VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI
|
|
- Kristina Novotná
- před 5 lety
- Počet zobrazení:
Transkript
1 VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na jednotku času. dnsp A = [Bq; --, s ], (1) dt kde dn je poč samovolných přeměn v radioaktivním materiálu, k nimž dojde během sp časového intervalu dt. Jednotka SI: 1 Bq (Becquerel), [1 Bq = 1 s ] Starší mimosoustavová jednotka: 1 Ci (Curie), [1Ci = 3,7 10 s = 3,7 10 Bq ] Definice mimosoustavové jednotky: Aktivita jeden Ci je aktivitou jednoho gramu 6 izotopu Ra Měrná aktivita: Definice veličiny: Aktivita vztažená na jednotku hmotnosti radioaktivního materiálu. A a = [ Bq. kg ; Bq,, () m kde A je aktivita zkoumaného vzorku radioaktivního materiálu a m je hmotnost tohoto vzorku. Podobně lze definovat i aktivitu objemovou, plošnou a lineární s příslušnými 3 jednotkami Bq. m, Bq. m, respektive Bq. m. 1 Jednotka SI: 1 Bq/kg [1 Bq. kg = 1 s Starší mimosoustavová jednotka: 1 Ci/kg [1 Ci. kg = 3,7 10 s kg = 3,7 10 Bq.. Fluence (tok) částic: Definice veličiny: Poč částic dn, emitovaných v důstedku rozpadu radioaktivního materiálu, které vstoupí do koule o ploše hlavního řezu da, Jednotka SI: 1 / m dn Φ = [ m ; --, m ]. (3) da.1. Hustota toku částic: Definice veličiny: Poč částic dn, emitovaných v důstedku rozpadu radioaktivního materiálu, které vstoupí do koule o ploše hlavního řezu da, za jednotku času dt, Jednotka SI: 1 / m s dn ϕ = [ m s ; --, m, s]. (4) da dt
2 3 Častěji užívané jednotky: 1 / cm min [1 cm min = 6 10 m s ] 1 / cm 4 s [1 cm s = 10 m s 1 ] 3. Fluence (tok) energie: Definice veličiny: Souč energií (mimo klidových energií) N všech N částic, emitovaných v důstedku rozpadu radioaktivního materiálu, které vstoupí do koule o ploše hlavního řezu da, Jednotka SI: 1 J / m Ψ = N [ ; J, J. m m ]. (5) da 3.1. Hustota toku energie: Definice veličiny: Souč energií (mimo klidových energií) N všech N částic, emitovaných v důstedku rozpadu radioaktivního materiálu, které vstoupí do koule o ploše hlavního řezu da, za jednotku času dt, Jednotka SI: 1 J / m s ψ = N [J. m ; J,, s]. (6) da dt s m 4. Dávka: Definice veličiny: Střední energie sdělená ionizujícím zářením látce v objemovém elementu o hmotnosti D = [Gy ; J,. (7) Jednotka SI: 1 Gy (Gray) [1 Gy = 1 J. Starší jednotka CGS: 1 rad [1 rad = 1 erg. g = 0,01Gy = 0,01 J. 4.1 Dávkový příkon: Definice veličiny: Přírůstek střední energie sdělené ionizujícím zářením látce v objemovém elementu o hmotnosti, za jednotku času dt, Jednotka SI: 1 Gy/s [1. Gy s = 1W. Častěji užívaná jednotka: 1 Gy/h [1 Gy. h = 3600 W. D & = dt [ Gy. s ; J, kg, s]. (8) 1 1 Starší jednotka CGS: 1 rad/h [1 rad. h = 1. h erg g = 0,01Gy. h = 36W. 5. KERMA: Definice veličiny: Souč počátečních kinických energií všech nabitých částic uvolněných nepřímo ionizujícím zářením v látce v objemovém elementu o hmotnosti,
