Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:
|
|
- Miloš Neduchal
- před 9 lety
- Počet zobrazení:
Transkript
1 Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno technickými zařízeními (např. RTG diagnostika, defektoskopie). Jednotky pro měření radiace: Jednotkou aktivity je becquerel: 1 Bq = 1 rozpad/s Jednotkou absorbované dávky je gray: 1 Gy = 1 J/kg Jednotkou expozice je vzniklý náboj: 1 C/kg Jeddnotkou absorbované dávky je sievert: 1 Sv = 1 Gy * jakostní faktor Zdroje záření Zdroje záření můžeme rozdělit také na: -přirozené (přirozená radioaktivita prostředí, kosmogenní záření) -umělé (RTG diagnostika, medicínské aplikace, technická zařízení, dříve také pokusy s jadernými výbuchy) Obě složky se v současné době podílejí na zátěži obyvatelstva velmi zhruba 50%. Ozáření obyvatelstva z různých zdrojů ZDROJE Dávka (µsv/r) PŘÍRODNÍ ZDROJE Prostředí Kosmické záření 280 Záření zemské kůry 260 Vnitřní radioisotopy v těle 260 UMĚLÉ ZDROJE Prostředí Technolog. zvýšení (uhlí atd.) 40 Spad z jaderných výbuchů 40 Jaderné elektrárny 3 Lékařství Diagnostika 780 Radioizotopy 140 Profesionální expozice 10 Spotřební zboží a další 50 Typy ionizujícího záření: fotony (γ-záření, RTG-záření, hranice je dána způsobem vzniku, energeticky se překrývají); záření α (jádra atomů helia); záření β - (elektrony); neutrony (n); záření β + (positrony); protony (p); těžké produkty (jádra prvků těžších než He). Mimo tyto typy záření existují i jiné druhy vysoce energetických částic (například mezony, hyperony), lze je jednak vyrobit v urychlovačích, jednak se vyskytují v kosmickém záření. Pro úplnost je třeba poznamenat, že dalším typem záření (bez biologického významu) jsou neutrina. Běžnými typy záření jsou pouze fotony (γ), β-, α a při štěpných reakcích neutrony.
2 Vlastnosti ionizujícího záření Typ Částice Dolet (cm) Ionizace (cm) Jak. faktor γ fotony olovo β - elektrony vzduch β + positrony n neutrony tepelné 3 rezonanční 2.5 střední beton rychlé beton p protony vzduch α jádra helia vzduch štěpné trosky vzduch Cesty radiace do organizmu: Ozářením z vnějších zdrojů (neutrony, γ-záření) Kontaminací povrchu těla (radioizotopy) Dýchacími cestami (horké částice, Rn) Ingescí (radioizotopy) Pro běžnou populaci přichází v úvahu hlavně ozáření z vnějších zdrojů (diagnostika, technické zdroje) a Rn ze stavebních materiálů. Princip působení záření Časová odezva v biologických systémech Všechny typy pronikavého záření mají v zásadě stejný efekt - vyvolávají ionizaci. Vlivem ionizace vznikají radikály, které jsou chemicky vysoce aktivní. Působením radikálů dochází k poškození citlivých buněčných struktur. Tato poškození se často projeví až po delší době (např. při dělení buňky). Úroveň Fyzikální jevy, ionizace Radikály, reaktivní molekuly Stabilní molekulární poškození Buňka Organizmus Lidská populace Časová škála s s s s s s
3 Účinky ionizujícího záření NESTOCHASTICKÉ: -jsou důsledkem poškození velkého počtu buněk - projevují se jen při dávkách nad prahovou dávku - stupeň poškození roste s dávkou -většinou mají krátké latentní období STOCHASTICKÉ: - mohou být důsledkem postižení jediné buňky - mohou vzniknout i při nejmenších dávkách - s dávkou roste pravděpodobnost vzniku defektu - projevují se až po více (mnoha) letech Základní typy nestochastických účinků: Akutní nemoc z ozáření (sem je řazena i chronická forma): - krevní forma (1-5 Gy) -střevní forma (kolem 10 Gy) - nervová forma (asi kolem 100 Gy) Akutní lokalizované poškození: -radiační dermatitida - vyvolání neplodnosti (u mužů dočasné při 0.5 Gy, trvalé u obou pohlaví asi po 3 Gy) - poruchy jemného cévního zásobení Poškození plodu in utero Radiosenzitivita (davka LD 50 v Gy) pro RTG a γ-záření Poškození plodu Druh Dávka Ovce Člověk Pes Myši různých linií Ptáci, hadi 8-20 Členovci Kvasinky Rostliny Micrococcus radiodurens 10 5 Gy/den
