaná Embodied spotřeba energy energie [MJ/kg] 200 150 90% 100 50 0 Aluminium hliníkový sheet plech Aluminium hliníkový plech sheet - recyklovaný recycled Zdroj: Waltjen, T.: Ökologischer Bauteilkatalog. Bewertete gängige Konstruktionen, Springer-Verlag/Wien 1999
Example: Rockwool odpady 0% obal vč. likvidace 4% doprava 2% PEI surovina 6% pojivo 12% odpady z obalů odpady 5% 0% doprava 2% obal 1% GWP surovina 11% výroba 76% výroba 81%
environmental parameters thermal insulation Primary energy consumption (PEI)!!! Attention, you can not compare values for 1 kg, always elements with the same function must be compared, here e.g. insulation with U=0,25 W/m2K!!! Zdroj: Mötzl, H., Zelger, T.: Öekologie der Dämmstoffe, Springer-Verlag/Wien 2000
environmental parameters thermal insulation Global warming potential (GWP) kgco2,eq./kg Zdroj: Mötzl, H., Zelger, T.: Öekologie der Dämmstoffe, Springer-Verlag/Wien 2000
environmentální parametry tepelné izolace Global warming potential (GWP) kgco2,eq./kg Zdroj: Österreichisches Institut für Baubiologie und Bauökologie: http://www.ibo.at/de/oekokennzahlen.htm
units for comparisons Declared unit e.g. 1kg versus Functional unit e.g. 1 m 2 Example: facade insulation, U insulation = 0,15 W/(m 2.K) Acidification potential SO 2,ekv. (AP) - kg/m 2 Primary energy consumption (PEI) - MJ/m 2 Mineral wool 258,9 589,9 Expanded polystyrene 212,7 793,7
slab structures embodied energy 0 100 200 300 400 500 600 MJ/m2
databáze Název databáze Správce databáze Odkaz Ecoinvent (LCIA) Swiss Centre for Life Cycle Inventories www.ecoinvent.ch GaBi (LCIA) PE International www.gabi-software.com Environdec (EPD) Environdec www.environdec.com INIES (EPD) Centre Scientifique et Technique du Bâtiment (CSTB) www.inies.fr IBO Baustoffdatenbank (LCIA) ICE (LCIA) Ökobau.dat (LCIA) Österreichisches Institut für Baubiologie und Bauökologie (IBO) University of Bath Bundesministeriums für Verkehr, Bau und Stadtentwicklung www.baubook.at www.bath.ac.uk/mecheng/sert/embodied/ www.nachhaltigesbauen.de IBU (EPD) Institut Bauen und Umwelt e.v. (IBU) www.bau-umwelt.de CENDEC (EPD) Centrum environmentálních prohlášení www.cendec.cz!!! Different databases = different methodologies, resources, age of data, localization, technological representativeness.=>
Green Guide - BRE http://www.bre.co.uk/greenguide
Green Guide - BRE
databases data differences Differences in the assessment of buildings according to different databases =>
databases differences in building assessments Assessments of environmental parameters of a timber house Databases: IBO, ICE, Ecoinvent Process: Using the bill of quantities the total environmental indicators were calculated PEI [MJ] Primary energy consumption (PEI [MJ]) of the building determined according to data from three different databases - IBO, ICE and Ecoinvent 2 500 000 2 000 000 1 500 000 1 000 000 500 000 0 Assessment by IBO database Assessment by ICE database Assessment by Ecoinvent database GWP [kgco2, eq.] Global warming potential (GWP [kg CO2,eq.]) of the building determined according to data from three different databases - IBO, ICE and Ecoinvent 150 000 100 000 50 000 0-50 000-100 000-150 000-200 000 Assessment by IBO database Assessment by ICE database Assessment by Ecoinvent database
databases differences - notices Improper or unsupported data selection can result in incomparable and incredible results You can only compare data calculated according to the same methodology => it is often sufficient to use a single database
databases differences need of national database Data used for the environmental assessment of buildings in the Czech Republic should come from a localized database, ensuring adequate data quality through: uniform methodology for the data collection, ensuring their consistency data from primary sources - data from measurements of the factory appropriate geographical, technological and temporal representativeness => Need to localized uniform methodology and database=>
Web-based catalog of materials and components including their technical and environmental parameters, localized for the Czech Republic www.envimat.cz
What is it? on-line tool for creating, evaluating and comparing structures in terms of environmental impact database of environmental parameters of building materials and structures for the Czech Republic General goal Provide environmental data of building materials on the Czech market and allow the public to interactively work with them.