3 Jednotka SI: 1 J/kg KERMA... Kinic Energy Released in MAterial. K K = [ J. kg ; J,. (9) 6. Expozice: Definice veličiny: Absolutní hodnota celkového náboje všech iontů jednoho znaménka dq, vytvořených ve vzduchu při úplném zabrzdění všech elektronů, které jsou uvolněny z vazeb v objemovém elementu vzduchu o hmotnosti, prostřednictvím interakce s fotony nepřímo ionizujícího záření, dq X = [ C. kg ; C,. (10) Jednotka SI: 1 C/kg 4 Starší jednotka CGS: 1 R (Roentgen) [1 R =,58 10 C. Definice jednotky CGS: Expozice jeden R odpovídá množství náboje jednoho znaménka o velikosti jedné elektrostatické jednotky (0,336 nc), které je vytvořeno v objemu 3 vzduchu 1 cm (m = 0,00193 g), při normálním tlaku a teplotě (p = 101,3 kpa; T = 73,15 K), úplným zabrzděním elektronů uvolněných fotony ionizujícího záření. 6.1 Příkon Expozice: Definice veličiny: Přírůstek expozice za jednotku času dt. dq X & = dt [ A. kg ; C, kg, s]. (11) Jednotka SI: 1 A/kg Starší jednotka CGS: 1 R/h [1 R. h = Rs = 0,99 A. 7. Dávkový Ekvivalent: Definice veličiny: Ekvivalentní dávka ve sledovaném bodě ve tkáni, redukovaná z hlediska radiační hygieny jakostním faktorem Q, popřípadě dalšími modifikujícími faktory, jejichž součin se označuje N, která vystihuje účinky ionizujícího záření na biologické organismy, Jednotka SI: 1 Sv (Siert) [1 Sv = 1 J. kg Starší jednotka CGS: 1 rem [1 rem = 0,01 Sv = 0,01 H = DQN. (1) ], pro dávku meřenou v Gy. J. kg 7.1 Příkon dávkového ekvivalentu: Definice veličiny: Přírůstek dávkového ekvivalentu za jednotku času dt. ], pro dávku měřenou v rad. H & = DQN & (13) Jednotka SI: 1 Sv/s [1. Sv s = 1W.
4 Častěji užívaná jednotka: 1 Sv/h [1 Sv. h = 3600 W. Starší jednotka CGS: 1 rem/h [1 rem. h = 0,01 Sv. h ] Součin modifikujících faktorů N=1 pro zdroje ozáření nalézající se vně organismu, pro zdroje uvnitř organismu (radioaktivní materiál v plicích, trávicím traktu,v krním řečišti či deponovaný v kostech) se může od jednotky lišit. Jakostní faktor Q se vztahuje k lineární mikroskopické distribuci absorbované energie ionizujícího záření. Jeho přibližné hodnoty pro různé druhy primárního ionizujícího záření jsou uvedeny v tabulce. Primární záření Q RTG záření (paprsky X) 1 záření Gama 1 záření Ba (elektrony) 1 volné neutrony 10 jednoduše nabité ionty 10 částice Alfa 0 vícenásobně nabité ionty 0 Vztah dávky a expozice: Při splnění poínky rovnováhy nabitých částic platí mezi expozicí a dávkou ve vzduchu následující vztah: Dv = EIv X [ J. kg ; J. C, C., (14) kde střední ionizační energie pro vytvoření páru elektron - kladný iont ve vzduchu E v = 78%. 34,6 + 1%. 31,8 + 1%. 30,1 = 34 ev. Pro expozici a dávku ve vzduchu tedy platí: 1 C. kg = 34 Gy, 1 R = 8,76 mgy = 0,876 rad. Dávka ve tkáni µ = [ J. kg ; --, --, J., (15) D t Dv µ kde µ reprezentuje hmotnostní součinitel absorbce energie ve tkáni, respektive ve vzduchu. V prvním přiblížení lze uvažovat µ > µ, avšak µ µ, tudíž lze pro dávku ve tkáni přibližně uvažovat: 1 R = 10 mgy = 1 rad. Určení aktivity z expozičního příkonu: Aktivitu quasibodového zdroje záření gama, lze určit z expozičního příkonu měřeného ve vzdálenosti r od tohoto zdroje, pomocí ionizační komory či GM počítače, dle následujícího vztahu:
5 r A = KX& 1 1 [Bq; m,. Bq Am kg,--, A., (16) Γ kde Γ je expoziční konstanta měřeného radionuklidu pro záření gama ( pro 60 Co je Γ =, Bq A m kg, pro I je Γ = 1 10 A. m kg Bq ) a K je opravný koeficient zahrnující absorbci záření ve vzduchu mezi zářičem a dektorem. Pro malé vzdálenosti mezi zdrojem a dektorem lze položit K=1. Měření aktivity bodového zdroje záření: Aktivitu izotropního bodového zdroje záření, u něhož jeden rozpad radioaktivního nuklidu emituje právě jednu částici, lze určit z následujícího vztahu. 4π A = N t [Bq; s, sr] (17) Ω kde N t je poč částic prošlých kruhovým okénkem (clonou) dektoru za jednotku času a prostorový úhel Ω = π 1 1 d r, (18) kde d je průměr kruhového okénka dektoru (clony) a r je vzdálenost mezi zářičem a okénkem dektoru (clonou). Je-li dektor částic cejchován v jednotkách hustoty toku částicϕ, pak pro kruhovou clonu dektoru platí π d Nt = ϕ Sef = ϕ η [ s ; m s, --, m], (19) 4 kde S je efektivní plocha dektoru, respektive η je faktor ústí dektoru ( η 1). ef V praktických poínkách je třeba vztah (17) násobit opravnými koeficienty respektujícími účinnost dektoru, absorbci záření mezi zdrojem a dektorem, vliv mrtvé doby dektoru, samoabsorbci ve zdroji záření, odraz a rozptyl záření, c. Změna aktivity radioaktivního zdroje v čase Rychlost samovolných přeměn ve vzorku radioaktivního materiálu, tj. rychlost úbytku atomů radioaktivního nuklidu je v každém okamžiku úměrná okamžitému počtu atomů radioaktivního nuklidu ve vzorku. Pro aktivitu vzorku tedy platí A( t) = A(0) e λt [Bq; Bq, s, s], (0) kde A(0) je aktivita na počátku měřeného časového intervalu a přeměnová konstanta ln 0,693 λ = = [ s ; s], (1) T T 60 kde T je poločas rozpadu radionuklidu ve vzorku. Například pro Co T = 5,6 roků, pro pro Sr T = 8,1 roků, pro I = 8,05 dne, pro 14 T C T = 5730 roků, pro Rn T = 3,8 dne, pro 41 = 458 roků, pro Am T U T = 4, 5 10 roků, pro Ra T = 160 roků.
Rozměr a složení atomových jader
Rozměr a složení atomových jader Poloměr atomového jádra: R=R 0 A1 /3 R0 = 1,2 x 10 15 m Cesta do hlubin hmoty Složení atomových jader: protony + neutrony = nukleony mp = 1,672622.10 27 kg mn = 1,6749272.10
Test z radiační ochrany
Test z radiační ochrany v nukleární medicíně ě 1. Mezi přímo ionizující záření patří a) záření alfa, beta a gama b) záření neutronové c) záření alfa, beta a protonové záření 2. Aktivita je definována a)
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.
Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními
Radiační ochrana pojetí a interpretace veličin a jednotek v souladu s posledními mezinárodními doporučeními doc.ing. Jozef Sabol, DrSc. Fakulta biomedicínského inženýrství, ČVUT vpraze Nám. Sítná 3105
Senzory ionizujícího záření
Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5
EXPERIMENTÁLNÍ METODY I 12. Měření ionizujícího záření
FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 12. Měření ionizujícího záření OSNOVA 12. KAPITOLY Úvod do měření ionizujícího
JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník
JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N
RADIOAKTIVITA A VLIV IONIZUJÍCÍHO ZÁŘENÍ
INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 RADIOAKTIVITA A VLIV IONIZUJÍCÍHO
Česká republika. Abstrakt
Kvantifikace ozáření osob pro účely radiační ochrany Doc. Ing. Jozef Sabol, DrSc., Ing. Jana Hudzietzová Fakulta biomedicínského inženýrství ČVUT v Praze, Nám. Sítná 3105, 272 01 Kladno Česká republika
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.
