1.4 Možnosti odstínění radioaktivního záření

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "1.4 Možnosti odstínění radioaktivního záření"

Transkript

1 1.4 Možnosti odstínění radioaktivního záření Cíle kapitoly: Laboratorní úloha je zaměřena na problematiku radioaktivního záření a studentům umožňuje prověřit znalosti, resp. prakticky si vyzkoušet práci s radioaktivním zdrojem záření. Úkolem měření bude osvojení si možnosti odstínění radioaktivního zdroje různými druhy materiálů. Nejdříve bude změřena intenzita záření v různých vzdálenostech od zdroje (v krocích po 15 cm, dokud nebude měřená hodnota totožná s hodnotou pozadí). V dalším části budou vloženy připravené stínící přepážky z různých materiálů, respektive bude provedeno zesílení přepážky na dvojnásobnou šířku a bude realizováno obdobné měření. Naměřená data budu analyzována a přenesena do grafického zobrazení, tak aby bylo možné vyhodnotit měření a stanovit vhodné závěry Úvod a rozbor úlohy Ionizující záření [1]: Je souhrnné označení pro záření, jehož kvanta mají energii postačující k ionizaci atomů nebo molekul ozářené látky. Za energetickou hranici ionizujícího záření se obvykle považuje energie 5 ev pro fotonové záření (rentgenové záření γ), elektronové záření β, α záření. Pro neutronové záření α záření β+ je kvantifikace obtížnější, neboť i velmi pomalé částice (v případě neutronů) vstupují do jader a vyvolávají sekundární ionizaci prostřednictvím jaderných reakcí. Obdobný případ nastává v případě pozitronů, anihilujících s elektrony za vzniku velmi tvrdého záření γ. S ohledem na charakter ionizačního procesu je možno ionizující záření rozdělit na přímo ionizující a nepřímo ionizující. Přímo ionizující záření je tvořeno nabitými částicemi (protony, elektrony, pozitrony atp.). Nepřímo ionizující záření zahrnuje nenabité částice (neutrony, fotony atp.), které prostředí samy neionizují, ale při interakci s prostředím uvolňují sekundární přímo ionizující částice. Ionizace prostředí je zde tedy způsobena těmito sekundárními částicemi. Vznik ionizujícího záření souvisí se strukturou atomů a jejich jader. Zdroje ionizujícího záření můžeme rozdělit do skupin na: Přírodní zdroje Umělé zdroje kosmické záření sluneční záření přírodní radioizotopy Urychlovače částic Cyklotron, Synchrotron, případně lineární urychlovače, mezi něž patří i rentgenky (Rentgen, CT, mamograf) a CRT obrazovky Jaderné zbraně Jaderný reaktor Uměle vytvořené nestabilní chemické prvky (neptunium, plutonium, americium, kalifornium atp.)

2 Zařízení pro scintilační a stopovací diagnostické metody Terapeutická zařízení cesiové a kobaltové gama ozařovače, Leksellův gamanůž Radiofarmaka a tracery Účinky na živé organismy jsou u ionizující záření, ve formě jak dlouhodobého slabého, tak i krátkodobého intenzivního ozáření, má negativní účinky na člověka a ostatní živé organismy. Působíli na biologický materiál, dochází k absorbci ionizujících částic nebo vlnění atomy daného materiálu. To způsobuje vyrážení elektronů z jejich orbitalů a tvorbu kladně nabitých kationtů. Ionizované části molekul se stávají vysoce reaktivními a vedou k řadě chemických reakcí, které buňku buď rovnou usmrtí, nebo vedou ke změnám genetické informace (reakce radikálů s DNA způsobuje porušení fosfodiesterových vazeb a tím zpřetrhání jejího řetězce). Detektor ionizujícího záření [2]: Je takové zařízení, které je schopno detekovat (měřit) ionizující záření. Měření ionizující záření (které je okem neviditelné) probíhá pomocí příslušných fyzikálních metod a vhodné přístrojové techniky. Detektory umožňují zkoumat vlastnosti tohoto záření a využívat jej v řadě vědeckotechnických, průmyslových a medicínských aplikací. Detektory ionizujícího záření nám poskytují kvantitativní informace o intenzitě, energii, prostorové distribuci a příp. dalších vlastnostech záření. Detektory ionizujícího záření se rozdělují podle principu detekce na fotografické, elektronické a materiálové detektory. Podle časového průběhu detekce na detektorů kontinuální a kumulativní (integrální) detektory. Podle komplexnosti měřené informace na detektory záření, udávající pouze intenzitu záření, resp. počet kvant záření, bez informace o druhu záření a jeho energii. Mezi tyto nejjednodušší detektory patří filmové a termoluminiscenční dozimetry, ionizační komory a GeigerůvMüllerův počítač. A na spektrometry ionizujícího záření, které měří nejen intenzitu či počet kvant záření, ale i energii kvant záření a jeho další charakteristiky. Ve spektrometrickém režimu mohou pracovat především scintilační detektory, polovodičové detektory a magnetické spektrometry. Zobrazovací detektory jsou kamery, které zobrazují (vizuálně nebo elektronicky) prostorové rozložení intenzity záření. Nejjednodušším zobrazovacím detektorem je fotografický film. Dráhové detektory částic měří dráhy pohybu jednotlivých částic v prostoru, včetně jejich zakřivení v magnetickém poli. Dosahuje se toho buď na základě materiálových efektů fotochemických reakcí, kondenzace kapiček z páry nebo vznik bublinek v přehřáté kapalině nebo elektronicky složitými systémy velkého množství prostorově rozmístěných detektorů, polovodičových nebo ionizačních komor. Dozimetry jsou zařízení k měření dávek ionizujícího záření. Tento typ detektoru je používán v lékařství a vojenství k měření hodnoty ozáření. Dozimetr funguje na principu změn látky v něm obsažené.

