Elektrolytické vylučování mědi (galvanoplastika)



Podobné dokumenty
7. Elektrolýza. Úkoly měření: Použité přístroje a pomůcky: Základní pojmy, teoretický úvod:

Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.

Číslo: Anotace: Prosinec Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Inhibitory koroze kovů

Pufry, pufrační kapacita. Oxidoredukce, elektrodové děje.

Solární dům. Vybrané experimenty

Datum: Projekt: Využití ICT techniky především v uměleckém vzdělávání Registrační číslo: CZ.1.07./1.5.00/34.

Sešit pro laboratorní práci z chemie

Název materiálu: Vedení elektrického proudu v kapalinách

ELEKTROLÝZA. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: Ročník: osmý

Na zaslal(a): Téra2507. Elektrochemické metody

ELEKTRICKÝ PROUD V KAPALINÁCH

Inovace profesní přípravy budoucích učitelů chemie

Úloha č. 2.: Jodometrické a elektrogravimetrické stanovení mědi

Koroze působením makročlánků

Stanovení korozní rychlosti objemovou metodou

PROTOKOL O PROVEDENÍ LABORATORNÍ PRÁCE

4. Stanovení teplotního součinitele odporu kovů

P + D PRVKY Laboratorní práce

ELEKTRICKÝ PROUD V KAPALINÁCH, PLYNECH A POLOVODIČÍCH

Zvyšování kvality výuky technických oborů

Ústřední komise Chemické olympiády. 52. ročník 2015/2016. ŠKOLNÍ KOLO kategorie D. časová náročnost 60 min ŘEŠENÍ ŠKOLNÍHO TESTU

Oxidace a redukce. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2. Redukce = odebrání kyslíku

P + D PRVKY Laboratorní práce Téma: Reakce mědi, stříbra a jejich sloučenin

Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KRAJSKÉ KOLO kategorie C. ZADÁNÍ PRAKTICKÉ ČÁSTI (40 BODŮ) časová náročnost: 120 minut

Ústřední komise Chemické olympiády. 52. ročník 2015/2016. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

Elektrický proud v kapalinách

Katedra chemie FP TUL ANC-C4. stechiometrie

9. ročník Galvanický článek

Měření měrné tepelné kapacity látek kalorimetrem

Ústřední komise Chemické olympiády. 50. ročník 2013/2014. OKRESNÍ KOLO kategorie D ŘEŠENÍ SOUTĚŽNÍCH ÚLOH

Ú L O H Y

Kovové povlaky. Kovové povlaky. Z hlediska funkce. V el. vodivém prostředí. velmi ušlechtilé méně ušlechtile (vzhledem k železu) tloušťka pórovitost

Elektrický proud v kapalinách

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

GALAVANICKÝ ČLÁNEK. V běžné životě používáme název baterie. Odborné pojmenování pro baterii je galvanický článek.

krystalizace výpočty

STEJNOSMĚRNÝ PROUD Elektrolýza TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

= vědní disciplína zabývající se ději a rovnováhami v soustavách, ve kterých se vyskytují elektricky nabité částice

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2

1.4 Kooperace fotovoltaického článku a elektrolyzéru pro výrobu vodíku

REAKCE V ANORGANICKÉ CHEMII

Míchání. P 0,t = Po ρ f 3 d 5 (2)

Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KONTROLNÍ TEST ŠKOLNÍHO KOLA kategorie C. ZADÁNÍ: 60 BODŮ časová náročnost: 120 minut

Elektrokinetická dekontaminace půd znečištěných kobaltem

Elektrochemie. 2. Elektrodový potenciál

Elektrochemická redukce korozních produktů na stříbře a jeho slitinách

Stanovení korozní rychlosti elektrochemickými polarizačními metodami

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály

Zařazení materiálu: Šablona: Sada: Inovace a zkvalitnění výuky v oblasti přírodních věd (V/2) Název materiálu: Elektrolýza 2 Autor materiálu:

Oxidace a redukce. Objev kyslíku nový prvek, vyvrácení flogistonové teorie. Hoření = slučování s kyslíkem = oxidace. 2 Mg + O 2 2 MgO S + O 2 SO 2

Chemické veličiny, vztahy mezi nimi a chemické výpočty

Vypočtěte, kolikaprocentní roztok hydroxidu sodného vznikne přidáním 700 g vody do 2,2 kg 80%ního roztoku hydroxidu.