Interakce záření s hmotou
Interakce záření s hmotou nabité částice: ionizují atomy neutrální částice: fotony: fotoelektrický jev Comptonův jev tvorba párů e +, e neutrony: pružný a nepružný rozptyl jaderné reakce (radiační záchyt
1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření
KLINICKÁ RADIOBIOLOGIE 10 1. ZDROJE IONIZUJÍCÍHO ZÁŘENÍ (Václav Hušák) 1.1 Přírodní zdroje ionizujícího záření K přírodním zdrojům náleží kosmické záření a přírodní radionuklidy vyskytující se v přírodě,
Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika
Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí
Nebezpečí ionizujícího záření
Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy
Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní
RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření
KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření)
Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření a detekce záření (radiové vlny, neviditelné záření) Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření
Letní škola RADIOAKTIVNÍ LÁTKY a možnosti detoxikace
Letní škola 2008 RADIOAKTIVNÍ LÁTKY a možnosti detoxikace 1 Periodická tabulka prvků 2 Radioaktivita radioaktivita je schopnost některých atomových jader odštěpovat částice, neboli vysílat záření jádro
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C
Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896
Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:
Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno
13. RADIAČNÍ METODY MĚŘENÍ
13. RADIAČNÍ METODY MĚŘENÍ Úkol měření 1. Pomocí měřiče IRA s GM trubicí změřte radiační pozadí. Toto měření proveďte i s dozimetrem Voltcraft. Pro měření zvolte nejcitlivější rozsah (100 s; 0,001 µsv/h-mess-ein).
3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)
3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje
Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz
Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů
pro vybrané pracovníky radioterapeutických pracovišť č. dokumentu: VF A-9132-M0801T3 Jméno Funkce Podpis Datum
Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované
DETEKCE IONIZAČNÍHO ZÁŘENÍ
Úloha č. 14b DETEKCE IOIZAČÍHO ZÁŘEÍ ÚKOL MĚŘEÍ: 1. Změřte pozadí Geiger - Müllerova čítače 10 krát s nastavenou dobou 50 s.. Proveďte měření absorpce γ-záření pro hliník a železo s nastavenou dobou měření
Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)
Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH
JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH TECHNICKÁ FYZIKA IV Účinky a druhy záření Vypracoval: Vladimír Pátý Ročník: 2 Datum: 26.5.2003 Skupina: MVT Účinky a druhy záření 1. Druhy
SLOVENSKEJ REPUBLIKY
ZBIERKA ZÁKONOV SLOVENSKEJ REPUBLIKY Ročník 1991 Vyhlásené: 01.03.1991 Časová verzia predpisu účinná od: 01.03.1991 Obsah tohto dokumentu má informatívny charakter. 76 V Y H L Á Š K A ministerstva zdravotnictví
264/2000 Sb. VYHLÁŠKA. Ministerstva průmyslu a obchodu. ze dne 14. července 2000,
Vyhl. č. 264/2000 Sb., stránka 1 z 7 264/2000 Sb. VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 14. července 2000, o základních měřicích jednotkách a ostatních jednotkách a o jejich označování Ministerstvo
RADIAČNÍ OCHRANA PRO VYBRANÉ PRACOVNÍKY. pro účastníky kurzů SPECIALIZACE: VVZ, VZ, SL
RADIAČNÍ OCHRANA PRO VYBRANÉ PRACOVNÍKY SPECIALIZACE: VVZ, VZ, SL pro účastníky kurzů Brno, květen 2018 strana 2/109 PŘEDMLUVA Předkládaný učební materiál tvoří ucelený text ke kurzu získání zvláštní odborné
PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ
PŘÍRODNÍ RADIOAKTIVITA A STAVEBNICTVÍ RNDr. Karel Uvíra 2012 Opava Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Přírodní radioaktivita a stavebnictví
Atomové jádro, elektronový obal
Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným
Mezony π, mezony K, mezony η, η, bosony 1
Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba
( ) 2 2 MODUL 5. STAVBA ATOMU SHRNUTÍ
MODUL 5. STAVBA ATOMU SHRNUTÍ Kvantování fyzikálních veličin - vázaným částicím v mikrosvětě náleží diskrétní hodnoty hybnosti, energie i dalších veličin, které nazýváme kvantované fyzikální veličiny -
Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem
9. Jaderná energie. Česká zemědělská univerzita v Praze, Technická fakulta
9. Jaderná energie Stavba atomu Atomy byly dlouho považovány za nedělitelné. Postupem času se zjistilo, že mají jádro složené z protonů a z neutronů a elektronový obal tvořený elektrony. Jaderná fyzika
Základy toxikologie a bezpečnosti práce: část bezpečnost práce
Základy toxikologie a bezpečnosti práce: část bezpečnost práce T1ZA 2017 Přednášející: Ing. Jaroslav Filip, Ph.D. (U1/210, jfilip@utb.cz) Garant + přednášející části toxikologie: Ing. Marie Dvořáčková,
Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor)
Jaderné bloky v pokročilém vývoji FBR (Fast Breeder Reactor) zvláštností rychlých reaktorů s Pu palivem je jejich množivý charakter při štěpení Pu238 vzniká více neutronů než v případě U (rozštěpením U
Úloha 1: Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu.