3 Prstový dozimetr je založen na principu termoluminiscence, vyplývající z jevu, že některé anorganické krystaly mohou akumulovat energii ionizujícího záření tím, že záření v nich vybudí elektrony do vyššího energetického stavu. Po zahřátí krystalu emitují jeho atomy (návratem elektronů do základního stavu) akumulovanou energii ve formě viditelného světla. Světelné záblesky se převádějí na paměťové impulzy a měří. Prstový dozimetr ve formě prstýnku nosí lidé manipulující ručně s radioaktivními zářiči; lze tak zjistit dávku, kterou obdržely pracovníkovy ruce. Scintilační detektor je zařízení pro detekci ionizujícího záření založené na principu excitace elektronu do vyššího energetického stavu zářením, přičemž návrat elektronu do základního stavu se projeví jako světelný záblesk. GeigerůvMüllerův počítač také GeigerůvMüllerův čítač či GeigerůvMüllerův detektor je detektor ionizačního záření (především gama, ale i beta a alfa). Měřící část počítače je tvořena trubicí a vláknem obklopeným plynem. Vodiče jsou pod vysokým napětím V. Částice prolétávající plynem naráží do jeho atomů a vytváří z nich ionty a elektrony. Elektrony dopadající na anodu jsou poté registrovány jako impulzy Úkol měření Mezi hlavní úkoly laboratorního měření je osvojení si práci s ionizujícím zdrojem a postupy využívající pro určení hodnot ionizujícího záření. Prvním úkolem měření bude stanovit pomoci přístroje dávkového výkonu hodnotu pozadí v laboratoři, hodnota bude měřena ve třech libovolných bodech místnosti a výsledná hodnota stanovena z průměru. Dále bude stanovena intenzita záření ionizujícího zdroje v různých vzdálenostech. Druhou části úlohy bude možnost odstínění ionizujícího zdroje záření pomocí různých materiálů Použité měřicí přístroje a komponenty Zdroj radioaktivního záření Cs7.P03 (6 x 8 mm) Přístroj pro měření dávkového příkonu RDS31S přístroj nabízí svým měřícím rozsahem dostatečnou citlivost měření, a to jak radioaktivního pozadí, tak i měřených zdrojů záření. Přístroj dokonce umožňuje provádět analýzu přímo v terénu, což vede k možnosti udělat laboratorní úlohu ještě atraktivnější. Přístroj je vybaven komunikačním portem, který umožní exportovat naměřená data a provést patřičnou analýzu pomocí výpočetní techniky. Uvažuje se využití novějšího přístroje RADEYE B20ER s vyšším rozlišením, aby bylo možné tyto dva přístroje porovnávat. Desky z různých materiálů nerezový plech, měď, hliník, PVC, polyetylen, plexisklo Optický snímač umožní snímání hodnot z přístroje dávkového příkonu a umožní v reálném čase promítnout hodnoty na zobrazovací zařízení. Měřící pásmo

4 1.4.4 Postup měření 1) 2) 3) 4) 5) 6) Zapneme přístroj pro měření dávkového příkonu RDS31 a vymažeme uložená data z přístroje. Pomoci tlačítka menu, nalezneme příkaz DOSE, krátce stiskneme tlačítko on/off a zobrazí se naměřené hodnoty, po opětovném středně dlouhém stisknutí tlačítka on/off hodnoty vymažeme. Změříme hodnotu ionizujícího záření na pozadí laboratoře ve třech místech: a. U vchodu do laboratoře b. Na laboratorním stole c. U okna Údaje zapíšeme do připravené tabulky Tab.4.1. Výslednou hodnotu získáme průměrem hodnot naměřených. Umístíme zdroj ionizujícího záření na připravené místo a vodorovně ve stejné výšce změříme hodnoty záření v jednotlivých vzdálenostech po 15 cm (jednotlivé vzdálenosti jsou uvedeny v tabulce Tab.4.2) měříme do maximální zadané vzdálenosti 150 cm nebo až do takové vzdálenosti, kdy nám přístroj ukazuje hodnotu pozadí v laboratoři. Nyní nainstalujeme před zdroj záření stínící bariéru ze zvoleného materiálu PVC a provedeme měření stejné měření jako v bodě 3) po 15 cm do maximální vzdálenosti 150 cm. Po změření zářiče přes stínící materiál PVC instalujeme další připravené materiály a každý proměříme jako v kroku 3). Zářič uložíme do ochranného odstíněného boxu a opět změříme hodnotu pozadí ionizujícího záření. Zda nedošlo ke změně hodnoty pozadí v laboratoři Zpracování výsledků Vypracujte protokol o měření. Protokol bude obsahovat: Vlastní teoretický rozbor probírané problematiky, Skutečný postup měření, Naměřené hodnoty zanesené do připravených tabulek Grafické znázornění průběhů pro jednotlivá měření, která budou v jednom grafu. Naměřené hodnoty je nezbytné umístit do jednoho grafu, aby bylo možné porovnat jednotlivé výsledky měření při použití různých typů bariér s měřením bez bariéry. Naměřené hodnoty zaznačíme do připravených tabulek. Ionizující záření na pozadí do Tab. 1 a hodnoty z přístroje pro měření se zářičem a bariérami do Tab. 2