4 Pozdně se projevující nestochastické účinky: Stochastické účinky ionizujícího záření Nenádorová postižení vznikající důsledkem zhoršené kvality postižených tkání: - zákal oční čočky (při dávkách nad 1 Gy, projeví se po 1/2 roce až 2 letech) - chronická radiační dermatitida - zkrácení střední doby života (tento efekt není u člověka plně potvrzen Tyto účinky se projevují: zhoubnými nádory genetickými změnami Především je nutné si uvědomit, že tyto účinky nejsou specifické, záření je jen jedním z více důvodů jejich vzniku. V jednotlivých případech proto nelze rozhodnout, zda bylo ionizující záření skutečnou příčinou příslušné patologie. Hodnocení rizika stochastických účinků: Koeficienty rizika: počet dodatečných onemocnění při ozářených dávkou 1 Sv. Koeficienty rizika úmrtí: vznikají pronásobením koeficientu rizika a pravděpodobností úmrtí na příslušnou chorobu. Při genetických účincích je koeficient rizika posuzován dle rovnovážného stavu, nikoliv tedy v prvých generacích. Souhrnná profesionální expozice Koeficienty rizika úmrtí (10-4 Sv -1 ) Orgán nebo tkáň Účinek Riziko Mléčná žláza Plíce Kostní dřeň Kost Štítná žláza Zbytek těla leukémie osteosarkom Somatické účinky celkem 125 Gonády genetické postižení 40 (pro 2 generace) Ozáření celého těla 165 Kůže (zvlášť) 1
5 Diagnostika u nestochastických účinků hlavně dle anamnézy stochastické účinky nelze jednoznačně přiřadit důsledkům ozáření
Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Interakce záření s hmotou
Interakce záření s hmotou nabité částice: ionizují atomy neutrální částice: fotony: fotoelektrický jev Comptonův jev tvorba párů e +, e neutrony: pružný a nepružný rozptyl jaderné reakce (radiační záchyt
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH TECHNICKÁ FYZIKA IV Účinky a druhy záření Vypracoval: Vladimír Pátý Ročník: 2 Datum: 26.5.2003 Skupina: MVT Účinky a druhy záření 1. Druhy
RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO
ATOMOVÁ FYZIKA JADERNÁ FYZIKA
ATOMOVÁ FYZIKA JADERNÁ FYZIKA 17. OCHRANA PŘED JADERNÝM ZÁŘENÍM Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. OCHRANA PŘED JADERNÝM ZÁŘENÍM VLIV RADIACE NA LIDSKÝ ORGANISMUS. 1. Buňka poškození
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními doc.ing. Jozef Sabol, DrSc. Fakulta biomedicínského inženýrství, ČVUT vpraze Nám. Sítná 3105
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
Test z radiační ochrany
Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)
Radiační ochrana. Ing. Jiří Filip Oddělení radiační ochrany FNUSA
Radiační ochrana. Ing. Jiří Filip Oddělení radiační ochrany FNUSA Legislativa Zákon č. 18/1997 Sb., o mírovém využití jaderné energie a ionizujícího záření a o změně a doplnění některých zákonů atomový
Základy radioterapie
Základy radioterapie E-learningový výukový materiál pro studium biofyziky v 1.ročníku 1.L F UK MUDr. Jaroslava Kymplová, Ph.D. Ústav biofyziky a informatiky 1.LF UK Radioterapie Radioterapie využívá k
JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.
JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011
Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na
Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze
Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření
Potřebné pomůcky Sešit, učebnice, pero
Potřebné pomůcky Druh interaktivity Cílová skupina Stupeň a typ vzdělání Potřebný čas Velikost Zdroj Sešit, učebnice, pero Výklad, aktivita žáků 9. ročník 2. stupeň, ZŠ 45 minut 754 kb Viz použité zdroje
pro vybrané pracovníky radioterapeutických pracovišť č. dokumentu: VF A-9132-M0801T3 Jméno Funkce Podpis Datum
Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované
RADIOAKTIVITA RADIOAKTIVITA
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká
Základy toxikologie a bezpečnosti práce: část bezpečnost práce
Základy toxikologie a bezpečnosti práce: část bezpečnost práce T1ZA 2017 Přednášející: Ing. Jaroslav Filip, Ph.D. (U1/210, jfilip@utb.cz) Garant + přednášející části toxikologie: Ing. Marie Dvořáčková,
Uran a jeho těžba z hlediska zdravotních rizik
Uran a jeho těžba z hlediska zdravotních rizik Liberec, 20. listopadu 2008 odborný konzultant v oblasti zdravotních a ekologických rizik e-mail: miroslav.suta@centrum.cz Historie I. 1556 - Agricola -postižení
KLINICKÁ RADIOBIOLOGIE
JIHOČESKÁ UNIVERZITA V ČESKÝCH BUDĚJOVICÍCH ZDRAVOTNĚ SOCIÁLNÍ FAKULTA KLINICKÁ RADIOBIOLOGIE Kolektiv autorů Editoři: prof. MUDr. Pavel Kuna, DrSc. doc. MUDr. Leoš Navrátil, CSc. AUTORSKÝ KOLEKTIV Fenclová
EKOTOXIKOLOGIE EKO/ETXE. Ionizující záření v Životním prostředí. Petr Hekera Katedra ekologie a ŽP PřF UP Olomouc
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 EKOTOXIKOLOGIE EKO/ETXE IV Ionizující záření v Životním prostředí Petr Hekera
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok
Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:
Uran a jeho zpracování z pohledu zdravotních rizik
Uran a jeho zpracování z pohledu zdravotních rizik Bystřice n. P., 1. října 2014 odborný konzultant v oblasti ekologických a zdravotních rizik Historie I 1556 - Agricola -postižení plic u horníků v Jáchymově
Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK
Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Fyzika atomu - model atomu struktura elektronového obalu atomu z hlediska energie atomu - stavba atomového jádra; základní nukleony
104/2012 Sb. VYHLÁŠKA
104/2012 Sb. VYHLÁŠKA ze dne 22. března 2012 o stanovení bližších požadavků na postup při posuzování a uznávání nemocí z povolání a okruh osob, kterým se předává lékařský posudek o nemoci z povolání, podmínky,
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
EXPERIMENTÁLNÍ METODY I 12. Měření ionizujícího záření
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 12. Měření ionizujícího záření OSNOVA 12. KAPITOLY Úvod do měření ionizujícího
Přírodní radioaktivita
Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření)
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření) Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření
Typy radioaktivního záření
7. RADIOEKOLOGIE 7.1. RADIOAKTIVITA Typy radioaktivního záření alfa = 2 protony + 2 neutrony - malá pronikavost - velká ionizační schopnost beta = elektrony vysílané z jádra - střední pronikavost - střední
PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora
Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění
5. RADIAČNÍ OCHRANA I Jiří Konečný
5. RADIAČNÍ OCHRANA I Jiří Konečný 5.1 Před čím chceme člověka ochránit Živé organismy na Zemi vznikly a vyvíjely se v podmínkách stálého působení přírodnino radioaktivního pozadí. Zdroje záření můžeme
Radiační onkologie- radioterapie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika
Radiační onkologie- radioterapie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Historie radioterapie Ionizující záření základní léčebný prostředek (často se však používá v kombinaci
Rentgen - příručka pro učitele
Cíl vyučovací hodiny: - student definuje pojem rentgen; - student zná objevitele RTG záření; - student umí popsat součásti RTG přístroje; - student zná rizika RTG záření; Rentgen - příručka pro učitele
Bezpečnost a ochrana zdraví při práci se zdroji ionizujícího záření. KFNT 13. dubna 2015 (revidováno 17. dubna 2015)
Bezpečnost a ochrana zdraví při práci se zdroji ionizujícího záření KFNT 13. dubna 2015 (revidováno 17. dubna 2015) Ionizující záření a jeho účinky na člověka Přirozené ozáření člověk je vystaven radiaci
Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz
Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů e-learningový kurz Tento e-learningový kurz byl vypracován v rámci projektu Efektivní přenos poznatků v rámci energetického
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická. Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE.