Úloha : Vypočtěte hustotu uhlíku (diamant), křemíku, germania a α-sn (šedý cín) z mřížkové konstanty a hmotnosti jednoho atomu. Všechny zadané prvky mají krystalovou strukturu kub. diamantu. (http://en.wikipedia.org/wiki/diamond_cubic),
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE
VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje
HLAVA 3 POUŽÍVÁNÍ NORMALIZOVANÝCH JEDNOTEK
HLAVA 3 PŘEDPIS L 5 HLAVA 3 POUŽÍVÁNÍ NORMALIZOVANÝCH JEDNOTEK 3.1 Jednotky SI 3.1.1 Mezinárodní soustava jednotek zpracovaná a udržovaná Generální konferencí měr a vah musí být používána, s přihlédnutím
Přírodní (přirozená) radioaktivita je jev, kdy dochází k samovolné přeměně nestabilních jader na jiná jádra. Tento proces se označuje jako
SEZIT PLUS s.r.o. Přírodní (přirozená) radioaktivita je jev, kdy dochází k samovolné přeměně nestabilních jader na jiná jádra. Tento proces se označuje jako radioaktivní rozpad nebo přeměna a látky, které
Výukový program. pro vybrané pracovníky radiodiagnostických RTG pracovišť č. dokumentu: VF A-9132-M0801T1
Výukový program č. dokumentu: Jméno Funkce Podpis Datum Zpracoval Ing. Jiří Filip srpen 2008 Kontroloval Ing. Jan Binka SPDRO 13.2.2009 Schválil strana 1/7 Program je určen pro vybrané pracovníky připravované
ČSN , doplněno dle ČSN ISO 31-9 a Ing. Oldřich Ott. Přehled témat: detektory záření
Ing. Oldřich Ott Přehled témat: detektory záření 1. názvosloví dle ČSN a ISO 2. jednotky ionizačního záření 3. detekce úvodní list 4. primární účinky IZ 5. princip a použití ionizační komory 6. princip
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY (přínosy a rizika) jan.matzner@sujb.cz Státní úřad pro jadernou bezpečnost Fakulta stavební ČVUT, Praha 12. 3. 2015 WILHELM CONRAD RÖNTGEN 1895 - objev paprsků X Nobelova
Jaroslav Reichl. Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl, 2017
Střední průmyslová škola sdělovací techniky Panská Praha 1 Jaroslav Reichl, 017 určená studentům 4. ročníku technického lycea jako doplněk ke studiu fyziky Jaroslav Reichl Obsah 1. SPECIÁLNÍ TEORIE RELATIVITY....
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje
Atom jeho složení a struktura Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje 16.3.2009,vyhotovila Mgr. Alena Jirčáková Atom atom (z řeckého átomos nedělitelný)
Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601
Detekční trubice typu A ke geigeru ALPHA ix Kat. číslo 109.0601 Obsah: 1. Měření velikosti dávky detekční trubicí typu A... 2 2. Statistická chyba měření... 2 3. Mez průkaznosti (NWG)...3 4. Měření kontaminace...
GAUSSŮV ZÁKON ELEKTROSTATIKY
GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ
RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky -
RADIUM - 223 - fyzikální vlastnosti a radiobiologické účinky - Radium důležitý radioaktivní prvek Radium 226 Ra a 223 Ra Radiobiologické účinky a využití v nukleární medicíně Ullmann V., Koláček M., Pekárek
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY
ZDROJE IONIZUJÍCÍHO ZÁŘENÍ A MY (přínosy a rizika) jan.matzner@sujb.cz Státní úřad pro jadernou bezpečnost Fakulta stavební ČVUT, Praha 3. 5. 2018 WILHELM CONRAD RÖNTGEN 1895 - objev paprsků X Nobelova
- Uvedeným způsobem získáme obraz na detektoru (v konvenční radiografii na radiografickém filmu).