5 Tab.4.1 Hodnoty ionizujícího záření na pozadí laboratoře. Před měřením Po měření Okno Vstup Pracovní stůl Průměr Tab. 4.2 Měření ionizujícího záření se zářičem a bariérami Vzdálenos t (cm) Bez bariéry PVC Polypropyle n Nerez Hliník Měď Plexisklo Zdroje: [1] Ionizující záření kolem nás proč je člověk vystaven radiaci po celý život. Atominfo [online]. c 2012 [cit ]. Dostupné z: [2] ULLMANN, Vojtěch. Detekce a spektrometrie ionizujícího záření. Astro Nukl Fyzika [online] [cit ]. Dostupné z: Kontrolní otázky 1) 2) 3) 4) 5) Jaký je rozdíl mezi částicemi alfa, beta, gama, neutrony a kosmickým záření? Jaká je přibližná hodnota radiačního pozadí v ČR? Vyjmenujte tři aplikace použití dozimetru. Uveďte princip činnosti GeigerMüllerova počítače. Uveďte, které částice způsobují přímo ionizující záření.

6 6) Vyjmenujte tři druhy radiometrů (dle principu, resp. konstrukce). 7) Uveďte, které částice způsobují nepřímo ionizující záření. 8) Vyjmenujte (alespoň dva) přírodní zdroje radioaktivního záření. 9) Uveďte umělé zdroje radioaktivního záření. 10) Popište rozdíl mezi GeigerMüllerovým počítačem a dráhovými detektory.

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení

Jméno a příjmení. Ročník. Měřeno dne. 21.3.2012 Příprava Opravy Učitel Hodnocení FYZIKÁLNÍ PRAKTIKUM Ústav fyziky FEKT VUT BRNO Jméno a příjmení Vojtěch Přikryl Ročník 1 Předmět IFY Kroužek 35 ID 143762 Spolupracoval Měřeno dne Odevzdáno dne Daniel Radoš 7.3.2012 21.3.2012 Příprava

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Radioaktivita versus Ionizující záření Radioaktivita je schopnost jader prvků samovolně se rozpadnout na jádra menší stabilnější. Rozeznáváme pak radioaktivitu přírodní (viz.

Více

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace

VÝUKOVÝ MATERIÁL. 0301 Ing. Yvona Bečičková Tematická oblast. Vlnění, optika Číslo a název materiálu VY_32_INOVACE_0301_0310 Anotace VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Nebezpečí ionizujícího záření

Nebezpečí ionizujícího záření Nebezpečí ionizujícího záření Ionizující záření je proud: - fotonů - krátkovlnné elektromagnetické záření, - elektronů, - protonů, - neutronů, - jiných částic, schopný přímo nebo nepřímo ionizovat atomy

Více

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace:

Radiační patofyziologie. Zdroje záření. Typy ionizujícího záření: Jednotky pro měření radiace: Radiační patofyziologie Radiační poškození vzniká účinkem ionizujícího záření. Co se týká jeho původu, ionizující záření vzniká: při radioaktivním rozpadu prvků, přichází z kosmického prostoru, je produkováno

Více

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011

Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 Radiologická klinika FN Brno Lékařská fakulta MU Brno 2010/2011 OCHRANA PŘED ZÁŘENÍM Přednáška pro stáže studentů MU, podzimní semestr 2010-09-08 Ing. Oldřich Ott Osnova přednášky Druhy ionizačního záření,

Více

1 Měření na Wilsonově expanzní komoře

1 Měření na Wilsonově expanzní komoře 1 Měření na Wilsonově expanzní komoře Cíle úlohy: Cílem této úlohy je seznámení se základními částicemi, které způsobují ionizaci pomocí Wilsonovi mlžné komory. V této úloze studenti spustí Wilsonovu mlžnou

Více

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný

Integrovaná střední škola, Hlaváčkovo nám. 673, Slaný Označení materiálu: VY_32_INOVACE_STEIV_FYZIKA2_12 Název materiálu: Elektrický proud v plynech. Tematická oblast: Fyzika 2.ročník Anotace: Prezentace slouží k výkladu elektrického proudu v plynech. Očekávaný

Více

Radiační zátěž na palubách letadel

Radiační zátěž na palubách letadel Radiační zátěž na palubách letadel M. Flusser 1, L. Folwarczny 2, D. Kalasová 3, L. Lachman 4, V. Větrovec 5 1 Smíchovská střední průmyslová škola, Praha, martin.flusser@atlas.cz 2 Gymnázium Komenského,

Více

Stručný úvod do spektroskopie

Stručný úvod do spektroskopie Vzdělávací soustředění studentů projekt KOSOAP Slunce, projevy sluneční aktivity a využití spektroskopie v astrofyzikálním výzkumu Stručný úvod do spektroskopie Ing. Libor Lenža, Hvězdárna Valašské Meziříčí,

Více

Dosah γ záření ve vzduchu

Dosah γ záření ve vzduchu Dosah γ záření ve vzduchu Intenzita bodového zdroje γ záření se mění podobně jako intenzita bodového zdroje světla. Ve dvojnásobné vzdálenosti, paprsek pokrývá dvakrát větší oblast povrchu, což znamená,