Technická univerzita v Liberci fakulta přírodovědně-humanitní a pedagogická Doc. RNDr. Petr Anděl, CSc. ZÁKLADY EKOLOGIE Studijní texty 2010 Struktura předmětu 1. ÚVOD 2. EKOSYSTÉM MODELOVÁ JEDNOTKA 3.
EMC elektromagnetická kompatibilita Katedra aplikované elektroniky a telekomunikací
EMC elektromagnetická kompatibilita Katedra aplikované elektroniky a telekomunikací Vypracoval: Ing.Tomáš Kavalír Tomas Kavalír Strana 1 20.5.2013 Obsah: EMC elektromagnetická kompatibilita... 2 1. EMC
Atomová a jaderná fyzika
Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův
BUDOU MÍT NOVÁ DOPORUČENÍ ICRP DOPAD NA INDIKACE A OPTIMALIZACI VYŠETŘOVACÍCH POSTUPŮ PROVÁDĚNÝCH NA SPECT/CT a PET/CT PŘÍSTROJÍCH?
BUDOU MÍT NOVÁ DOPORUČENÍ ICRP DOPAD NA INDIKACE A OPTIMALIZACI VYŠETŘOVACÍCH POSTUPŮ PROVÁDĚNÝCH NA SPECT/CT a PET/CT PŘÍSTROJÍCH? V. Hušák 1,2) J. Ptáček 2), M. Fülöp 4), M. Heřman 3) 1) Klinika nukleární
Jaderné reakce a radioaktivita
Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra
Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1
Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen
VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník
Uran a jeho zpracování z pohledu zdravotních rizik
Uran a jeho zpracování z pohledu zdravotních rizik Přibyslav, 14. listopadu 2014 odborný konzultant v oblasti ekologických a zdravotních rizik Uran Hmotové číslo izotopu Podíl v přírodním uranu (%) Poločas
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
2. ATOM. Dualismus částic: - elektron se chová jako hmotná částice, ale také jako vlnění
Na www.studijni-svet.cz zaslal(a): Kikusska94 2. ATOM HISTORIE NÁZORŮ NA STAVBU ATOMU - Leukippos (490 420 př. n. l.) - Demokritos (460 340 př. n. l.) - látka je tvořená atomy, které se dále nedělí (atomos
Biofyzikální chemie radiometrické metody. Zita Purkrtová říjen - prosinec 2015
Biofyzikální chemie radiometrické metody Zita Purkrtová říjen - prosinec 2015 Radioaktivita 1896 Antoine Henri Becquerel první pozorování při studiu fluorescence a fosforescence solí uranu 1903 Nobelova
Anatomie oční čočky a její patologie. Vladislav Klener SÚJB 2013
Anatomie oční čočky a její patologie Vladislav Klener SÚJB 2013 Podněty z konce 20. století o vyšší radiosenzitivitě oční čočky: N.P.Brown: The lens is more sensitive to radiation than we had believed,
Biologické a genetické účinky ionizujícího záření
Biologické a genetické účinky ionizujícího záření Ionizující záření pojem záření šíření radiační energie radioaktivita - důsledek radiačního rozpadu, při kterém se mění stav nebo složení atomových jader
- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).
P9: NDT metody 2/5 - Princip průmyslové radiografie spočívá v umístění zkoušeného předmětu mezi zdroj vyzařující RTG nebo gama záření a detektor, na který dopadá záření prošlé daným předmětem. - Uvedeným
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
ABSOLVENTSKÁ PRÁCE. Název práce: Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas. Třída: 9.