Úloha I.E... nabitá brambora

Chemie - 5. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Laboratorní práce č. 8: Elektrochemické metody stanovení korozní rychlosti

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

Ústřední komise Chemické olympiády. 54. ročník 2017/2018. ŠKOLNÍ KOLO kategorie D ŘEŠENÍ TEORETICKÉ ČÁSTI: 70 BODŮ

C p. R d dielektrické ztráty R sk odpor závislý na frekvenci C p kapacita mezi přívody a závity

NEUTRALIZAČNÍ ODMĚRNÁ ANALÝZA (TITRACE)

Laboratorní práce č. 1: Přibližné určení průměru molekuly kyseliny olejové

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 NÁRODNÍ KOLO. Kategorie E. Zadání praktické části Úloha 2 (30 bodů)

VLHKOST A NASÁKAVOST STAVEBNÍCH MATERIÁLŮ. Stavební hmoty I Cvičení 7

Gymnázium Jiřího Ortena, Kutná Hora

Ústřední komise Chemické olympiády. 55. ročník 2018/2019 NÁRODNÍ KOLO. Kategorie E. Zadání praktické části Úloha 1 (20 bodů)

Elektrický proud v elektrolytech

Úloha č. 8 POTENCIOMETRICKÁ TITRACE. Stanovení silných kyselin alkalimetrickou titrací s potenciometrickou indikací bodu ekvivalence

ELEKTRICKÝ PROUD V KAPALINÁCH, VYUŽITÍ ELEKTROLÝZY V PRAXI

Elektrochemické reakce

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.07 EU OP VK

VSTUPNÍ KONTROLA MATERIÁLU, SUROVIN A LÁZNÍ. Základní vlastnosti a zkoušky

KONTROLNÍ TEST ŠKOLNÍHO KOLA (70 BODŮ)

12. Elektrochemie základní pojmy

1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.

Úvod do koroze. (kapitola, která bude společná všem korozním laboratorním pracím a kterou studenti musí znát bez ohledu na to, jakou práci dělají)

Elektroforéza v přítomnosti SDS SDS PAGE

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřeným předmětem je v tomto případě zenerova dioda její hodnoty jsou uvedeny v tabulce:

ELEKTROCHEMIE A KOROZE Ing. Jiří Vondrák, DrSc. ÚACH AV ČR

Charakteristika fotovoltaického panelu, elektrolyzéru a palivového článku

Střední průmyslová škola elektrotechnická a informačních technologií Brno

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: Číslo DUMu: VY_32_INOVACE_13_Ch_OB Ročník: I. Vzdělávací oblast: Přírodovědné

Získávání Zn ze Zn MnO 2 baterií I: Vliv podmínek rafinace na odstranění Fe; Cu, Cd, Ni

PDF vytvořeno zkušební verzí pdffactory Pro

Gymnázium Vysoké Mýto nám. Vaňorného 163, Vysoké Mýto

Bilan a ce c zák á l k ad a ní pojm j y m aplikace zákonů o zachování čehokoli

TWISTER VAKUOVÁ MÍCHAČKA

Vysokoproudový, přepínací napájecí zdroj s dálkovým ovládáním SPS-9600/9602

Základní měření s výchylkovými multimetry Laboratorní cvičení č. 1

Stanovení koncentrace složky v roztoku vodivostním měřením

Ústřední komise Chemické olympiády. 53. ročník 2016/2017. KRAJSKÉ KOLO kategorie C. ŘEŠENÍ PRAKTICKÉ ČÁSTI (40 bodů) časová náročnost: 120 minut

Transkript:

Elektrolytické vylučování mědi (galvanoplastika) 1. Úvod Často se setkáváme s požadavkem na zhotovení kopie uměleckého nebo muzejního sbírkového předmětu. Jednou z možností je použití galvanoplastické techniky, při které se do formy, sejmuté z originálu, elektrolyticky vylučuje stejnosměrným proudem skořepina vhodného kovu (nejčastěji mědi). Galvanoplastika je vhodná pro zhotovení drobných kopií ve více exemplářích, např. mincí, medailí, plaket, šperků, ale i nábytkových kování, trojrozměrných plastik, s možností sestavení z několika dílů. Galvanoplastika byla objevena německým fyzikem, působícím v carském Rusku, M.H. Jakobim v roce 1838 při jeho výzkumu působení stejnosměrného proudu na vodný roztok modré skalice (síranu měďnatého). V současné době je galvanoplastika významnou průmyslovou metodou, která se používá při zhotovování forem pro lisování hudebních nosičů, štočků v tiskařském průmyslu, forem pro zpracování plastů atd. Princip metody je založen na elektrolýze okyseleného roztoku síranu měďnatého a je totožný s technikou galvanického pokovování předmětů a rovněž s průmyslovou technologií elektrolytické rafinace surové mědi. Vyloučení kvalitní skořepinové kopie v přijatelném časovém intervalu je dáno nastavením vhodných parametrů elektrolýzy (složení a teplota lázně, použitá proudová hustota, geometrické uspořádání v elektrolyzéru apod.). Tyto parametry, včetně stanovení katodové proudové účinnosti a energetické náročnosti procesu, je možno prověřit v modelovém elektrolyzéru pro rafinaci mědi s deskovými elektrodami. 2. Reakce mědi při elektrolýze Působením stejnosměrného proudu přechází měď z anody do roztoku Cu = Cu 2+ + 2e a opět se vylučuje na katodě, kterou je pokovovaný předmět nebo forma (matrice) Cu 2+ + 2e = Cu. V malém množství přechází měď do roztoku jako jednomocná. Koncentrace jednomocných a dvojmocných iontů mědi nejsou nezávislé, uplatňuje se rovnovážná reakce 2Cu + = Cu 2+ + Cu, jejíž rovnováha je silně posunuta ve prospěch dvojmocných iontů Cu; vzniká prášková měď, která přechází do anodového kalu.

3. Proudový výtěžek a elektrická energie potřebná na výrobu jednotkového množství mědi Proudový výtěžek je poměr skutečného množství vyloučené látky k teoretickému množství, vypočtenému podle Faradayova zákona. Při pokovování nebo galvanoplastice, kdy vyloučený kov je katodovým produktem, nás zajímá především proudový výtěžek katodový η, který stanovíme podle vztahu: η = 100 (m / g) = 100 n F m / (I τ M) (%) kde m je skutečné množství vyloučeného kovu g - teoreticky vypočtené množství vyloučeného kovu dle Faradayova zákona I - elektrický proud (A) τ - doba průchodu proudu (s) M - molární hmotnost vylučovaného kovu (g/mol); M cu = 63,55 g/mol n - počet elektronů vystupujících v katodové reakci Cu 2+ + 2e = Cu, t.j. n=2 F - Faradayova konstanta (96 493 C.mol -1 ) Energie potřebná na vyloučení jednoho kilogramu mědi na katodě je dána vztahem E = U I τ / (3600 m) (kwh / kg Cu). Kde U je napětí na elektrolyzéru (V) Elektrolytické vylučování mědi I katodový proudový výtěžek Návody laboratorní práce Elektrolytické vylučování mědi str. 2

1. Cíl práce Zjistěte proudovou účinnost a měrnou spotřebu elektrické energie při elektrolytickém vylučování mědi pro tři kombinace hodnot katodové proudové hustoty a teploty. 2. Potřebné zařízení a materiál Anodové bloky z čisté mědi, katodové Cu-plechy, zařízení pro elektrolýzu, roztok CuSO 4 a H 2 SO 4, brusný papír, mořicí lázeň, regulovatelný zdroj stejnosměrného proudu, voltmetr pro měření stejnosměrného napětí. 3. Pracovní postup Očistěte povrch měděné katody a obou měděných anod nejprve mechanicky brusným papírem a pak odstraňte zbytky povrchových vrstev bazického síranu a uhličitanu měďnatého ponořením po dobu nezbytně nutnou do mořicí lázně (vodný roztok kyselin o složení 20 hmot.% H 2 SO 4, 20 hmot.% HNO 3 ) při teplotě 60 C. Po jejich opláchnutí vodovodní a destilovanou vodou a po usušení horkým vzduchem zvažte všechny tři elektrody s přesností na 10-2 g. Ve výši 10 cm od spodního okraje katody vyznačte tužkou rysku. Tímto způsobem stanovíte hloubku ponoření katody v elektrolytu, aby aktivní plocha katody byla 1 dm 2 (šířka katody je 5 cm). Obě anody i katodu upevněte do držáků (schéma zařízení pro elektrolýzu je na obr. 1), umístěte do kádinky, do které jste předem nalili připravený elektrolyt (složení elektrolytu 40g Cu, 150g H 2 SO 4 l -1 ). Zapojte anody a katodu podle schématu na obr. 1, nastavte proud odpovídající Elektrolýze č.1 a zahřejte opatrně elektrolyt s použitím vytápěné magnetické míchačky na pracovní teplotu 30 o C. Po jejím dosažení zapněte zdroj stejnosměrného proudu a pomocí reostatu nastavte v souladu se zadáním práce hodnotu proudu. Současně zkontrolujte, zda napětí na elektrolyzéru se pohybuje v rozmezí 0,2-0,4V. Elektrolýzu nechejte probíhat po dobu 60 min. Po tuto dobu udržujte požadovanou konstantní hodnotu proudu a teploty. Ve dvacetiminutových intervalech elektrolýzu přerušte vypnutím proudu, vyjměte anody a katodu, opatrně je opláchněte vodou, osušte horkým vzduchem a zvažte. Hmotnostní změny zaneste do tabulky č.1. spolu s hodnotami proudu, napětí a teploty elektrolytu. Pak anody a katodu upevněte do držáků a pokračujte v elektrolýze. Po uplynutí 3x20 minut elektrolýzy je ukončena Elektrolýza č. 1. Pokračujte stejným způsobem při teplotě 60 o C a při proudových hustotách odpovídajících Elektrolýze č. 2 a Elektrolýze č. 3. Návody laboratorní práce Elektrolytické vylučování mědi str. 3