Developement Since 2005, development of SBToolCZ at FCE CTU regarding the sustainable construction In 2009, research and concept of Envimat - the need for data in SBToolCZ beginning of the project in 2010 under the Student Grant Competition SGS 2011 functional beta version, finalizing user interface 2012 full functional version, used in the SBToolCZ certification 2013 development of a new module for complex calculation of buildings
Goals of Envimat Localized database of construction products Transparent system that helps to analyze differences between building elements, and will be used for optimization of structures Motivation of architects and designers to take into account of environmental profiles of materials in the design process of buildings Visibility of products that have a lower impact on the environment Encourage manufacturers to provide data Provide input data for SBToolCZ Increase public awareness of the environmental aspects and impacts
Data in Envimat currently it mainly uses generic data from the Swiss database Ecoinvent systém boundaries of "Cradle to Gate" in the future will only use specific data from EPD of products used on the Czech market -> Gradual replacement of data from Ecoinvent => Localized specific data of products from the market
Data in Envimat - EPD What is EPD? EPD = Environmental Product Declaration It is a type III environmental labeling according to ISO 14025 It is based on LCA and quantifies the environmental impacts of products It has a uniform methodology given by uniform rules PCR (Product Category Rules) It is comparable, objective (third party verification), a credible It provides localized specific data of products from the market Data are verified by an independent third party!!
Deviation other environmental labeling Type I environmental labeling = "ecolabel Focused only on selected topics such as: health aspects, the content of recycled materials, specific environmental issues (e.g. origin of wood)
Deviation other environmental labeling Type II environmental labeling = Self-declared environmental claims It is the most abused labeling. Often as consumers we see commercials with the proclamation of friendliness of the product to the environment. In most cases, however, this is only a marketing claims of the manufacturer, which is not verified by an independent third party (according to ISO 14021). = Greenwashing =>
Data in Envimat EPD Example of German EPD
Data v Envimatu EPD - Příklad českého EPD
Data v Envimatu EPD - Příklad českého EPD
Data in Envimat EPDs How to get them? Analysis of manufacturing process in the production site LCA of the product Set of basic data it the format of EPD EPD third party verification Approval by the certification body Entry into the Envimat database
Data in Envimat Systém boundary for data - LCA uses Cradle to Grave - for building products we use mostly Cradle to Gate (according to EN 15804), because their use behind the Gate is unpredictable + eventually the transport to the building site can be calculated separately for each specific case
Data in Envimat monitored parameters Environmental parameters Parameter Shortcut Units Primary energy input PEI MJ/kg Global warming potential GWP kg CO 2, eq./kg Acidification potential AP g SO 2, eq./kg Eutrophication potential EP g (PO 4 ) 3 - eq./kg Ozone depletion potential ODP g R -11 eq./kg Photochemical ozone creation potential POCP g C 2 H 4 eq./kg Technical parameters Parameter Units Thickness mm Specific weight kg/m 3 Surface mass density kg/m 2 Price* Sound reduction index Rw* Heat transfer coefficient* Thickness * Included if available CZK db W /mk W /m 2 K
Envimat functions catalog of materials and structures c c
Envimat functions - comparisons
Envimat functions modeling of structures
Envimat functions modeling of structures
Envimat functions EPDs enlistement
GEMIS Gesamt-Emissions-Modell Integrierter System freeware (www.oeko.de, www.cityplan.cz) developed by Öko-Institute in Darmstadt cooperation with EU, USA,... focus on energy, materials,... is based on an extensive database of materials and processes quality data for the energy input to the building
emissions of CO 2,eq. [g/mj] Zdroj: GEMIS + česká databáze (CityPlan)
LCA Life Cycle Assessment
set of standards 14 040 14 050 Standards of the Environmental management - Life cycle assessment EN ISO 14040:2006 Principles and framework EN ISO 14044:2006 Requirements and Guidelines ISO/TR 14047:2004 Examples of application of ISO 14042 ISO TS 14048:2003 Data documentation format ISO/TR 14049:2001 Examples of application of ISO 14041 for goal and scope definition of the Inventory analysis
new European standards New standards for sustainability of buildings
nové evropské normy New standards for sustainability of buildings EN 15978 Sustainability of construction works Assessment of environmental performance of buildings Calculation method EN 15804 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products
nové evropské normy životní cyklus Nové normy řady Udržitelnost staveb ČSN EN 15978 Udržitelnost staveb Posuzování environmentálních vlastností budov Výpočtová metoda ČSN EN 15804 Udržitelnost staveb Environmentální prohlášení o produktu Základní pravidla pro produktovou kategorii stavebních produktů
schéma posuzování životního cyklu
goal and scope definition functional unit definition what we want to assess goal of LCA how do we want to use the results of LCA e.g. comparisons, optimization of production processes definition of system boundary what to include in the assessment
goal and scope definition Definition of system boundary Which stages of the life cycle to include? Will it also assess the depreciation of machines that are designed for the extraction and transport of primary raw materials? Will it assess energy and water consumption at the building site? Will it evaluate all structures, or just construction frame? How much in detail the operational stage will be assessed? Will it include disposal stage?