ABSOLVENTSKÁ PRÁCE Název práce: Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Datum odevzdání: 29. 4. 2016 0 Vedoucí učitel: Mgr. Kateřina Wernerová
Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor)
Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor) zvláštností rychlých reaktorů s Pu palivem je jejich množivý charakter při štěpení Pu238 vzniká více neutronů než v případě U (rozštěpením U
29. Atomové jádro a jaderné reakce
9. tomové jádro a jaderné reakce tomové jádro je složeno z nukleonů, což jsou protony (p + ) a neutrony (n o ). Průměry atomových jader jsou řádově -5 m. Poznámka: Poloměr atomového jádra je dán vztahem:
Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost
Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak
VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Ochrana proti účinkům. Evžen Losa, Ján Milčák, Michal Koleška Katedra jaderných reaktorů FJFI ČVUT v Praze
Ochrana proti účinkům ionizujícího záření Evžen Losa, Ján Milčák, Michal Koleška Katedra jaderných reaktorů FJFI ČVUT v Praze 1 Atom Nejmenší jednotka chemického prvku Skládá se jádra a elektronového obalu
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Radiační ochrana při lékařském ozáření - role indikujícího lékaře. Libor Judas
Radiační ochrana při lékařském ozáření - role indikujícího lékaře Libor Judas Státn tní ústav radiační ochrany, v.v.i. Radiační ochrana při lékařském ozáření - role indikujícího lékaře Týká se diagnostických
DETEKCE IONIZAČNÍHO ZÁŘENÍ
Úloha č. 14b DETEKCE IOIZAČÍHO ZÁŘEÍ ÚKOL MĚŘEÍ: 1. Změřte pozadí Geiger - Müllerova čítače 10 krát s nastavenou dobou 50 s.. Proveďte měření absorpce γ-záření pro hliník a železo s nastavenou dobou měření
3.6 RADIOAKTIVITA. Základnípojmy 3.6.1. RADIOAKTIVNÍZÁŘENÍ. Základní pojmy. Typy radioaktivního záření TYPY ZÁŘENÍ
3.6.1. RADIOAKTIVNÍZÁŘENÍ 3.6 RADIOAKTIVITA Základnípojmy Radioaktivita = schopnost některých atomových jader se samovolně přeměnit (rozpadat) Základní pojmy Ionizující záření = záření, kterézpůsobuje
Fludeoxythymidine ( 18 F) 1 8 GBq k datu a hodině kalibrace voda na injekci, chlorid sodný 9 mg/ml
Příbalová informace Informace pro použití, čtěte pozorně! Název přípravku 3 -[ 18 F]FLT, INJ Kvalitativní i kvantitativní složení 1 lahvička obsahuje: Léčivá látka: Pomocné látky: Léková forma Injekční
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA Klinika pracovního a cestovního lékařství Jitka Josková Onemocnění způsobená ionizujícím zářením v České republice Diseases Caused by Ionizing Radiation in
8.STAVBA ATOMU ELEKTRONOVÝ OBAL
8.STAVBA ATOMU ELEKTRONOVÝ OBAL 1) Popiš Daltonovu atomovou teorii postuláty. (urči, které platí dodnes) 2) Popiš Rutherfordův planetární model atomu a jeho přínos. 3) Bohrův model atomu vysvětli kvantování
Brno 03. 02. 12. Fukushima. Lessons Learned. B. Domres
Brno 03. 02. 12 Fukushima Lessons Learned B. Domres FUKUSHIMA DAI-CHI Zemětřesení Tsunami Výpadek elektřiny Výpadek chlazení 6 reaktorových bloků Tavení jaderného paliva Exploze vodíku Uvolnění radioaktivity
6.3.5 Radioaktivita. Předpoklady: Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny
6.3.5 Radioaktivita Předpoklady: 6304 Graf závislosti vazebné energie na počtu částic v jádře pro částice z minulé hodiny Vazebná energie na částici [MeV] 10 9 8 Vazebná energie [MeV] 7 6 5 4 3 1 0 0 50
FYZIKA ATOMOVÉHO JÁDRA
FYZIKA ATOMOVÉHO JÁDRA Je to nejstarší obor fyziky Stručně jaderná nebo nukleární fyzika Zabývá se strukturou jader, jadernými ději a jejich využití v praxi JÁDRO ATOMU Tvoří centrální část atomu o poloměru
Úvod do moderní fyziky. lekce 4 jaderná fyzika
Úvod do moderní fyziky lekce 4 jaderná fyzika objevení jádra 1911 - z výsledků Geigerova Marsdenova experimentu Rutheford vyvodil, že atom se skládá z malého jádra, jehož rozměr je 10000 krát menší než
Biologické poškození tkáně
Už před prvním atomovým výbuchem prosili někteří vědci vojáky, aby zároveň s bombou dali shodit letáky, které by upozornily na radioaktivitu. Bylo to nebezpečí zcela neznámé, které se u žádné dosavadní