Obr. 1. Schéma laboratorní aparatury pro elektrolytickou rafinaci mědi zdroj stejnosměrného proudu + - ampérmetr A regulace proudu voltmetr V teploměr anody katoda topení magnetické míchadlo Návody laboratorní práce Elektrolytické vylučování mědi str. 4

Tabulka 1. Hodnoty změřené během elektrolýzy čas (min) teplota ( o C) I (A) U (V) hmota katody m k hmota 1.anody m A1 hmota 2.anody m A2 rozdíl hmot m A1 +m A2 - m k 0 20 40 60 Na konci elektrolýzy vypněte proud, vyjměte katodu i anody a po opláchnutí a vysušení horkým vzduchem je zvažte a popište vzhled a strukturu vyloučené mědi na katodě. Potom anody a katodu připravte pro další elektrolýzy. Elektrolýza č.1: proudová hustota 150 Am -2, teplota elektrolytu 30 C. Elektrolýza č.2: proudová hustota 150 Am -2, teplota elektrolytu 60 C. Elektrolýza č.3: proudová hustota 250 Am -2, teplota elektrolytu 60 C. 4. Protokol obsahuje a) zadání a popis postupu práce b) počáteční hmotnosti elektrod, tabulky naměřených hodnot a popis vzhledu vyloučené mědi c) zpracování naměřených dat formou tabulky č. 2 a grafických závislostí hmotnostních přírůstků katody na čase pro jednotlivé elektrolýzy d) Závěr: zhodnoťte vliv proudové hustoty a teploty elektrolytu na proudový výtěžek elektrolýzy, spotřebu elektrické energie na vyloučení mědi a vzhled a strukturu vyloučené mědi - porovnejte hmotnostní přírůstek katody s hmotnostními úbytky anod a vysvětlete případné rozdíly. Návody laboratorní práce Elektrolytické vylučování mědi str. 5

Tabulka 2. Zpracování experimentálních dat z jednotlivých elektrolýz elektrolýza č. přírůstek hmoty na katodě teoretický přírůstek hmoty na katodě proudový výtěžek (%) spotřeba el. energie (kwh/kg Cu) 1 2 3 5. Kontrolní otázky 1. Princip elektrolytického vylučování kovů. 2. Které nejdůležitější kovy se vylučují elektrolyticky? 3. Napište reakce probíhající při elektrolytickém vylučování mědi. 4. Které faktory se uplatňují při volbě optimální katodické proudové hustoty? 5. Uveďte základní parametry elektrolytického vylučování mědi (proudová hustota, napětí na elektrolyzéru, teplota, složení elektrolytu). 6. Co je proudový výtěžek, vysvětlete jeho výpočet. 7. Jak se vypočte doba, potřebná k vyloučení vrstvy mědi o dané tloušťce na jednotce plochy povrchu formy (matrice)? 8. Jak se vypočte hodnota elektrické energie skutečně spotřebované na vyloučení jednotkového množství kovu? 9. Co je příčinou toho, že vyloučená množství kovu při elektrolytické rafinaci jsou nižší než množství teoretická? Návody laboratorní práce Elektrolytické vylučování mědi str. 6