goal and scope definition System boundary variants RAW MATERIALS EXTRACTION PRODUCTION Cradle to gate RAW MATERIALS EXTRACTION PRODUCTION TRANSPORT Cradle to site RAW MATERIALS EXTRACTION PRODUCTION TRANSPORT INSTALLATIO N MAINTENANC E DISPOSAL Cradle to grave
Life Cycle Inventory LCI Schematic representation of all material and energy flows in the assessed system Data collection Quantification of the flows
technological processes rock wool Zdroj: Anders Schmidt, Ph.D., FORCE Technology: Porovnání hodnocení životních cyklu tří izolačních materiálů
Source: EPD KB Bloky inventory analysis - quantification
inventory analysis LCI of building environmental impact (flows of energy, materials, emissions, ) Embodied values of materials construction? Impacts from operation of buildings operation disposal extraction transport productio doprava realizace maintenance, renovation, modernization, reconstruction, rehabilitation,... removal, transpor, recycling, waste
Life Cycle Impact Assessment - LCIA Data from LCI grouped into impact categories according to the chosen LCIA methodology and characterization factors U našich hodnocení seskupování odpadá, užíváme již data z kategorií dopadu.
LCIA of a building - example PEI [MJ/(m 2.a)] GWP [kg CO 2,eq. / (m 2.a)] Construstion materials production 118,0 11,6 Operation energy consumption 1 152,4 101,5 Total 1 270,4 113,1
interpretation setting the weights (importance) of the criteria sensitivity analysis transparency conclusions and recommendations
usual LCA indicators Non-renewable/renewable Primary Energy Input (PEInre/re) - MJ Global Warming Potential (GWP) - CO 2, eq. Acidification Potential (AP) - SO 2,eq. Eutrophication Potential (EP) PO 4,eq. Ozone Depletion Potential (ODP) R-11 eq. Photochemical Ozone Creation Potential (POCP) - C 2 H 4
LCA tools differ in scope, detail, focus, system boundaries,... SimaPro GaBi 4 Athena GEMIS EcoPro LCAiT BEES Athena GEMIS
limitations and problems of application of LCA The possibility of establishing various assumptions in the implementation of LCA (e.g. definition of systém boundary, selection of the impact categories) predispose subjective evaluations and their results. Application of LCA to buildings and generally to products with a long and complicated life cycle is problematic in terms of diverse product behavior in the future and its impossible accurate prediction. The accuracy of the evaluation results may be limited by the availability of adequate data or their quality. If the used product is recycled so that it changes its function, it is connected with other life cycle - it is not so obvious how the recycling should be included in the initial life cycle.
LCA use in practice development and improvement of products optimization of production processes comparing different products - selection of the product whose life cycle harms the environment the least strategic planning marketing, influencing public opinion eco-labeling - labeling of environmentally friendly products (including buildings) EPD
examples
residential building project standard (reference building) Sustainable building
reference residential house flows of primary energy and CO 2 emissions primary energy 70 000 GJ 60 000 50 000 40 000 30 000 20 000 10 000 0 0 10 20 30 40 50 60 70 80 operating energy embodied energy CO 2 emissions 4 000 000 kg CO2 3 000 000 70 000 GJ 60 000 50 000 40 000 30 000 20 000 10 000 0 0 10 20 30 40 50 60 70 operating energy embodied energy 4 000 000 kg CO2 3 000 000 80 2 000 000 2 000 000 1 000 000 1 000 000 0 0 0 10 20 30 40 50 60 70 sustainable residential house 80 0 10 20 30 40 50 60 70 80 operating emissions CO2 embodied CO2 operating emissions CO2 embodied CO2
operational energy x embodied energy operational energy [GJ/(m 2 a)] 3,0 2,5 2,0 1,5 1,0 0,5 panelové budovy BD DYGRYN staré budovy BD JECNA T06 B - VEZ T06 B - PK CHYNE T06 B - MB T06 B - BL ZS CERCANY BD DVOULETKA VVU-ETA_W DENMARK VVU-ETA_A BD REF RD REF RD PH UBD DENMARK_s UNETICE URD RD PASSIVE BD RUBESOVA RD BABINA RD FRV - MB BD VYSEHRADSKA současné budovy nízkoenergetické budovy 0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 embodied energy [GJ/m 2 ] values per1 m 2 of floor area
passive house INB 2010
case study refurbishment of housing operating primary energy [GJ/(m 2 a)] 3,0 2,5 2,0 1,5 1,0 0,5 panel buildings BD DYGRYN UBD low-energy buildings old buildings BD JECNA T06 B - VEZ T06 B - PK T06 B - MB T06 B - BL VVU-ETA_W VVU-ETA_A URD ZS CERCANY BD DVOULETKA UNETICE BD REF RD REF RD PH RD PASSIVE 0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 embodied energy [GJ/m 2 ] present buildings BD RUBESOVA RD BABINA RD FRV - MB BD VYSEHRADSKA possible stage after refurbishment values related to m 2 of the floor area
Thank you for your attention! And build sustainably!