P9: NDT metody 2/5 - Princip průmyslové radiografie spočívá v umístění zkoušeného předmětu mezi zdroj vyzařující RTG nebo gama záření a detektor, na který dopadá záření prošlé daným předmětem. - Uvedeným
ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
MOŽNOST VELMI RYCHLÉHO SEMIKVANTITATIVNÍHO ODHADU VYSOKÉ KONTAMINACE VODY A ŽIVOTNÍHO PROSTŘEDÍ ALFA-RADIONUKLIDY MĚŘENÍ IN SITU
MOŽNOST VELMI RYCHLÉHO SEMIKVANTITATIVNÍHO ODHADU VYSOKÉ KONTAMINACE VODY A ŽIVOTNÍHO PROSTŘEDÍ ALFA-RADIONUKLIDY MĚŘENÍ IN SITU Jiří Hůlka, Irena Malátová Státní ústav radiační ochrany Praha Předpokládané
Stavba atomu: Atomové jádro
Stavba atomu: tomové jádo Výzkum stuktuy hmoty: Histoie Jen zdánlivě existuje hořké či sladké, chladné či hoké, ve skutečnosti jsou pouze atomy a pázdno. Démokitos, 46 37 př. n.l. Heni Becqueel 85 98 objev
Ozařovací svazky dostupné v dozimetrické laboratoři SÚRO. Libor Judas, Jana Dobešová, Anna Michaelidesová, Vladimír Dufek
Ozařovací svazky dostupné v dozimetrické laboratoři SÚRO Libor Judas, Jana Dobešová, Anna Michaelidesová, Vladimír Dufek Radionuklidový ozařovač OG-8 pozice v OG-8 radionuklid aktivita (GBq) referenční
Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce
magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů
Není-li uvedena ZÚ pro NES, pak se nestanovuje předem, ale až na základě vývoje konkrétní NES. ZÚ může být stanoveno několik pro různé zásahy.
Monitorovací úrovně (MÚ) 1. MÚ - Záznamová úroveň (ZáznÚ); 2. MÚ - Vyšetřovací úroveň (VÚ); 3. MÚ - Zásahová úroveň (ZÚ) Není-li uvedena ZÚ pro, pak se nestanovuje předem, ale až na základě vývoje konkrétní.
Radioaktivita,radioaktivní rozpad
Radioaktivita,radioaktivní rozpad = samovolná přeměna jader nestabilních nuklidů na jiná jádra, za současného vyzáření neviditelného radioaktivního záření Výskyt v přírodě v přírodě se vyskytuje 264 stabilních
Biofyzikální chemie radiometrické metody. Zita Purkrtová říjen - prosinec 2015
Biofyzikální chemie radiometrické metody Zita Purkrtová říjen - prosinec 2015 Radioaktivita 1896 Antoine Henri Becquerel první pozorování při studiu fluorescence a fosforescence solí uranu 1903 Nobelova
Identifikace typu záření
Identifikace typu záření U radioaktivního záření rozeznáváme několik druhů, jejichž vlastnosti se diametrálně liší. Jednotlivé druhy rozeznáváme podle druhu emitovaného záření. Tyto druhy radioaktivity
EKOTOXIKOLOGIE EKO/ETXE. Ionizující záření v Životním prostředí. Petr Hekera Katedra ekologie a ŽP PřF UP Olomouc
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 EKOTOXIKOLOGIE EKO/ETXE IV Ionizující záření v Životním prostředí Petr Hekera
Měření absorbce záření gama
Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti
Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011
Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,
Úvod do moderní fyziky. lekce 4 jaderná fyzika
Úvod do moderní fyziky lekce 4 jaderná fyzika objevení jádra 1911 - z výsledků Geigerova Marsdenova experimentu Rutheford vyvodil, že atom se skládá z malého jádra, jehož rozměr je 10000 krát menší než
4 N Vydáno dne: 22. prosince 2004 Aktualizace dne: 21. prosince 2016
Ministerstvo vnitra generální ředitelství Hasičského záchranného sboru České republiky Bojový řád jednotek požární ochrany - taktické postupy zásahu Název: Nebezpečí ionizujícího záření Metodický list
ÚVOD DO JADERNÉ FYZIKY ATOMOVÉ JÁDRO
ÚVOD DO JADERNÉ FYZIKY EXPERIMENTÁLNÍ ZÁKLAD rozptyl (pružný i nepružný) různých částic na atomových jádrech (neutrony, protony, elektrony, pozitrony, fotony, α-částice, ) radioaktivní rozpady některých
Ionizační manometry. Při ionizaci plynu o koncentraci n nejsou ionizovány všechny molekuly, ale jenom část z nich n i = γn ; γ < 1.