Ochrana lidské populace před účinky radioaktivních látek Daniela Horáková
Univerzita Pardubice Fakulta ekonomicko-správní Ochrana lidské populace před účinky radioaktivních látek Daniela Horáková Bakalářská práce 2010 Tuto práci jsem vypracovala samostatně. Všechny literární
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř. 17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné
1.4 Možnosti odstínění radioaktivního záření
1.4 Možnosti odstínění radioaktivního záření Cíle kapitoly: Laboratorní úloha je zaměřena na problematiku radioaktivního záření a studentům umožňuje prověřit znalosti, resp. prakticky si vyzkoušet práci
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY (přínosy a rizika) jan.matzner@sujb.cz Státní úřad pro jadernou bezpečnost Fakulta stavební ČVUT, Praha 12. 3. 2015 WILHELM CONRAD RÖNTGEN 1895 - objev paprsků X Nobelova
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory
DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory Datum (období) vytvoření:
Vliv IMUNORu na krvetvorbu myší ozářených gama paprsky 60 Co
Vliv IMUNORu na krvetvorbu myší ozářených gama paprsky 6 Co Úvod Ionizující záření je výrazným myelotoxickým činitelem, tedy faktorem, poškozujícím krvetvorbu. Poškození krvetvorby po expozici osob ionizujícímu
STANOVENÍ KOLEKTIVNÍ EFEKTIVNÍ DÁVKY Z NENÁDOROVÉ RADIOTERAPIE V ČR
STANOVENÍ KOLEKTIVNÍ EFEKTIVNÍ DÁVKY Z NENÁDOROVÉ RADIOTERAPIE V ČR Vladimír Dufek 1,2 Lukáš Kotík 1 Ladislav Tomášek 1 Helena Žáčková 1 Ivana Horáková 1 1 Státní ústav radiační ochrany, v. v. i., Praha
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY (přínosy a rizika) jan.matzner@sujb.cz Státní úřad pro jadernou bezpečnost Fakulta stavební ČVUT, Praha 3. 5. 2018 WILHELM CONRAD RÖNTGEN 1895 - objev paprsků X Nobelova
Prevence nehod a havárií
Prevence nehod a havárií 1. díl: nebezpečné látky a materiály Tato publikace byla vydána v rámci řešení projektu č. 1H-PK2/35 Ověření modelu šíření a účinků ohrožujících událostí SPREAD, který byl realizován
ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava
Ochrana obyvatelstva při radiační mimořádné události Ing. Ivana Fojtíková Státní ústav radiační ochrany Praha 23. 4. 2015 STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY, v.v.i. NATIONAL RADIATION PROTECTION INSTITUTE Bartoškova
4 N. Nebezpečí ionizujícího záření. Metodický list číslo. Vydáno dne: 22. prosince 2004 Stran: 5. I. Charakteristika
Ministerstvo vnitra - generální ředitelství Hasičského záchranného sboru České republiky Bojový řád jednotek požární ochrany - taktické postupy zásahu Název: Nebezpečí ionizujícího záření I. Charakteristika
2. RADIOAKTIVNÍ MATERIÁLY
2. RADIOAKTIVNÍ MATERIÁLY Petr Skřehot, Martin Trávníček 2.1 Radionuklidy 2.1.1 Radioaktivní rozpad Radioaktivita neboli radioaktivní rozpad je samovolná přeměna jader nestabilních nuklidů na jiná jádra,
Test z fyzikálních fyzikálních základ ů nukleární medicíny
Test z fyzikálních základů nukleární medicíny 1. Nukleární medicína se zabývá a) diagnostikou pomocí otevřených zářičů a terapií pomocí uzavřených zářičů aplikovaných in vivo a in vitro b) diagnostikou
1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření
KLINICKÁ RADIOBIOLOGIE 10 1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření K přírodním zdrojům náleží kosmické záření a přírodní radionuklidy vyskytující se v přírodě,
Nemoci způsobené ionizujícím zářením Illnesses affected by ionizing radiance
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA Pracovní lékařství Blanka Pružinová Nemoci způsobené ionizujícím zářením Illnesses affected by ionizing radiance Bakalářská práce Praha, srpen 2007 Univerzita
Jaderná energie. Obrázek atomů železa pomocí řádkovacího tunelového mikroskopu
Jaderná energie Atom Všechny věci kolem nás se skládají z atomů. Atom obsahuje jádro (tvořené protony a neutrony) a obal tvořený elektrony. Protony a elektrony jsou částice elektricky nabité, neutron je