Více

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření

Metody využívající rentgenové záření. Rentgenovo záření. Vznik rentgenova záření. Metody využívající RTG záření Metody využívající rentgenové záření Rentgenovo záření Rentgenografie, RTG prášková difrakce 1 2 Rentgenovo záření Vznik rentgenova záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá

Více

Jaderné reakce a radioaktivita

Jaderné reakce a radioaktivita Střední průmyslová škola Hranice - - Jaderné reakce a radioaktivita Radioaktivita Je vlastností atomových jader, která se samovolně přeměňují na jiná a vyzařují při tom pronikavé neviditelné záření. Jádra

Více

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM

12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM 12. OCHRANA PŘED IONIZUJÍCÍM ZÁŘENÍM Při práci se zdroji záření spočívá v zeslabení dávky záření na hodnotu, při níž je riziko ozáření sníženo na zanedbatelnou hodnotu: udržování patřičné vzdálenosti od

Více

Ochrana proti účinkům. Evžen Losa, Ján Milčák, Michal Koleška Katedra jaderných reaktorů FJFI ČVUT v Praze

Ochrana proti účinkům. Evžen Losa, Ján Milčák, Michal Koleška Katedra jaderných reaktorů FJFI ČVUT v Praze Ochrana proti účinkům ionizujícího záření Evžen Losa, Ján Milčák, Michal Koleška Katedra jaderných reaktorů FJFI ČVUT v Praze 1 Atom Nejmenší jednotka chemického prvku Skládá se jádra a elektronového obalu

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Gama spektroskopie. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Gama spektroskopie Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Teoretický úvod ke spektroskopii Produkce a transport neutronů v různých materiálech, které se v daných zařízeních vyskytují (urychlovačem

Více

12. STUDIUM GEIGEROVA-MÜLLEROVA POČÍTAČE PRO ZÁŘENÍ GAMA

12. STUDIUM GEIGEROVA-MÜLLEROVA POČÍTAČE PRO ZÁŘENÍ GAMA 12. STUDIUM GEIGEROVA-MÜLLEROVA POČÍTAČE PRO ZÁŘENÍ GAMA Měřicí potřeby: 1) přístroj pro měření radioaktivního záření ROBOTRON 20 046 2) Geigerův-Müllerův počítač pro záření gama 3) dva zářiče ( 60 Co)

Více

Měření přirozené radioaktivity na Vyšehradě

Měření přirozené radioaktivity na Vyšehradě Měření přirozené radioaktivity na Vyšehradě P. Guhlová Gymnázium Na Vítězné pláni Praha M. Slavík Gymnázium Jana Masaryka Jihlava mellkori@seznam.cz R. Žlebčík Gymnázium Christiána Dopplera V. Arťušenko

Více

Patofyziologie radiačního poškození Jednotky, měření, vznik záření Bezprostřední biologické účinky Účinky na organizmus: - nestochastické - stochastické Ionizující záření Radiační poškození vzniká účinkem

Více

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_379 Jméno autora: Mgr. Alena Krejčíková Třída/ročník:

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou JÁDRO ATOMU A RADIOAKTIVITA VY_32_INOVACE_03_3_03_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Atomové jádro je vnitřní

Více

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak.

Referát z Fyziky. Detektory ionizujícího záření. Vypracoval: Valenčík Dušan. MVT-bak. Referát z Fyziky Detektory ionizujícího záření Vypracoval: Valenčík Dušan MVT-bak. 2 hlavní skupiny detektorů používaných v jaderné a subjaderné fyzice 1) počítače interakce nabitých částic je převedena

Více

Wilsonova mlžná komora byl první přístroj, který dovoloval pozorovat okem dráhy elektricky

Wilsonova mlžná komora byl první přístroj, který dovoloval pozorovat okem dráhy elektricky Mlžná komora Kristína Nešporová, G. Boskovice Tomáš Pikálek, G. Boskovice Martin Valko, SPŠE a VOŠ Olomouc Abstrakt Tato práce se zabývá problematikou detekce ionizujícího záření pomocí difúzní mlžné komory.

Více

CENÍK SLUŽEB STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY. veřejná výzkumná instituce. (za služby poskytované za úplatu) Bartoškova 28, 140 00 PRAHA 4

CENÍK SLUŽEB STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY. veřejná výzkumná instituce. (za služby poskytované za úplatu) Bartoškova 28, 140 00 PRAHA 4 STÁTNÍ ÚSTAV RADIAČNÍ OCHRANY veřejná výzkumná instituce CENÍK SLUŽEB (za služby poskytované za úplatu) Bartoškova 28, 140 00 PRAHA 4 Telefon: 241 410 214 http://www.suro.cz Fax: 241 410 215 e-mail: suro@suro.cz

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

4 Sestrojení Geiger-Müllerova počítače

4 Sestrojení Geiger-Müllerova počítače 4 Sestrojení Geiger-Müllerova počítače Cíle úlohy: Cílem této úlohy je seznámení se základními způsoby detekce ionizujícího záření. Studenti se podrobně seznámí s funkčním principem Geiger Müllerova počítače,

Více

Detektory záření. Autoři: Michael Němý, Martin Hájek Konzultant: Zdeněk Polák

Detektory záření. Autoři: Michael Němý, Martin Hájek Konzultant: Zdeněk Polák Detektory záření Autoři: Michael Němý, Martin Hájek Konzultant: Zdeněk Polák Vypracováno jako projekt Soustředění mladých fyziků a matematiků pořádaného MFF UK v Nekoři roku 2011. Úvod Za cíl našeho projektu

Více

Radiační monitorovací systém RMS

Radiační monitorovací systém RMS Radiační monitorovací systém RMS Radiační monitorovací systém RMS je modulárním a standardizovaným systémem pro monitorování radiační situace. Do systému může být zapojeno velké množství různých monitorů,

Více

JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH

JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH JIHOČESKÁ UNIVERZITA - PEDAGOGICKÁ FAKULTA V ČESKÝCH BUDĚJOVICÍCH TECHNICKÁ FYZIKA IV Účinky a druhy záření Vypracoval: Vladimír Pátý Ročník: 2 Datum: 26.5.2003 Skupina: MVT Účinky a druhy záření 1. Druhy

Více

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní

Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Dvě strany jedné mince - Dvě strany jedné mince - jaderná fyzika pomáhá v lékařství a technologie jaderných zbraní Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Základní představy - atom a atomové

Více

3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4.

3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4. 2. POSTAVENÍ RADIOTERAPIE V KOMPLEXNÍ LÉČBĚ NÁDORŮ 10 3.ZÁKLADNÍ POJMY 11 3.1. ROZDĚLENÍ NÁDORŮ 11 3.2.TNM SYSTÉM 11 3.3. INDIKACE RADIOTERAPIE PODLE ZÁMĚRU LÉČBY 14 3.4. FRAKCIONACE 15 4. FYZIKÁLNÍ ASPEKTY

Více

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE

RENTGENKY ČASU. Vojtěch U l l m a n n f y z i k OD KATODOVÉ TRUBICE PO URYCHLOVAČE RENTGENKY V PROMĚNÁCH ČASU OD KATODOVÉ TRUBICE PO URYCHLOVAČE Vojtěch U l l m a n n f y z i k Klinika nukleární mediciny FN Ostrava Ústav zobrazovacích metod ZSF OU Ostrava VÝBOJKY: plynem plněné trubice

Více

Jednoduchý elektrický obvod

Jednoduchý elektrický obvod 21 25. 05. 22 01. 06. 23 22. 06. 24 04. 06. 25 28. 02. 26 02. 03. 27 13. 03. 28 16. 03. VI. A Jednoduchý elektrický obvod Jednoduchý elektrický obvod Prezentace zaměřená na jednoduchý elektrický obvod

Více

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka.

PSK1-14. Optické zdroje a detektory. Bohrův model atomu. Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka. PSK1-14 Název školy: Autor: Anotace: Vyšší odborná škola a Střední průmyslová škola, Božetěchova 3 Ing. Marek Nožka Optické zdroje a detektory Vzdělávací oblast: Informační a komunikační technologie Předmět:

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

RUZNYCH DRUHU ZÁRENí

RUZNYCH DRUHU ZÁRENí Tomáš Fukátko DETEKCE A MERENí o, o RUZNYCH DRUHU ZÁRENí Praha 2007 "'(ECHNICI(4 I (/1"ERATUf\P- It I~~ @ ~~č~~ nékolietody rem béako ucekapitoly "zárení". odrobné pak preo vznik ní nabit hledat mi na

Více

Rekonstrukce objektu Centra nakládání s radioaktivními odpady

Rekonstrukce objektu Centra nakládání s radioaktivními odpady Rekonstrukce objektu Centra nakládání s radioaktivními odpady Josef Mudra Centrum nakládání s RAO, ÚJV Řež a.s. XXXIII. DNI RADIAČNEJ OCHRANY Hotel Sitno Štiavnické vrchy - Vyhne 7.11. - 11.11. 2011 22.11.2011

Více

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009.

PRAKTIKUM III. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM III Úloha č. XXVI Název: Vláknová optika Pracoval: Jan Polášek stud. skup. 11 dne 23.4.2009 Odevzdal dne: Možný počet bodů

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX / 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH

VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH VEDENÍ ELEKTRICKÉHO PROUDU V LÁTKÁCH Jan Hruška TV-FYZ Ahoj, tak jsme tady znovu a pokusíme se Vám vysvětlit problematiku vedení elektrického proudu v látkách. Co je to vlastně elektrický proud? Na to

Více

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření

RADIOAKTIVITA KAP. 13 RADIOAKTIVITA A JADERNÉ REAKCE. Typy radioaktivního záření KAP. 3 RADIOAKTIVITA A JADERNÉ REAKCE sklo barvené uranem RADIOAKTIVITA =SCHOPNOST NĚKTERÝCH ATOMOVÝCH JADER VYSÍLAT ZÁŘENÍ přírodní nuklidy STABILNÍ NKLIDY RADIONKLIDY = projevují se PŘIROZENO RADIOAKTIVITO

Více

Ochrana obyvatelstva před účinky ionizujícího záření. Bc. Miloš Řehák

Ochrana obyvatelstva před účinky ionizujícího záření. Bc. Miloš Řehák Ochrana obyvatelstva před účinky ionizujícího záření Bc. Miloš Řehák Diplomová práce 2009 OCHRANA OBYVATELSTVA PŘED ÚČINKY IONIZUJÍCÍHO ZÁŘENÍ Abstrakt: Tato diplomová práce je věnována zejména možnostem

Více

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ

A5M13VSO MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ MĚŘENÍ INTENZITY A SPEKTRA SLUNEČNÍHO ZÁŘENÍ Zadání: 1) Pomocí pyranometru SG420, Light metru LX-1102 a měřiče intenzity záření Mini-KLA změřte intenzitu záření a homogenitu rozložení záření na povrchu

Více

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz

Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů. e-learningový kurz Centrum výzkumu Řež s.r.o. Úvod do problematiky výzkumných jaderných reaktorů e-learningový kurz Tento e-learningový kurz byl vypracován v rámci projektu Efektivní přenos poznatků v rámci energetického

Více

Radiační onkologie- radioterapie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika

Radiační onkologie- radioterapie. Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Radiační onkologie- radioterapie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Historie radioterapie Ionizující záření základní léčebný prostředek (často se však používá v kombinaci

Více

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora

PRO VAŠE POUČENÍ. Kdo se bojí radiace? ÚVOD CO JE RADIACE? Stanislav Kočvara *, VF, a.s. Černá Hora Kdo se bojí radiace? Stanislav Kočvara *, VF, a.s. Černá Hora PRO VAŠE POUČENÍ ÚVOD Od počátků lidského rodu platí, že máme strach především z neznámého. Lidé měli v minulosti strach z ohně, blesku, zatmění

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

NMR spektroskopie. Úvod

NMR spektroskopie. Úvod NMR spektroskopie Úvod Zkratka NMR znamená Nukleární Magnetická Rezonance. Jde o analytickou metodu, která na základě absorpce radiofrekvenčního záření vzorkem umístěným v silném magnetickém poli poskytuje

Více

RADIOAKTIVITA RADIOAKTIVITA

RADIOAKTIVITA RADIOAKTIVITA Předmět: Ročník: Vytvořil: Datum: CHEMIE PRVNÍ Mgr. Tomáš MAŇÁK 20. říjen 2012 Název zpracovaného celku: RADIOAKTIVITA Přirozená radioaktivita: RADIOAKTIVITA Atomová jádra některých nuklidů (zejména těžká

Více

Secondary Standard Dosimetry Laboratory Saraykoy Nuclear Research and Training Center Ankara, Turecko

Secondary Standard Dosimetry Laboratory Saraykoy Nuclear Research and Training Center Ankara, Turecko VF, a.s. nám. Míru 50, 679 21 Černá Hora tel: +420-516 428 611, e-mail: office@vf.cz, www.vf.cz Secondary Standard Dosimetry Laboratory Saraykoy Nuclear Research and Training Center Ankara, Turecko XXXVI.

Více

Beta, X and gamma radiation dose equivalent and dose equivalent rate meters for use in radiation protection

Beta, X and gamma radiation dose equivalent and dose equivalent rate meters for use in radiation protection ČESKOSLOVENSKÁ NORMA MDT 621.317.794:614.898 Říjen 1992 MĚŘIČE DÁVKOVÉHO EKVIVALENTU A PŘÍKONU DÁVKOVÉHO EKVIVALENTU ZÁŘENÍ BETA, X A GAMA ČSN IEC 846 35 6569 Beta, X and gamma radiation dose equivalent

Více

Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD

Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD http://www.ranus-td.cz/ PID:TE01020445 Anglický název: Radiation and nuclear safety technologies development center: RANUS - TD

Více

SEZNAM PRO ARCHIVACI

SEZNAM PRO ARCHIVACI SEZNAM PRO ARCHIVACI Název školy Číslo projektu Číslo a název šablony KA Identifikační číslo Tematická oblast Základní škola Mánesova Otrokovice, příspěvková organizace CZ.1.07/1.4.00/21.3763 III/2 Inovace

Více

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze

Záření kolem nás. Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Záření kolem nás Jaroslav Šoltés, Milan Štefánik Katedra jaderných reaktorů FJFI ČVUT v Praze Elektromagnetické záření q Pohybující se elektrický náboj vyzařuje elektromagnetické záření q Vlastnosti záření

Více

Radiační zátěž od kosmického záření na palubě letadla

Radiační zátěž od kosmického záření na palubě letadla Radiační zátěž od kosmického záření na palubě letadla Lukáš Malina 1 Helena Paschkeová 2 Zbyněk Štajer 3 Robert Taichman 4 Barbora Zavadilová 5 Supervizor: Ondřej Ploc 6,7 1 Gymnázium Christiana Dopplera,

Více

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina. Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektrostatika: Elektřina pro bakalářské obory Souvislost a analogie s mechanikou. Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, UK.LF Elektrostatika: Souvislost a analogie s mechanikou. Elektron

Více

Požadavky na používání měřidel při lékařském ozáření podle atomového zákona a zákona o metrologii

Požadavky na používání měřidel při lékařském ozáření podle atomového zákona a zákona o metrologii Požadavky na používání měřidel při lékařském ozáření podle atomového zákona a zákona o metrologii 1. Úvod Účelem tohoto dokumentu je poskytnout držitelům povolení k činnostem podle atomového zákona (zákon

Více

Mobilní Ramanův spektrometr Ahura First Defender

Mobilní Ramanův spektrometr Ahura First Defender ČVUT v Praze, Kloknerův ústav, Šolínova 7, Praha 6 Mobilní Ramanův spektrometr Ahura First Defender Příručka Ing. Daniel Dobiáš, Ph.D. Doc. Ing. Tomáš Klečka, CSc. Praha 2009 Anotace Příručka obsahuje

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. neutronové číslo JADERNÁ FYZIKA I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Úvod 4 14 17 1 jádra E. Rutherford, 1914 první jaderná reakce: α+ N O H 2 7 8 + 1 jaderné síly = nový druh velmi silných sil vzdálenost

Více

VIBRAČNÍ SPEKTROMETRIE

VIBRAČNÍ SPEKTROMETRIE VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny

Více

Příloha k vyhlášce č. 263/2000 Sb. DRUHOVÝ SEZNAM STANOVENÝCH MĚŘIDEL

Příloha k vyhlášce č. 263/2000 Sb. DRUHOVÝ SEZNAM STANOVENÝCH MĚŘIDEL 263 VYHLÁŠKA Ministerstva průmyslu a obchodu ze dne 14. července 2000, kterou se stanoví měřidla k povinnému ověřování a měřidla podléhající schválení typu Ministerstvo průmyslu a obchodu stanoví podle

Více

Mgr. Ladislav Blahuta

Mgr. Ladislav Blahuta Mgr. Ladislav Blahuta Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním školám - OP VK 1.5. Výuková sada ZÁKLADNÍ

Více

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu.

Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014. Plynové lasery. Plynové lasery většinou pracují v kontinuálním režimu. Aktivní prostředí v plynné fázi. Plynové lasery Inverze populace hladin je vytvářena mezi energetickými hladinami některé ze složek plynu - atomy, ionty nebo molekuly atomární, iontové, molekulární lasery.

Více

Měření vzdálenosti pomocí ultrazvuku na vstupu mikropočítače

Měření vzdálenosti pomocí ultrazvuku na vstupu mikropočítače Měření vzdálenosti pomocí ultrazvuku na vstupu mikropočítače vzorová úloha (SŠ) Jméno Třída.. Datum.. 1 Teoretický úvod Ultrazvukový snímač vytváří vysokofrekvenční zvukové vlny a zachycuje je zpět odrazem

Více

PROTOKOL přejímacích zkoušek a zkoušek dlouhodobé stability intraorálních rentgenů

PROTOKOL přejímacích zkoušek a zkoušek dlouhodobé stability intraorálních rentgenů identifikace firmy (včetně tel., faxu popř. e-mail.adresy, IČO) PROTOKOL přejímacích zkoušek a zkoušek dlouhodobé stability intraorálních rentgenů oprávněný pracovník: č.povolení SÚJB: platnost: Protokol

Více

Laboratorní práce č. 4: Srovnání osvětlení a svítivosti žárovky a úsporné zářivky

Laboratorní práce č. 4: Srovnání osvětlení a svítivosti žárovky a úsporné zářivky Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY G Gymnázium Hranice Laboratorní práce č. 4: Srovnání osvětlení a svítivosti žárovky a úsporné zářivky Přírodní vědy moderně a interaktivně SEMINÁŘ FYZIKY

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Práce se spektrometrem SpectroVis Plus Vernier

Práce se spektrometrem SpectroVis Plus Vernier informace pro učitele Práce se spektrometrem SpectroVis Plus Vernier Aleš Mareček Kvinta úloha Měřené veličiny Přístroj SpectroVis Plus umožní studovat viditelnou část spektra a část blízké infračervené

Více

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou.

Elektřina: Elektrostatika: Elektrostatika: Elektrostatika: Analogie elektřiny s mechanikou: Elektrostatika: Souvislost a analogie s mechanikou. Elektřina pro bakalářské obory Elektron ( v antice ) =?? Petr Heřman Ústav biofyziky, K.LF Elektron ( v antice ) = jantar Jak souvisí jantar s elektřinou?? Jak souvisí jantar s elektřinou: Mechanické působení

Více

POPIS VYNALEZU 155088

POPIS VYNALEZU 155088 ČESKOSLOVENSKA SOCIALISTICKÁ R E P U B L I K A POPIS VYNALEZU 155088 K AUTORSKÉMU OSVĚDČENÍ MPT G 011 1/18 ( l É Š Přihlášeno 19. XII. 1972 (PV 8749-72] PT 21 g 18/01 Zveřejněno 17. IX. 1973 ÚRAD PRO VYNÁLEZY

Více

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie

VYŠETŘENÍ NERVOVÉHO SYSTÉMU. seminář z patologické fyziologie VYŠETŘENÍ NERVOVÉHO SYSTÉMU seminář z patologické fyziologie Osnova Morfologické vyšetřovací metody (zobrazovací diagnostika) 1 Počítačová (výpočetní) tomografie 2 Pozitronová emisní tomografie (PET) 3

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Měření odrazu světla

Měření odrazu světla Úloha č. 5 Měření odrazu světla Úkoly měření: 1. Proměřte velikost činitele odrazu světla pro různě barevné povrchy v areálu školy dvěma různými metodami. 2. Hodnoty naměřených průměrných činitelů odrazu

Více

ZUBNÍ FANTOM DEP-501

ZUBNÍ FANTOM DEP-501 ZUBNÍ FANTOM DEP-501 UŽIVATELSKÁ PŘÍRUČKA příloha: Zajišťování jakosti rentgenových vyšetření ve stomatologii V.M.K., spol. s r.o., Na Proseku 9/45, Praha 9 tel. 283 880 151, fax 283 882 255 e-mail: vmk@vol.cz,

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

Polovodičové součástky jako dozimetry ionizujícího záření křemíková dioda.

Polovodičové součástky jako dozimetry ionizujícího záření křemíková dioda. Polovodičové součástky jako dozimetry ionizujícího záření křemíková dioda. Radioaktivita je vlastnost některých atomů samovolně se rozpadat ( přeměňovat ) na atomy jednodušší, vysílat elektromagnetické

Více

Moderní trendy měření Radomil Sikora

Moderní trendy měření Radomil Sikora Moderní trendy měření Radomil Sikora za společnost RMT s. r. o. Členění laserových měřičů Laserové měřiče můžeme členit dle počtu os na 1D, 2D a 3D: 1D jsou tzv. dálkoměry, které měří vzdálenost pouze

Více

RADIOAKTIVITA A IONIZUJÍCÍ ZÁŘENÍ

RADIOAKTIVITA A IONIZUJÍCÍ ZÁŘENÍ Vysoká škola báňská Technická univerzita Ostrava Fakulta bezpečnostního inženýrství RADIOAKTIVITA A IONIZUJÍCÍ ZÁŘENÍ Jiří Švec Doplňující učební text pro předměty Bakalářská fyzika, Aplikovaná fyzika,

Více

Seznam platných norem NDT k 31.12.2011

Seznam platných norem NDT k 31.12.2011 Seznam platných norem NDT k 31.12.2011 Stupeň Znak Číslo Název Dat. vydání Účinnost Změny ČSN EN 015003 10256 Nedestruktivní zkoušení ocelových trubek - Kvalifikace a způsobilost pracovníků nedestruktivního

Více

Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika

Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika Ionizující záření pro zdraví: radioterapie, nukleární medicína a rentgenová diagnostika Ing. Pavel Dvořák Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze dvorak@fjfi.cvut.cz Ionizující záření doznalo

Více

Externí detektory k monitoru kontaminace CoMo 170

Externí detektory k monitoru kontaminace CoMo 170 Externí detektory k monitoru kontaminace CoMo 170 γ - sonda pro měření nízkých dávek NaI 25D38 Druh záření: γ a RTG záření Jmenovitý rozsah energie fotonů: 25 kev 1.3 MeV, max. chyba měření ±50 % krystal

Více

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek

ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek / 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní

Více

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu

5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu 5 Měření absorpce ionizujícího záření v závislosti na tlaku vzduchu Cíle úlohy: Cílem této úlohy je seznámení se s lineárním absorpčním koeficientem a jeho závislostí na tlaku vzduchu a použitých stínících

Více

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha

Ing. Petr Knap Carl Zeiss spol. s r.o., Praha METROTOMOGRAFIE JAKO NOVÝ NÁSTROJ ZAJIŠŤOVÁNÍ JAKOSTI VE VÝROBĚ Ing. Petr Knap Carl Zeiss spol. s r.o., Praha ÚVOD Společnost Carl Zeiss Industrielle Messtechnik GmbH již dlouhou dobu sleduje vývoj v poměrně

Více

Jaderné elektrárny I, II.

Jaderné elektrárny I, II. Jaderné elektrárny I, II. Jaderné elektrárny I. Úvod do jaderných elektráren, teorie reaktorů, vznik tepla v reaktoru a ochrana před ionizujícím zářením. Jaderné elektrárny II. Jaderné elektrárny typu

Více

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012

dvojí povaha světla Střední škola informatiky, elektrotechniky a řemesel Rožnov pod Radhoštěm Název školy Předmět/modul (ŠVP) Vytvořeno listopad 2012 Název školy Dvojí povaha světla Název a registrační číslo projektu Označení RVP (název RVP) Vzdělávací oblast (RVP) Vzdělávací obor (název ŠVP) Předmět/modul (ŠVP) Tematický okruh (ŠVP) Název DUM (téma)

Více

MĚŘENÍ SPEKTER ZÁŘIČŮ γ

MĚŘENÍ SPEKTER ZÁŘIČŮ γ MĚŘENÍ SPEKTER ZÁŘIČŮ γ Úkol: 1. Změřte amplitudové spektrum zářiče Na pomocí mnohokanálového analyzátoru a proveďte kalibraci spektrometru.. Změřte spektra 137 Cs, 60 Co a proveďte rozbor všech naměřených

Více

Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop

Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop Měření zeslabení těžkých nabitých částic při průchodu materiálem pomocí detektorů stop Vít Kanclíř, G. Turnov Kristína Nešporová, G. Boskovice Tomáš Pikálek, G. Boskovice Abstrakt Práce se zabývá těžkými

Více

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3.

Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne: 2.3. Praktikum z experimentálních metod biofyziky a chemické fyziky I. Vypracoval: Jana Čurdová, Martin Kříž, Vít Marek. Dne:.3.3 Úloha: Radiometrie ultrafialového záření z umělých a přirozených světelných

Více

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu.

... 10) K čemu se tyto tyče používají?... 11) Zakresli do obrázku (uveden níže) kontejnment. 12) Vyjmenuj tři vlastnosti kontejnmentu. Exkurze pro 1. ročníky Elektrárna a meteorologická stanice Temelín Termíny konání: 3. září 2014 6. A 4. září 2014 2. B 5. září 2014 2. C Označení jednotlivých tříd odpovídá školnímu roku 2014/2015. Cíle

Více

ELEKTRICKÉ STROJE. Laboratorní cvičení LS 2013/2014. Měření ztrát 3f transformátoru

ELEKTRICKÉ STROJE. Laboratorní cvičení LS 2013/2014. Měření ztrát 3f transformátoru Fakulta elektrotechnická KATEDRA ELEKTROMECHANIKY A VÝKONOVÉ ELEKTRONIKY ELEKTRICKÉ STROJE Laboratorní cvičení LS 2013/2014 Měření ztrát 3f transformátoru Cvičení: Po 11:10 12:50 Měřící tým: Petr Zemek,

Více