Ionizační manometry Princip: ionizace molekul a měření počtu nabitých částic Rozdělení podle způsobu ionizace: Manometry se žhavenou katodou Manometry se studenou katodou Manometry s radioaktivním zářičem
8.1 Elektronový obal atomu
8.1 Elektronový obal atomu 8.1 Celkový náboj elektronů v elektricky neutrálním atomu je 2,08 10 18 C. Který je to prvek? 8.2 Dánský fyzik N. Bohr vypracoval teorii atomu, podle níž se elektron v atomu
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?
Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu
ZKUŠEBNICTVÍ A TECHNOLOGIE
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. Leonard Hobst, CSc. ZKUŠEBNICTVÍ A TECHNOLOGIE MODUL BI02-M03 RADIAČNÍ DEFEKTOSKOPIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU
Přehled veličin elektrických obvodů
Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic
Vybrané technologie povrchových úprav. Základy vakuové techniky Doc. Ing. Karel Daďourek 2006
Vybrané technologie povrchových úprav Základy vakuové techniky Doc. Ing. Karel Daďourek 2006 Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova
NEUTRONOVÁ AKTIVAČNÍ ANALÝZA S MĚŘENÍM ZPOŽDĚNÝCH NEUTRONŮ
NEUTRONOVÁ AKTIVAČNÍ ANALÝZA S MĚŘENÍM ZPOŽDĚNÝCH NEUTRONŮ 1.1. ÚVOD Metody využívající k identifikaci i kvantifikaci látek jejich radioaktivní vlastnosti nazýváme radioanalytické. Tyto metody vedou vždy
Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod
Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná
212 a. 5. Vyzáří-li radioaktivní nuklid aktinia částici α, přemění se na atom: a) radia b) thoria c) francia d) protaktinia e) zůstane aktinium
Pracovní list - Jaderné reakce 1. Vydává-li radionuklid záření alfa: a) protonové číslo se zmenšuje o 4 a nukleonové číslo se nemění b) nukleonové číslo se změní o 4 a protonové se nemění c) protonové
Přírodní radioaktivita
Přírodní radioaktivita Náš celý svět, naše Země, je přirozeně radioaktivní, a to po celou dobu od svého vzniku. V přírodě můžeme najít několik tisíc radionuklidů, tj. prvků, které se samovolně rozpadají
VÝUKA V OBLASTI NEBEZPEČNÝCH LÁTEK S DŮRAZEM NA HODNOCENÍ RADIOLOGICKÉHO NEBEZPEČÍ. Jozef Sabol, Jana Hudzietzová
VÝUKA V OBLASTI NEBEZPEČNÝCH LÁTEK S DŮRAZEM NA HODNOCENÍ RADIOLOGICKÉHO NEBEZPEČÍ Jozef Sabol, Jana Hudzietzová Fakulta biomedicínského inženýrství ČVUT v Praze, Nám. Sítná 3105, 272 01 Kladno j.sabol44@gmail.com,
Relativistická dynamika
Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte
4 N. Nebezpečí ionizujícího záření. Metodický list číslo. Vydáno dne: 22. prosince 2004 Stran: 5. I. Charakteristika
Ministerstvo vnitra - generální ředitelství Hasičského záchranného sboru České republiky Bojový řád jednotek požární ochrany - taktické postupy zásahu Název: Nebezpečí ionizujícího záření I. Charakteristika
DUM č. 15 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník
projekt GML Brno Docens DUM č. 15 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník utor: Miroslav Kubera Datum: 27.05.2014 Ročník: 4B notace DUMu: Prezentace je souhrnem probírané tématiky. Ve stručném
Základy vakuové techniky
Základy vakuové techniky Střední rychlost plynů Rychlost molekuly v p = (2 k N A ) * (T/M 0 ), N A = 6. 10 23 molekul na mol (Avogadrova konstanta), k = 1,38. 10-23 J/K.. Boltzmannova konstanta, T.. absolutní
OCHRANA PŘI PRÁCI SE ZDROJI
ÔS r X ČESKOSLOVENSKÁ KOMISE PRO ATOMOVOU ENERGII DŮM TECHNIKY ČSVTS OSTRAVA KOLEKTIV AUTORŮ OCHRANA PŘI PRÁCI SE ZDROJI IONIZUJÍCÍHO ZÁŘENÍ V NÁRODNÍM HOSPODÁŘSTVÍ SBORNÍK UČEBNÍCH TEXTŮ ÚSTftEDNf INFORMAČNÍ
Prvek, nuklid, izotop, izobar, izoton
Prvek, nuklid, izotop, izobar, izoton A = Nukleonové (hmotnostní) číslo A = počet protonů + počet neutronů A = Z + N Z = Protonové číslo, náboj jádra Prvek = soubor atomů se stejným Z Nuklid = soubor atomů
v materiálech Atomové jádro a polotloušt ku pro γ-záření. Do jednoho grafu pro oba materiály vyneste závislost počtu
Laboratorní úloha Měření absorpce ionizujícího záření v materiálech 1.1 Úkol měření 1. Pro dva vybrané materiály určete lineární absorpční koeficient a hmotnostní absorpční koeficient pro β-záření. Do
CZ.1.07/1.1.30/01.0038
Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 29 Téma: RADIOAKTIVITA A JADERNÝ PALIVOVÝ CYKLUS Lektor: Ing. Petr Konáš Třída/y: 3ST,
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování
Radiační monitorovací síť ČR metody stanovení a vybrané výsledky monitorování Miroslav Hýža a kol., SÚRO v.v.i., miroslav.hyza@suro.cz Otázky dopadu jaderné havárie do zemědělství a připravenost ČR Praha,
Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení
FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava
3.6 RADIOAKTIVITA. Základnípojmy 3.6.1. RADIOAKTIVNÍZÁŘENÍ. Základní pojmy. Typy radioaktivního záření TYPY ZÁŘENÍ
3.6.1. RADIOAKTIVNÍZÁŘENÍ 3.6 RADIOAKTIVITA Základnípojmy Radioaktivita = schopnost některých atomových jader se samovolně přeměnit (rozpadat) Základní pojmy Ionizující záření = záření, kterézpůsobuje
Bezpečnost a ochrana zdraví při práci se zdroji ionizujícího záření. KFNT 13. dubna 2015 (revidováno 17. dubna 2015)
Bezpečnost a ochrana zdraví při práci se zdroji ionizujícího záření KFNT 13. dubna 2015 (revidováno 17. dubna 2015) Ionizující záření a jeho účinky na člověka Přirozené ozáření člověk je vystaven radiaci
RADIOAKTIVITA RADIOAKTIVITA
Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká
K MOŽNOSTEM STANOVENÍ OLOVA
K MOŽNOSTEM STANOVENÍ OLOVA 210 Jaroslav Vlček Státní ústav radiační ochrany, Bartoškova 1450/28, 140 00 Praha 4 Radionuklid 210 Pb v přírodě vzniká postupnou přeměnou 28 U (obr. 1) a dále se mění přes
Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze
Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření
Základy pyrometrie. - pyrometrie = bezkontaktní měření teploty. 0.4 µm... 25 µm - 40 0 C... 10 000 0 C
Základy pyrometrie - pyrometrie = bezkontaktní měření teploty 0.4 µm... 25 µm - 40 0 C... 10 000 0 C výhody: zanedbatelný vliv měřící techniky na objekt možnost měření rotujících nebo pohybujících se těles
Polovodičové součástky jako dozimetry ionizujícího záření křemíková dioda.
Polovodičové součástky jako dozimetry ionizujícího záření křemíková dioda. Radioaktivita je vlastnost některých atomů samovolně se rozpadat ( přeměňovat ) na atomy jednodušší, vysílat elektromagnetické
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, , Jaro 2008
Domácí úlohy ke kolokviu z předmětu Panorama fyziky II Tomáš Krajča, 255676, Jaro 2008 Úloha 1: Jaká je vzdálenost sousedních atomů v hexagonální struktuře grafenové roviny? Kolik atomů je v jedné rovině
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno
Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura
Příklady Kosmické záření
Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum
Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.
Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem