Výzkumné jaderné reaktory

Rozměr: px
Začít zobrazení ze stránky:

Download "Výzkumné jaderné reaktory"

Transkript

1 Výzkumné jaderné reaktory Vlastimil Juříček Centrum výzkumu Řež s.r.o. Tato vzdělávací metodika vznikla pro účely projektu s názvem Energetika nově a otevřeně v technických a přírodovědných předmětech, reg. č.: CZ.1.07/1.3.04/ , který je spolufinancován Evropským sociálním fondem a státním rozpočtem ČR prostřednictvím Operačního programu Vzdělávání pro konkurenceschopnost. 1

2 Obsah kurzu Výzkumné reaktory Co je výzkumný reaktor Základní principy a pojmy Jaderná bezpečnost VR Historický úvod a souvislosti Rozdělení VR z hlediska účelu Nejrozšířenější výzkumné reaktory - TRIGA České VR Experimenty a experimentální zařízení výzkumných reaktorů

3 Jaderné reaktory Energetické reaktory Elektrárny, teplárny, výtopny Pohony lodí, ponorek, Výzkumná jaderná zařízení Kritické soubory Nejednodušší, nízký výkon nevyžadující chlazení, technicky omezená násobící schopnost, zjednodušené řízení, omezené experimentální možnosti Experimentální reaktory ( Nulové reaktory ) Širší možnosti experimentální výbavy, která může ovlivňovat násobící vlastnosti reaktoru, tudíž vyžadují sofistikovanější řízení a komplikovanější bezpečnostní systémy. Nízký výkon nevyžadující chlazení Výzkumné reaktory Vyšší výkon vyžadující nucený odvod tepla, umožňují nejširší okruh experimentů včetně komerčního využití Obsahem přednášky jsou všechna výzkumná jaderná zařízení, nadále je poněkud nepřesně zahrneme pod pojem výzkumné reaktory

4 Základní pojmy a principy reaktorové fyziky Reaktor je tzv. množivá soustava palivo (příp. s pomocí moderátoru) množí neutrony (ať už vzniklé z předchozího štěpení nebo z externího n. zdroje). Schopnost násobení je daná bezrozměrnou veličinou zvanou reaktivita (r). Ta je nulová, pokud je násobicí soustava v rovnováze, tj. počet neutronů se nezvyšuje, reaktor je v tzv. kritickém stavu. Analogicky záporná či kladná reaktivita charakterizuje pod- resp. nadkritický reaktor, v němž se počet neutronů exponenciálně snižuje, resp. zvyšuje. Dynamika odezvy na změnu reaktivity podstatně závisí na faktu, že část (cca 1%) neutronů nevzniká přímo při štěpení, ale později rozpadem štěpných produktů. Tyto zpožděné neutrony způsobí, že odezva reaktoru se prodlouží řádově stokrát, tj. reaktor lze podstatně snáze řídit 300% 250% 200% 150% 100% 50% 0% Změna výkonu podle reaktivity reaktoru r > 0 r = 0 r < čas [s] kritický podkritický nadkritický

5 Příklad: změna reaktivity o 0,001 (typická velikost při řízení jaderných reaktorů) Kdyby nebylo zpožděných neutronů, výkon typického reaktoru by se při takovéto reaktivitě zvyšoval rychlostí minimálně trojnásobkem za sekundu. Díky zpožděným neutronům se ve skutečnosti výkon zvyšuje jen na dvojnásobek za minutu. Důsledek pro jadernou bezpečnost: Při provozování jaderných reaktorů se důsledně vyhýbáme stavu, kdy reaktor k množení neutronů zpožděné neutrony nepotřebuje, neb má dostatek těch okamžitých (tzv. kritický stav na okamžitých neutronech) protože zpožděných neutronů je cca 0,7%, nastává tento stav při reaktivita vyšší než 0,007. V tom okamžiku se reaktor začne dynamicky chovat jak bylo naznačeno v předchozím příkladu a v podstatě dochází k výkonové explozi.

6 Zpětné vazby reaktoru Fyzika nám dává ještě jeden nástroj k ovlivnění dynamického chování reaktoru: Bilance vzniku a zániku neutronů v reaktoru závisí na teplotě, geometrickém a materiálovém složení aktivní zóny. Správně navržený reaktor při zvyšování teploty v palivu i chladivu samovolně sníží svou reaktivitu v důsledku zhoršení schopnosti množit neutrony (tzv. záporná zpětná vazba). Důsledek pro jadernou bezpečnost: Existují i reaktory, které provoz na okamžitých neutronech umožňují. Explozi zabrání silná zpětná vazba, takže reaktor se po kratičké (ms) výkonové exkurzi ihned sám odstaví. I reaktory, které nejsou stavěné na provoz při vysoké reaktivitě, jsou díky záporným zpětným vazbám daleko stabilnější.

7 Zbytkový výkon reaktoru Částečně vyhořelé jaderné palivo má tak vysokou aktivitu, že teplo uvolněné touto radioaktivní přeměnou je nezanedbatelné a musí být i po odstavení reaktoru a zastavení štěpné reakce aktivně odváděno, jinak hrozí přehřátí a roztavení paliva a s tím spojený únik radioaktivních látek mimo aktivní zónu. Velikost tohoto tepla se podle konkrétního typu reaktoru pohybuje až v jednotkách procent nominálního tepelného výkonu, tj. až v desítkách MW, naštěstí po odstavení poměrně rychle klesá. Důsledek pro jadernou bezpečnost: Vyhořelé palivo se musí dochlazovat mimo reaktor pod vodou, teprve po cca letech je možné ho ukládat do hlubinných úložišť aniž by tam došlo k jeho tavení (tudíž fakt, že po třiceti letech provozu Dukovan nemáme hlubinné úložiště, není projevem liknavosti, ale důsledkem fyzikálních zákonů, které nám navíc umožní po tu dobu popřemýšlet, co lepšího s tímto vyhořelým palivem udělat než jej zabetonovat pod zemí) Každý jaderný reaktor, v němž dochází k nezanedbatelnému vyhořívání paliva, musí mít dokonale zabezpečený odvod tepla nejen za provozu, ale i během odstávek i všemožných havarijních stavů. Společně se systémem havarijního odstavení reaktoru je systém havarijního odvodu tepla nejdůležitější součástí každého výkonového reaktoru z pohledu jaderné bezpečnosti. Havárie ve Fukušimě ukázala, že ne všechny předpoklady pro hodnocení spolehlivosti odvodu tepla byly v minulosti dostatečně konzervativní

8 Ve všeobecném přístupu k jaderné bezpečnosti zohledňujeme základní principy Ochrana do hloubky Každá bezpečnostní funkce je tvořena tak, že za sebou působí celá řada systémů tak, že když selže vnitřní, jeho funkci přebírá další nadřazený systém ( slupky ) Např. úniku radioktivních látek brání sama konstrukce palivových tablet, ty jsou uzavřeny v zirkoniovém pokrytí, celá aktivní zóna je pak uzavřena v primárním okruhu a ten je obklopen kontejnmentem. Další příklad: napájení pro odvod zbytkového tepla je z odbočkou z vlastního vyvedení výkonu, případně z vedlejšího bloku, případně z vedlejší hydroelektrárny, případně z dieselgenerátorů, případně ze staničních baterií. Ochrana zálohováním Každý systém může selhat. Proto jich pro zabezpečení dané bezpečnostní funkce osazujeme několik (typicky dva až tři) a dimenzujeme tak, aby při výpadku libovolného jednoho z nich byla požadovaná funkce stále zabezpečena Ochrana diverzifikací Bezpečnostní funkci se snažíme zajistit různorodými prostředky, aby bylo vyloučeno selhání ze společné příčiny (např. typově vadný výrobek nebo společné napájení) Problematika lidského faktoru Bezpečnostní funkce jsou pokud možno naprosto automatické, bez možnosti ovlivnění obsluhou

9 Specifika jaderné bezpečnosti výzkumných reaktorů Flexibilita reaktoru Protože výzkumné reaktory musí být co nejflexibilnější co se týče experimentálních konfigurací a provádí se na nich leckdy nestandardní provoz, jejich ovládací zařízení i provozní postupy jsou někdy složitější než na energetickém reaktoru Vysoké obohacení Pro dosažení co nejvyšší hustoty neutronů se často používá vysoce obohacené palivo To představuje riziko vojenského či teroristického zneužití, takže v posledních letech je snaha i u výzkumných reaktorů obohacení snižovat (projekt RERTR, financovaný US DoE) Za hranici zneužitelnosti se považuje 20% obohacení 235 U LVR-15: původní obohacení 80% (!), postupně sníženo přes 36% na dnešních 19% (od roku 2011) Pro srovnání: Na tlakovodních elektrárnách se používá palivo s obohacením 3-4% 235 U

10 Jaderná bezpečnost lekce z havárie ve Fukušimě Havárie ovlivnila celý jaderný obor Bezprostředně po havárii byla započata dodatečná hodnocení jaderných elektráren, ale i výzkumných reaktorů (tzv. stress testy) Po zemětřesení zůstávají v Japonsku odstavené i čtyři největší výzkumné reaktory, částečně kvůli poškození, částečně kvůli nedůvěře rozhodujících orgánů Celosvětově se přehodnotila významnost rizik externích událostí a jejich koincidencí. Výběr možných iniciačních událostí je totiž vždy věcí volby přijatelného rizika a hraniční pravděpodobnosti) Počítají se teď i takové scénáře, které se dříve prohlašovaly za humor například co se stane s halou reaktoru, když se do ventilačního komína trefí silné tornádo a evakuuje z budovy vzduch Na základě analýz byla navržena opatření k zajištění dostupnosti infrastruktury Např.: Uvažujeme výpadek napájení až do situace, kdy nejsou k dispozici ani diesel generátory, zřizujeme přípojná místa pro napojení externích mobilních generátorů)

11 Historie výzkumných reaktorů Prvním výzkumným reaktorem (a umělým jaderným reaktorem obecně) byl Pile-1 uvedený do provozu týmem E. Fermiho na univerzitě v Chicagu, dne Skládal se z cihel přírodního kovového uranu proložených cihlami z grafitu Zanedbatelný výkon Zajímavost: Z dnešního pohledu byl tento základní experiment velkým hazardem uprostřed velkého města, byl bez jakéhokoliv stínění, neznali vliv zpožděných neutronů na dynamiku reaktoru, jednoduše měli víc štěstí než rozumu

12 Historie výzkumných reaktorů Po válce se další rozvoj reaktorových technologií namířil i civilním směrem jaderné elektrárny (první zprovozněna v ruském Obninsku , experimentální výroba elektřiny ale již v roce 1951 v Idaho, USA) Výzkumné reaktory se masově budovaly v padesátých letech po celém světě, každá vyvíjená jaderná elektrárna resp. technologie vyžadovala svá výzkumná zařízení. V ČR byl v této době založen Ústav jaderného výzkumu v Řeži a byl postaven reaktor VVR-S, předchůdce LVR-15 Od sedmdesátých let už se nové výzkumné reaktory stavěly podstatně méně, dnes minimálně hlavně v Asii, v Evropě Jules Horowitz Reactor ve francouzském Cadarache a PIK v ruské Gatčině (oba 100MW tepelného výkonu)

13 Za celou historii je evidováno přes 700 výzkumných reaktorů, cca dvě třetiny již ale nejsou v provozu.

14 RF USA Čína Japonsko Francie Německo Kanada Argentina Itálie Brazílie Indie Irán ČR Indonésie Kazachstán Mexiko Nizozemí Švýcarsko Ukrajina Ostatní Provozuschopné výzkumné jaderné reaktory podle států k Celkově je v současnosti provozováno 230 výzkumných reaktorů v 55 státech

15 Rozdělení výzkumných reaktorů z hlediska účelu (Rozdělením z pohledu konstrukce se vzhledem k rozsahu přednášky nebudeme zabývat) Pro jednoúčelový vývoj energetických reaktorů výkon v desítkách MW, navržené pro konkrétní experiment a poté byly demontovány. V dnešní době už žádný takový neexistuje ani se neplánuje Např. LOFT v Idaho pro výzkum bezpečnosti při ztrátě chlazení či pulsní PBF v Idaho pro výzkum tepelného poškození paliva Pro výzkum a zdokonalování energetických reaktorů Převážně kritické soubory a nulové reaktory pro výzkum palivových mříží různých energetických reaktorů. I tyto reaktory se nestaví, pro případné nové technologie lze často použít stávající zařízení. Sem patří např. český reaktor LR-0 i jeho předchůdce TR-0 Pro výrobu radionuklidů Největší skupina reaktorů, dodnes komerčně úspěšně využívaných Radionuklidy se používají v průmyslu a lékařství, zahrnují např. 99 Mo, 60 Co, 14 C, 192 Ir, 3 H, 131 J, 35 S, 198 Au, 65 Zn, 85 Kr. Pro zpracování a využití krátkodobých izotopů (zejména v lékařství) je důležité umístění produkčního reaktoru poblíž místa využití. Obvykle se tyto reaktory používají i pro další účely Patří sem český LVR-15

16 Rozdělení výzkumných reaktorů z hlediska účelu (Rozdělením z pohledu konstrukce se vzhledem k rozsahu přednášky nebudeme zabývat) Pro materiálový výzkum Reaktory s nejvyšší dostupnou hustotou neutronového toků v aktivní zóně. Výkon mívají kolem 100MW, dosahovaná hustota toku rychlých neutronů až neutronů / cm 2 / s, lze je tudíž efektivně využít pro studium stárnutí reaktorových materiálů v silném poli neutronů (pro srovnání v konstrukčních materiálech energetického reaktoru je neutronový tok o cca o sedm řádů nižší, takže v testovacím reaktoru lze při hodinovém ozařování simulovat radiační stárnutí desítky let. Patří sem např. ruské (Dimitrovgrad) MIR-M1 či SM-3. Univerzální výzkumné reaktory Reaktory konstruované s ohledem na co největší univerzálnost využití slouží jako zdroj neutronů buďto vyvedený v jednotlivých svazcích vně reaktoru (horizontální ozařovací kanály) či ve formě volných pozic uvnitř aktivní zóny (vertikální ozařovací kanály, sondy, smyčky) Typickým představitelem je rodina reaktorů TRIGA, která je co do počtu výzkumných reaktorů jednoho výrobce nejrozšířenějším výzkumným reaktorem, prakticky po všech kontinentech (samozřejmě vyjma Antarktidy). Vyskytuje se ve variantách s výkonem několika kw pro školní účely až po 16 MW pro materiálový výzkum. Školní reaktory Kritické soubory a nulové reaktory s vysokou inherentní bezpečností a nízkou cenou provozu, umožňující výuku studentů (tedy odolný k ne vždy profesionálnímu zacházení), typicky umístěné v hustě obydlených oblastech Patří sem český VR-1, ze zahraničních například rakouská (!) TRIGA či japonská KUCA,

17 Univerzální výzkumný reaktor TRIGA (Training, Research Isotopes, General Atomics) Výrobce general Atomics, USA, první exemplář spuštěn už v 1958 Bylo postaveno 70 reaktorů ve 24 zemích o kontinuálním výkonu od jednotek kw do 16MW v pulsu dokonce až do 22GW, dosud je většina v provozu Základní charakteristický znak všech reaktorů TRIGA je unikátní konstrukce palivové tyče, která je založena na směsném hydridu uranu a zirkonu. Jde v podstatě o homogenní disperzi paliva (uran) a moderátoru (vodík), která má velmi silnou zápornou zpětnou vazbu. Díky ní je reaktor schopen i pulsního provozu, kdy může být pneumaticky vystřelena jedna absorpční tyč z paliva, čímž se reaktor dostane do vysoce nadkritického stavu s explozivním rozvojem výkonu (o sedm řádů v průběhu cca 10 ms). Zároveň se ale palivová matrice rychle ohřeje (v centru i přes 300 C) a díky silné zpětné vazbě se reaktor stejně rychle opět odstaví. Výsledkem je puls, který je možno využít k unikátním reaktorovým experimentům.

18

19 České výzkumné reaktory VR-1 Školní reaktor FJFI ČVUT v Praze Uveden do provozu v prosinci 1990 Bazénový typ, max. 5kW ( nulový reaktor ) Palivo IRT-4M s obohacením 19% 235 U Moderován demineralizovanou vodou Pokojová teplota, atmosférický tlak Unikátní koncepce dvou nádob Pro výuku a výzkum jsou k dispozici Radiální a tangenciální horizontální kanály Suché vertikální kanály Neutronový zdroj Potrubní pošta Oscilační zařízení Zařízení pro simulaci bublinkového varu Laboratoře neutronových měření

20 České výzkumné reaktory LR-0 Nulový reaktor v Centru výzkumu Řež Uveden do provozu v prosinci 1982 Bazénový typ, max. 5kW Palivo VVER s obohacením do 4.4% 235 U Moderován demineralizovanou vodou s volitelným přídavkem kyseliny borité Pokojová teplota, atmosférický tlak Pro experimenty jsou k dispozici Suché vertikální kanály Neutronové zdroje Laboratoř spektrometrie a neutronových měření Gamma scanner štěpných produktů v palivu

21 Operátorovna a hala reaktoru LR-0

22 České výzkumné reaktory LVR-15 Výzkumný reaktor v Centru výzkumu Řež Uveden do provozu 1957 jako reaktor VVR-S (2MW), později modernizován Tankový typ, tepelný výkon max. 10MW Palivo IRT-4M s obohacením 19% 235 U Moderován demineralizovanou vodou, obklopen beryliovým reflektorem Chlazen vodou (ohřívanou na 52 C), teplo odváděno přes další dva okruhy do Vltavy Pro výzkum a komerční zakázky jsou k dispozici Horizontální a vertikální ozařovací kanály Potrubní pošta pro krátkodobé ozařování Sondy pro materiálový výzkum Smyčky pro simulaci reaktorových prostředí včetně proudění (tlakovodní, varné, superkritická voda, vysokoteplotní hélium) Horké komory Laboratoře gama a neutronových měření

23

24 Přehled experimentů prováděných na výzkumných jaderných reaktorech Neutronová fyzika Fyzika aktivní zóny měření rozložení neutronového a gama pole, měření kritických parametrů palivových mříží, produkce benchmarkových dat pro validaci výpočetních kódů Studium stínění, reaktorová dozimetrie (měření vlastností neutronového pole ve speciálních úlohách, kde výpočty zatím nejsou spolehlivé) Neutronová a gama radiografie (prozařování struktur) Neutronová aktivační analýza (zjišťování izotopického složení vzorků) Materiálový výzkum Výzkum odolnosti konstrukčních materiálů v provozních podmínkách různých reaktorových technologií (pevnost, šíření trhlin, ) Studium koroze Výzkum chemické odolnosti konstrukčních materiálů v provozních podmínkách různých reaktorových technologií (úsady, koroze, korozní praskání materiálů) Ozařovací služby Výroba izotopů pro průmyslové a zdravotnické účely (průmyslové zářiče, zářiče pro medicínskou diagnostiku a radioterapii) Neutronová transmutace materiálů (radiační dopování křemíku pro výkonové polovodiče) Ozařování drahých kamenů Léčba rakovinových nádorů

25 Vlevo nahoře: Experimentální kazeta reaktoru LR-0 pro výzkum neutronových charakteristik reaktorů nové generace (zde konkrétně reaktoru s tekutými palivem) Vpravo nahoře: Palivové kazety reaktoru LR-0 Vlevo: Měření neutronických vlastností regulační kazety VVER-440

26 Vlevo nahoře: Tlakovodní smyčka RVS-4 Vpravo nahoře: Superkritická smyčka SCWL Vlevo: Schéma superkritické smyčky SCWL

27 Budoucnost výzkumných reaktorů Všechny zmíněné disciplíny (reaktorová fyzika, materiálový výzkum, chmické režimy, ) lze využít pro stávající reaktory (generace II / III) prodlužování životnosti, zvyšování výkonu, zvyšování jaderné bezpečnosti pro budoucí jaderné technologie (GIV, fúze) Některé případně i pro nejaderné technologie (např. klasické elektrárny se superkritickou vodou) Projekt SUSEN (evropské strukturální fondy) investuje do nové výzkumné infrastruktury, takže v areálu v Řeži a v Plzni vyrostou nová experimentální zařízení Testovací smyčky se superkritickou vodou, vysokoteplotním héliem a superkritickým CO2 Laboratoř elektronové mikroskopie (TEM, SEM) Nové horké komory Laboratoř přepracování vyhořelého paliva, studený kelímek a řada dalších zařízení nepřímo souvisejících s výzkumnými reaktory Pomocí těchto zařízení budou rozšířeny experimentální možnosti v oblastech Výzkumu nových materiálů pro pokrytí paliva a vnitroreaktorové komponenty Výzkumu fúzních technologií (ITER) Nakládání s radioaktivními odpady

28 Děkuji za pozornost! Užitečné odkazy k dalšímu studiu Technická databáze výzkumných reaktorů Portál na podporu veřejné informovanosti v oblasti jaderné technologie a samozřejmě Wikipedie

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje

Centrum výzkumu Řež s.r.o. Centrum výzkumu Řež se představuje Centrum výzkumu Řež se představuje 1 Založeno 2002, VaV organizace zaměřena na vývoj technologií v energetice Člen Skupiny ÚJV Centrum výzkumu Řež (CVR) stručně Vizí společnosti je: Být silnou, ekonomicky

Více

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti

Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti Jaderné reaktory blízké i vzdálené budoucnosti, vyhořelé jaderné palivo - současné trendy a moznosti aneb co umí, na čem pracují a o čem sní jaderní inženýři a vědci... Tomáš Bílý tomas.bily@fjfi.cvut.cz

Více

Jaderná elektrárna. Martin Šturc

Jaderná elektrárna. Martin Šturc Jaderná elektrárna Martin Šturc Princip funkce Štěpení jader Štěpení jader Štěpení těžkých se nejsnáze vyvolá neutronem. Přestože štěpení jader je vždy exotermická reakce, musí mít dopadající neutron určitou

Více

Simulace provozu JE s reaktory VVER 440 a CANDU 6

Simulace provozu JE s reaktory VVER 440 a CANDU 6 Simulace provozu JE s reaktory VVER 440 a CANDU 6 Jakub Tejchman jakub.tejchman@seznam.cz Martin Veselý martin.veslo@seznam.cz JE s reaktorem VVER 440 VVER = PWR (anglický ekvivalent) - tlakovodní reaktor,

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

Aspekty radiační ochrany

Aspekty radiační ochrany Aspekty radiační ochrany výzkumného reaktoru malého výkonu při experimentální výuce a vzdělávání Antonín Kolros Školní reaktor VR-1 VRABEC Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská

Více

Elektroenergetika 1. Jaderné elektrárny

Elektroenergetika 1. Jaderné elektrárny Jaderné elektrárny Vazební energie jádra Klidová hmotnost jádra všech prvků a izotopů je menší než je součet hmotností všech nukleonů -> hmotnostní defekt m j m j = Nm n + Zm p m j Kde m n je klidová hmotnost

Více

Historie. Účel reaktoru. Obr. 1: Pohled na reaktor LVR-15

Historie. Účel reaktoru. Obr. 1: Pohled na reaktor LVR-15 REAKTOR LVR-15 LVR-15 je výzkumný lehkovodní reaktor tankového typu umístěný v beztlakové nádobě pod stínícím víkem, s nuceným chlazením a s provozním tepelným výkonem do 10 MW. Obr. 1: Pohled na reaktor

Více

Kritický stav jaderného reaktoru

Kritický stav jaderného reaktoru Kritický stav jaderného reaktoru Autoři: L. Homolová 1, L. Jahodová 2, J. B. Hejduková 3 Gymnázium Václava Hlavatého Louny 1, Purkyňovo gymnázium Strážnice 2, SPŠ Stavební Plzeň 3 jadracka@centrum.cz Abstrakt:

Více

Jaderné reaktory a jak to vlastně funguje

Jaderné reaktory a jak to vlastně funguje Jaderné reaktory a jak to vlastně funguje O. Novák Katedra jaderných reaktorů 24. května 2018 O. Novák (ČVUT v Praze) Jaderné reaktory 24. května 2018 1 / 45 Obsah 1 Jederná energetika v České republice

Více

Ocelov{ n{stavba (horní blok) jaderného reaktoru

Ocelov{ n{stavba (horní blok) jaderného reaktoru Anotace Učební materiál EU V2 1/F17 je určen k výkladu učiva jaderný reaktor fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru. Jaderný reaktor Jaderný reaktor je zařízení,

Více

Výzkumná organizace Centrum výzkumu Řež s.r.o. (CV Řež) byla založena 9. října 2002 jako 100% dceřiná společnost ÚJV Řež, a. s.

Výzkumná organizace Centrum výzkumu Řež s.r.o. (CV Řež) byla založena 9. října 2002 jako 100% dceřiná společnost ÚJV Řež, a. s. www.cvrez.cz Výzkumná organizace Centrum výzkumu Řež s.r.o. (CV Řež) byla založena 9. října 2002 jako 100% dceřiná společnost ÚJV Řež, a. s. Hlavním posláním společnosti je výzkum, vývoj a inovace v oboru

Více

ATOMOVÁ FYZIKA JADERNÁ FYZIKA

ATOMOVÁ FYZIKA JADERNÁ FYZIKA ATOMOVÁ FYZIKA JADERNÁ FYZIKA 16. JADERNÝ REAKTOR Autor: Ing. Eva Jančová DESS SOŠ a SOU spol. s r. o. JADERNÝ REAKTOR Jaderný reaktor je zařízení, ve kterém probíhá řetězová jaderná reakce, kterou lze

Více

VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY

VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY VY_32_INOVACE_06_III./10._JADERNÉ ELEKTRÁRNY Jaderné elektrárny Jak fungují jaderné elektrárny Schéma Informace Fotografie úkol Jaderné elektrárny Dukovany a Temelín Schéma jaderné elektrárny Energie vzniklá

Více

Jaderné reaktory a jak to vlastně vše funguje

Jaderné reaktory a jak to vlastně vše funguje Jaderné reaktory a jak to vlastně vše funguje Lenka Heraltová Katedra jaderných reaktorů Fakulta jaderná a fyzikálně inženýrská ČVUT v Praze 1 Výroba energie v České republice Typy zdrojů elektrické energie

Více

Vyhořelé jaderné palivo

Vyhořelé jaderné palivo Vyhořelé jaderné palivo Jaderné palivo - složení Jaderné palivo je palivo, z něhož se energie uvolňuje prostřednictvím jaderných reakcí Nejběžnějším typem jaderného paliva je obohacený uran ve formě oxidu

Více

A) Štěpná reakce obecně

A) Štěpná reakce obecně 21. Jaderná energetika A) Štěpná reakce obecně samovolné štěpení těžkých jader nemá z hlediska uvolňování energie praktický význam v úvahu přichází pouze 238 U, poločas přeměny je velký a uvolněná energie

Více

Daneš Burket Centrum výzkumu Řež. Veletrh Věda Výzkum Inovace Brno, březen 2017

Daneš Burket Centrum výzkumu Řež. Veletrh Věda Výzkum Inovace Brno, březen 2017 Využití výsledků projektu SUSEN a výzkumných infrastruktur v Řeži pro účast českého průmyslu a výzkumu na mezinárodních inovačních projektech jaderných technologií Daneš Burket Centrum výzkumu Řež Veletrh

Více

Jaderné elektrárny I, II.

Jaderné elektrárny I, II. Jaderné elektrárny I, II. Jaderné elektrárny I. Úvod do jaderných elektráren, teorie reaktorů, vznik tepla v reaktoru a ochrana před ionizujícím zářením. Jaderné elektrárny II. Jaderné elektrárny typu

Více

Simulace provozu JE s bloky VVER 1000 a ABWR

Simulace provozu JE s bloky VVER 1000 a ABWR Simulace provozu JE s bloky VVER 1000 a ABWR Martina Veselá - Gymnázium T.G.M. Hustopeče - marta.ves@seznam.cz Tomáš Peták - Gymnázium Karla Sladkovského - t.petak@seznam.cz Adam Novák - Gymnázium, Brno,

Více

JADERNÁ ELEKTRÁRNA - PRINCIP

JADERNÁ ELEKTRÁRNA - PRINCIP Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr.Milan Staněk MGV_F_SS_3S2_D16_Z_MIKSV_Jaderna_elektrarna_-_princip_PL Člověk a příroda Fyzika Stavba atomového

Více

INFORMUJEME. Záměna vysoce obohaceného paliva na školním reaktoru VR-1 Vrabec

INFORMUJEME. Záměna vysoce obohaceného paliva na školním reaktoru VR-1 Vrabec INFORMUJEME Záměna vysoce obohaceného paliva na školním reaktoru VR-1 Vrabec Karel Matějka *, Antonín Kolros *, Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze Obr. 1 Aktivní zóna C1 reaktoru VR-1

Více

REAKTOR LR- 0. Základní charakteristiky

REAKTOR LR- 0. Základní charakteristiky REAKTOR LR- 0 Reaktor LR-0 je lehkovodní reaktor nulového výkonu. Slouží jako experimentální reaktor pro měření neutronově fyzikálních charakteristik reaktorů typu VVER a PWR (Vodovodní energetický reaktor

Více

Centrum pokročilých jaderných technologií (CANUT) prof. Ing. Zdeněk Peroutka, Ph.D.

Centrum pokročilých jaderných technologií (CANUT) prof. Ing. Zdeněk Peroutka, Ph.D. Centrum pokročilých jaderných technologií (CANUT) prof. Ing. Zdeněk Peroutka, Ph.D. 1 2 Spolupráce na řešení projektu Dlouhodobá spolupráce Mezinárodní přesah Interdisciplinarita Komplexní řešení 3 Rozsah

Více

Neutronové záření ve výzkumných reaktorech. Tereza Lehečková

Neutronové záření ve výzkumných reaktorech. Tereza Lehečková Neutronové záření ve výzkumných reaktorech Tereza Lehečková Výzkumné reaktory ve světě a v ČR Okolo 25, nepřibývají Nulového výkonu či nízkovýkonové Nejčastěji PWR, VVER Obr.1 LR-, [2] Základní a aplikovaný

Více

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý

JADERNÁ ENERGIE. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 25. 6. 2012. Ročník: devátý Autor: Mgr. Stanislava Bubíková JADERNÁ ENERGIE Datum (období) tvorby: 25. 6. 2012 Ročník: devátý Vzdělávací oblast: Člověk a příroda / Chemie / Chemické reakce; chemie a společnost 1 Anotace: Žáci se

Více

OBK - Odezva EDU 2012 na STRESS TESTY 2011. Josef Obršlík, Michal Zoblivý

OBK - Odezva EDU 2012 na STRESS TESTY 2011. Josef Obršlík, Michal Zoblivý OBK - Odezva EDU 2012 na STRESS TESTY 2011 Josef Obršlík, Michal Zoblivý OBSAH - V čem je problém (tepelný výkon reaktoru za provozu a po odstavení) - Kritické Bezpečnostní funkce - Podkritičnost - Chlazení

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení

Jaderná elektrárna. Osnova předmětu. Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Osnova předmětu 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) Úvod Energetika Technologie přeměny Tepelná elektrárna a její hlavní výrobní zařízení Ostatní tepelné elektrárny Kombinovaná výroba elektřiny a tepla

Více

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost

Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Stres v jádře, jádro ve stresu. Dana Drábová Státní úřad pro jadernou bezpečnost Otázky k zamyšlení: K čemu člověk potřebuje energii, jak a kde ji pro své potřeby vytváří? Nedostatek energie; kdy, jak

Více

Aktualizace energetické koncepce ČR

Aktualizace energetické koncepce ČR Aktualizace energetické koncepce ČR Ing. Zdeněk Hubáček Úvod Státní energetická politika (SEK) byla zpracována MPO schválena v roce 2004 Aktualizace státní energetické politiky České republiky byla zpracována

Více

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE

VY_32_INOVACE_FY.17 JADERNÁ ENERGIE VY_32_INOVACE_FY.17 JADERNÁ ENERGIE Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Jaderná energie je energie, která existuje

Více

PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA. Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz

PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA. Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz PROJEKT SUSEN, UDRŽITELNÁ ENERGETIKA Marek Mikloš Centrum výzkumu Řež, s.r.o., Hlavní 130, 250 68 Řež marek.miklos@cvrez.cz ABSTRAKT Centrum výzkumu Řež, s.r.o., dceřiná společnost ÚJV Řež, a.s., společně

Více

Co se stalo v JE Fukušima? Úterý, 15 Březen :32 - Aktualizováno Pátek, 01 Duben :00

Co se stalo v JE Fukušima? Úterý, 15 Březen :32 - Aktualizováno Pátek, 01 Duben :00 Sdělovací prostředky chrlí další a další informace, ze kterých si laik jen těžko poskládá názor, co se vlastně v jaderné elektrárně Fukušima stalo. Pokusím se shrnout tyto informace a najít pravděpodobnou

Více

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o

Jaderná energetika Je odvětví energetiky a průmyslu, které se zabývá především výrobou energie v jaderných elektrárnách, v širším smyslu může jít i o Anotace Učební materiál EU V2 1/F18 je určen k výkladu učiva jaderná energetika fyzika 9. ročník. UM se váže k výstupu: žák vysvětlí princip jaderného reaktoru, zhodnotí výhody a nevýhody využívání různých

Více

Jaderné elektrárny. Těžba uranu v České republice

Jaderné elektrárny. Těžba uranu v České republice Jaderné elektrárny Obrovské množství energie lidé objevili v atomu a naučili se tuto energii využívat k výrobě elektrické energie. Místo fosilních paliv se v atomových elektrárnách k ohřívání vody využívá

Více

Materiály AZ jaderných reaktorů

Materiály AZ jaderných reaktorů Jaderná paliva Povlakové materiály Moderátory Chladiva Materiály absorpčních tyčí Jaderná paliva - hlavní funkce: - štěpení tepelnými neutrony - 1. bariéra mezi štěpnými produkty a životním prostředím

Více

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems)

Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Urychlovačem řízené transmutační systémy (ADS - Accelerator driven systems) Miniprojekt, v rámci Fyzikálního týdne na Fakultě Jaderné a Fyzikálně inženýrské ČVUT Řešitelé: David Brychta - Gymnasium Otokara

Více

Atomová a jaderná fyzika

Atomová a jaderná fyzika Mgr. Jan Ptáčník Atomová a jaderná fyzika Fyzika - kvarta Gymnázium J. V. Jirsíka Atom - historie Starověk - Démokritos 19. století - první důkazy Konec 19. stol. - objev elektronu Vznik modelů atomu Thomsonův

Více

Zátěžové zkoušky JE Dukovany a JE Temelín závazek do budoucnosti. ing. mgr. Vladimír HLAVINKA

Zátěžové zkoušky JE Dukovany a JE Temelín závazek do budoucnosti. ing. mgr. Vladimír HLAVINKA Zátěžové zkoušky JE Dukovany a JE Temelín závazek do budoucnosti ing. mgr. Vladimír HLAVINKA CO ZNAMENAJÍ POJMY JAKO BEZPEČNOST NEBO KULTURA BEZPEČNOSTI Co je to bezpečnost? schopnost zajistit, aby rizika

Více

Spasí nás nové generace reaktor ů?

Spasí nás nové generace reaktor ů? Spasí nás nové generace reaktor ů? Dalibor Stráský Praha, 28.4.2009 Vývoj jaderné energetiky Generation IV - program US Department of Energy iniciován v r. 1999 Výběr reaktorových systém ů IV. generace

Více

Příklady spolupráce pracovníků Západočeské univerzity v Plzni s průmyslovými podniky jaderného strojírenství a energetiky

Příklady spolupráce pracovníků Západočeské univerzity v Plzni s průmyslovými podniky jaderného strojírenství a energetiky Příklady spolupráce pracovníků Západočeské univerzity v Plzni s průmyslovými podniky jaderného strojírenství a energetiky Josef Voldřich Nové technologie výzkumné centrum Katedra energetických strojů a

Více

příloha 2 Stav plnění bezpečnostních doporučení MAAE

příloha 2 Stav plnění bezpečnostních doporučení MAAE příloha 2 Stav plnění bezpečnostních doporučení MAAE Stav řešení bezpečnostních nálezů JE s VVER-440/213 v JE Dukovany Označ. Název bezpečnostních nálezů Kat. Stav G VŠEOBECNÉ PROBLÉMY G01 Klasifikace

Více

277 905 ČESKÁ REPUBLIKA

277 905 ČESKÁ REPUBLIKA PATENTOVÝ SPIS (11) Číslo dokumentu: 277 905 ČESKÁ REPUBLIKA (19) Щ 8 Щ (21) Číslo přihlášky: 1619-90 (22) Přihlášeno: 02. 04. 90 (40) Zveřejněno: 18. 03. 92 (47) Uděleno: 28. 04. 93 (24) Oznámeno udělení

Více

Měření při najíždění bloku. (vybrané kapitoly)

Měření při najíždění bloku. (vybrané kapitoly) Měření při najíždění bloku (vybrané kapitoly) 1 Reaktor VVER 1000 typ V320 Heterogenní reaktor Palivo nízce obohacený kysličník uraničitý Moderátor a chladivo roztok kyseliny borité v chemicky čisté vodě

Více

Decommissioning. Marie Dufková

Decommissioning. Marie Dufková Decommissioning Marie Dufková Stěhování tlakové nádoby do elektrárny Civaux Veze se nová. Ale: Jak bezpečně a levně zlikvidovat takto veliký výrobek po použití? 2 Vyřazování jaderných zařízení z provozu

Více

Vliv zdrojů elektrické energie na životní prostředí

Vliv zdrojů elektrické energie na životní prostředí Klimatické změny odpovědnost generací Hotel Dorint Praha Don Giovanni 11.4.2007 Vliv zdrojů elektrické energie na životní prostředí Tomáš Sýkora ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Více

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika

Vlastnosti atomových jader Radioaktivita. Jaderné reakce. Jaderná energetika Jaderná fyzika Vlastnosti atomových jader Radioaktivita Jaderné reakce Jaderná energetika Vlastnosti atomových jader tomové jádro rozměry jsou řádově 1-15 m - složeno z protonů a neutronů Platí: X - soustředí

Více

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně.

Tento zdroj tepla nahrazuje chemickou energii, tj. spalování např. uhlí v klasické elektrárně. Monitorovací indikátor: 06.43.10 Počet nově vytvořených/inovovaných produktů Akce: Přednáška, KA 5 Číslo přednášky: 28 Téma: JE A JEJICH BEZPEČNOST Lektor: Ing. Petr Konáš Třída/y: 1STB Datum konání: 4.

Více

Vize přínosu členství ČR v IRC MBIR

Vize přínosu členství ČR v IRC MBIR Vize přínosu členství ČR v IRC MBIR F. Pazdera vědecký tajemník PV IRC MBIR Situace ve světě a ČR Ve světě: 1. Připravuje se výstavba JE s PWR ve světě. 2. Hlavní konkurenti vyvíjejí rychlé reaktory a

Více

Prodlužování provozu Kolské JE: modernizace, zvyšování bezpečnosti

Prodlužování provozu Kolské JE: modernizace, zvyšování bezpečnosti Prodlužování provozu Kolské JE: modernizace, zvyšování bezpečnosti Volskij Vladimir Michailovič zástupce hlavního inženýra pro inženýrskou podporu a modernizaci www. rosenergoatom.ru 0 Jednotlivé bloky

Více

AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik

AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik Westinghouse Non-Proprietary Class 3 2010 Westinghouse Electric Company LLC. All Rights Reserved. 1 Pilíře jaderné

Více

Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD

Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD Centrum rozvoje technologií pro jadernou a radiační bezpečnost: RANUS - TD http://www.ranus-td.cz/ PID:TE01020445 Anglický název: Radiation and nuclear safety technologies development center: RANUS - TD

Více

Jaderné reaktory blízké i vzdálené budoucnosti. Vyhořelé jaderné palivo současné trendy a možnosti

Jaderné reaktory blízké i vzdálené budoucnosti. Vyhořelé jaderné palivo současné trendy a možnosti Jaderné reaktory blízké i vzdálené budoucnosti Vyhořelé jaderné palivo současné trendy a možnosti Tomáš Bílý Katedra jaderných reaktorů FJFI ČVUT v Praze Plán výletu: Současný stav jaderné energetiky Vyhořelé

Více

Témata diplomových prací pro školní rok 2014/2015 (předpoklad odevzdání 2016) Obor: Jaderná energetická zařízení

Témata diplomových prací pro školní rok 2014/2015 (předpoklad odevzdání 2016) Obor: Jaderná energetická zařízení Témata diplomových prací pro školní rok 2014/2015 (předpoklad odevzdání 2016) Obor: Jaderná energetická zařízení Následuje seznam témat vypsaných Ústavem energetiky (obor jaderná energetická zařízení)

Více

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník

JADERNÁ FYZIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník JADERNÁ FYZIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Fyzika mikrosvěta - 3. ročník Základní pojmy Jaderná síla - drží u sebe nukleony, velmi krátký dosah, nasycení Vazebná energie jádra: E V = ( Z m p + N

Více

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663

EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 EU PENÍZE ŠKOLÁM NÁZEV PROJEKTU : MÁME RÁDI TECHNIKU REGISTRAČNÍ ČÍSLO PROJEKTU :CZ.1.07/1.4.00/21.0663 Speciální základní škola a Praktická škola Trmice Fűgnerova 22 400 04 1 Identifikátor materiálu:

Více

Strategické obory. Představení společnosti VÝROBA SERVIS INŽENÝRING

Strategické obory. Představení společnosti VÝROBA SERVIS INŽENÝRING Profil společnosti Představení společnosti Strategické obory Dnešní ŠKODA JS a.s. se zrodila v polovině padesátých let dvacátého století, kdy se na světě o jaderné energetice teprve začínalo uvažovat.

Více

Jaká je budoucnost jaderné energetiky?

Jaká je budoucnost jaderné energetiky? Jaká je budoucnost jaderné energetiky? Vladimír Wagner Ústav jaderné fyziky AV ČR, energetická komise AV ČR 1) Úvod 2) Současnost přechod k III. generaci 3) Malé modulární reaktory 4) Budoucnost reaktory

Více

Víte, že dnešní jaderné elektrárny dokážou využít jen cca 1-2 % uranu a zbytek zůstává ve vyhořelém palivu?

Víte, že dnešní jaderné elektrárny dokážou využít jen cca 1-2 % uranu a zbytek zůstává ve vyhořelém palivu? Vážená paní ředitelko, vážený pane řediteli, ČVUT v Praze společně s Ústavem jaderného výzkumu Řež, a.s. a ve spolupráci se Vzdělávacím institutem Středočeského kraje si Vám tímto dovolují nabídnout účast

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO

Více

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen

VY_52_INOVACE_VK64. Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen VY_52_INOVACE_VK64 Jméno autora výukového materiálu Věra Keselicová Datum (období), ve kterém byl VM vytvořen červen 2013 Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace 8. ročník

Více

BULLETIN. Zahájena štěpná řetězová reakce rychlého reaktoru BN-800. Klasické a rychlé množivé reaktory. První jaderná elektrárna v Obninsku

BULLETIN. Zahájena štěpná řetězová reakce rychlého reaktoru BN-800. Klasické a rychlé množivé reaktory. První jaderná elektrárna v Obninsku BULLETIN 4 2014 Zahájena štěpná řetězová reakce rychlého reaktoru BN-800 Vladimír Wagner, ÚJF AV ČR, v. v. i. Ruská jaderná energetika prožívá další historickou událost: v Bělojarsku byla spuštěna štěpná

Více

Jaderný palivový cyklus - Pracovní list

Jaderný palivový cyklus - Pracovní list Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov BIOLOGIE A EKOLOGIE Tematický okruh Téma Ročník 2. Autor Klasické energie

Více

Význam technického vzdělávání pro zajištění budoucnosti jaderné energetiky v ČR

Význam technického vzdělávání pro zajištění budoucnosti jaderné energetiky v ČR Význam technického vzdělávání pro zajištění budoucnosti jaderné energetiky v ČR Igor Jex Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Proč jaderná energetika Spolehlivý a

Více

TERMOHYDRAULICKÉ TESTOVÁNÍ PALIVA TVSA-T PRO JE TEMELÍN

TERMOHYDRAULICKÉ TESTOVÁNÍ PALIVA TVSA-T PRO JE TEMELÍN TERMOHYDRAULICKÉ TESTOVÁNÍ PALIVA TVSA-T PRO JE TEMELÍN Ing. Václav Bláha Škoda Plzeň V souvislosti s přípravou kontraktu na dodávku paliva pro JE Temelín na další období, poptala firma TVEL ve ŠKODA JS

Více

VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STAVEBNÍ, PRAHA 1, DUŠNÍ 17

VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STAVEBNÍ, PRAHA 1, DUŠNÍ 17 VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ A STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STAVEBNÍ, PRAHA 1, DUŠNÍ 17 VYŠŠÍ ODBORNÁ ŠKOLA STAVEBNÍ, akreditovaný program TECHNOLOGIE STAVEB PRÁCE Rešerše - ÚSTAV JADERNÉHO VÝZKUMU ŘEŽ a.s.

Více

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček

JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie. Jiří Kameníček JADERNÁ ENERGETIKA JADERNÁ ENERGETIKA aneb Spojení poznatků z fyziky a chemie Jiří Kameníček Osnova přednášky Styčné body mezi fyzikou a chemií Způsoby získávání energie Uran a jeho izotopy, princip štěpné

Více

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan

Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Číslo projektu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0743 Moravské gymnázium Brno s.r.o. RNDr. Miroslav Štefan Chemie chemie ve společnosti kvarta Datum tvorby 30.5. 2013 Anotace

Více

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C

Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití. Jméno: Ondřej Lukas Třída: 9. C Radioaktivita a radionuklidy - pozitivní i negativní účinky a využití Jméno: Ondřej Lukas Třída: 9. C Co to je Radioaktivita/Co je radionuklid Radioaktivita = Samovolná přeměna atomových jader Objev 1896

Více

Evropský parlament. Výbor pro průmysl, výzkum a energetiku (ITRE) Ing. Evžen Tošenovský poslanec Evropského parlamentu

Evropský parlament. Výbor pro průmysl, výzkum a energetiku (ITRE) Ing. Evžen Tošenovský poslanec Evropského parlamentu Evropský parlament Výbor pro průmysl, výzkum a energetiku (ITRE) Strojírenství Ostrava 2011 Ostrava, 21. dubna 2011 Ing. Evžen Tošenovský poslanec Evropského parlamentu Aktuální otázky z energetiky projednávané

Více

AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik

AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik AP1000 : Jednoduchý, bezpečný a moderní projekt, který vede ke snížení bezpečnostních rizik Westinghouse Non-Proprietary Class 3 2010 Westinghouse Electric Company LLC. All Rights Reserved. 1 Pilíře jaderné

Více

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.

JADERNÁ ENERGIE. Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení. JADERNÁ ENERGIE Jaderné reakce, které slouží k uvolňování jaderné energie, jsou jaderná syntéza a jaderné štěpení.. Jaderná syntéza (termonukleární reakce): Je děj, při němž složením dvou lehkých jader

Více

Inovace profesní přípravy budoucích učitelů chemie

Inovace profesní přípravy budoucích učitelů chemie Inovace profesní přípravy budoucích učitelů chemie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í CZ.1.07/2.2.00/15.0324 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem

Více

Jaderná energetika (JE)

Jaderná energetika (JE) Jaderná energetika (JE) Pavel Zácha 2015-02 Program přednášek - úvod do jaderné energetiky - základy jaderné fyziky - skladba atomu, stabilita jader, vazebná energie, radioaktivita, jaderné reakce, štěpná

Více

Projekt vysokoteplotní karbonátové smyčky, jeho hlavní aktivity a dosažené výsledky

Projekt vysokoteplotní karbonátové smyčky, jeho hlavní aktivity a dosažené výsledky Projekt vysokoteplotní karbonátové smyčky, jeho hlavní aktivity a dosažené výsledky Karel Ciahotný, VŠCHT Praha NTK Praha, 7. 4. 2017 Základní informace k projektu financování projektu z programu NF CZ08

Více

Jaderná elektrárna Temelín (ETE)

Jaderná elektrárna Temelín (ETE) Martin Vajnar 1/7 Jaderná elektrárna Temelín (ETE) Jaderný reaktor VVER-1000 Vodou chlazený, Vodou moderovaný Energetický Reaktor Budovy jaderné elektrárny 1. Budova reaktoru skládá se ze dvou hlavních

Více

SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR

SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR SPOLUPRÁCE WESTINGHOUSE S ČVUT A FZÚ AV ČR NA PROJEKTU OCHRANY POVRCHU ZIRKONIOVÝCH SLITIN KOMPOZITNÍMI POLYKRYSTALICKÝMI DIAMANTOVÝMI POVLAKY (2014 2016) Michal Šimoník Customer Account Engineer Květen

Více

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů.

JADERNÁ ENERGIE. Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. JADERNÁ ENERGIE Při chemických reakcích dochází ke změnám v elektronových obalech atomů. Za určitých podmínek mohou změnám podléhat i jádra atomů. HISTORIE Profesor pařížské univerzity Sorbonny Antoine

Více

Metodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT

Metodické pokyny k pracovnímu listu č třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT Metodické pokyny k pracovnímu listu č. 6 7. třída JADERNÁ ENERGIE A NEBEZPEČÍ RADIOAKTIVITY PRO ŽIVOT DOPORUČENÝ ČAS K VYPRACOVÁNÍ: 45 minut INFORMACE K TÉMATU: JADERNÁ ENERGIE A ŽIVOTNÍ PROSTŘEDÍ Za normálního

Více

Simulace jaderné elektrárny s reaktorem VVER-440

Simulace jaderné elektrárny s reaktorem VVER-440 Simulace jaderné elektrárny s reaktorem VVER-440 J. Slabihoudek 1, M. Rzehulka 2 1 Gymnázium J. K. Tyla, Hradec Králové, 2 Wichterlovo gymnázium, Ostrava-Poruba jakub.slabihoudek@seznam.cz 20. června 2017

Více

Jaderná energetika (JE)

Jaderná energetika (JE) Jaderná energetika (JE) Pavel Zácha 2014-04 Pohony - tanky - letadla - ponorky - ledoborce, letadlové lodě a raketové křižníky Mírové využití Netradiční jaderné aplikace - odsolování mořské vody - mobilní

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3665 Šablona: III/2 č. materiálu: VY_32_INOVACE_136 Jméno autora: Mgr. Eva Mohylová Třída/ročník:

Více

mezinárodní konference 60 LET PRO JADERNOU ENERGETIKU 60 let jaderného průmyslu a 65 let vysokého technického školství v Plzni

mezinárodní konference 60 LET PRO JADERNOU ENERGETIKU 60 let jaderného průmyslu a 65 let vysokého technického školství v Plzni mezinárodní konference 60 LET PRO JADERNOU ENERGETIKU 12. a 13. května 2016, angelo HOTEL PILSEN, Plzeň 60 let jaderného průmyslu a 65 let vysokého technického školství v Plzni Nezanedbatelná pozice společností

Více

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I.

SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I. SVAŘOVÁNÍ KOMPONENT JADERNÝCH ELEKTRÁREN I. doc. Ing. Ivo Hlavatý, Ph.D. Český svářečský ústav s.r.o., Areál VŠB TU Ostrava, 17. listopadu 2172/15, 708 33 Ostrava Poruba, Česká republika Annotation: This

Více

6.3.1 Jaderné štěpení, jaderné elektrárny

6.3.1 Jaderné štěpení, jaderné elektrárny 6.3.1 Jaderné štěpení, jaderné elektrárny ředpoklady: Druhý způsob výroby energie štěpení těžkých jader na jádra lehčí, lépe vázaná. ostupný rozpad těžkých nestabilních nuklidů probíhá v přírodě neustále

Více

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší

Více

4.4.9 Energie z jader

4.4.9 Energie z jader 4.4.9 Energie z jader Předpoklady: 040408 Graf závislosti vazebné energie na počtu nukleonů v jádře (čím větší je vazebná energie, tím pevněji jsou nukleony chyceny v jádře, tím menší mají energii a tím

Více

Energetické zdroje budoucnosti

Energetické zdroje budoucnosti Energetické zdroje budoucnosti Energie a společnost Jakýkoliv živý organismus potřebuje dodávku energie (potrava) Lidská společnost dále potřebuje značné množství energie k zabezpečení svých aktivit Doprava

Více

Seminář OBK. Odezva EDU 2012 na STRESS TESTY 2011. Jiří Kostelník, Pavel Nechvátal, Michal Zoblivý

Seminář OBK. Odezva EDU 2012 na STRESS TESTY 2011. Jiří Kostelník, Pavel Nechvátal, Michal Zoblivý Seminář OBK Odezva EDU 2012 na STRESS TESTY 2011 Jiří Kostelník, Pavel Nechvátal, Michal Zoblivý OBSAH - Japonsko - základní nedostatek v projektu - umístění - Neakceptovaná historická zkušenost - Důsledky

Více

Insitut bezpečnostních studií a výzkumu rizik Oddělení vody, atmosféry a životního prostředí Universita zemědělských věd, Vídeň

Insitut bezpečnostních studií a výzkumu rizik Oddělení vody, atmosféry a životního prostředí Universita zemědělských věd, Vídeň MOCHOVCE 3&4 ve světle jaderné katastrofy ve Fukušimě Opatření na zamezení těžkých nehod v JE Mochovce 3 a 4 se zohledněním fukušimské katastrofy a v přípravě stávajících zátěžových testů Shrnutí ze dne

Více

MIR-1200. Modernized International Reactor. Projekt nejen pro energetiku.

MIR-1200. Modernized International Reactor. Projekt nejen pro energetiku. MIR-1200 Modernized International Reactor Projekt nejen pro energetiku. Milan Kohout, člen představenstva a obchodní ředitel ŠKODA JS a.s. IVD ČR a jeden z největších jaderných tendrů ve světě Praha, 22.

Více

BULLETIN. Cestovní mapa výstavby jaderných elektráren na území Ruské Federace do roku 2030. Investiční program státní korporace Rosatom

BULLETIN. Cestovní mapa výstavby jaderných elektráren na území Ruské Federace do roku 2030. Investiční program státní korporace Rosatom BULLETIN 5 2014 Cestovní mapa výstavby jaderných elektráren na území Ruské Federace do roku 2030 Investiční program státní korporace Rosatom Státní korporace Rosatom je jedním z největších investorů v

Více

Jakou roli hraje energetika v české ekonomice?

Jakou roli hraje energetika v české ekonomice? 18. června 2013 - Hotel Jalta Praha, Václavské nám. 45, Praha 1 Jakou roli hraje energetika v české ekonomice? Ing.Libor Kozubík Vedoucí sektoru energetiky IBM Global Business Services Energie hraje v

Více

Svět se rychle mění století bude stoletím boje o přírodní zdroje růst populace, urbanizace, požadavky na koncentraci a stabilitu dodávek energií

Svět se rychle mění století bude stoletím boje o přírodní zdroje růst populace, urbanizace, požadavky na koncentraci a stabilitu dodávek energií Přínos české jaderné energetiky k ochraně životního prostředí a její perspektiva Dana Drábová Státní úřad pro jadernou bezpečnost Praha Svět se rychle mění - 21. století bude stoletím boje o přírodní zdroje

Více

DIVIZE REAKTOROVÝCH SLUŽEB 2009/2010

DIVIZE REAKTOROVÝCH SLUŽEB 2009/2010 DIVIZE REAKTOROVÝCH SLUŽEB 2009/2010 nejdůležitějšíčinnosti zakázky/ marketingové příležitosti naše konkurence, strategická spolupráce kam jde vývoj G IV, fúze 1.10.2010 1 POSLÁNÍ ÚTVARU /HLAVNÍ ČINNOSTI

Více

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o.

Jaderná energie Jaderné elektrárny. Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Jaderná energie Jaderné elektrárny Vojtěch Motyčka Centrum výzkumu Řež s.r.o. Obsah prezentace Energie jaderná Vývoj energetiky Dělení jaderných reaktorů I. Energie jaderná Uvolňuje se při jaderných reakcích

Více

Moderní aplikace přírodních věd a informatiky. Břehová 7, Praha 1

Moderní aplikace přírodních věd a informatiky.  Břehová 7, Praha 1 Moderní aplikace přírodních věd a informatiky www.jaderka.cz Břehová 7, 115 19 Praha 1 Informatika a software lasery elektronika matematika elementární částice kvantová fyzika zdroje energie aplikace v

Více

J i h l a v a Základy ekologie

J i h l a v a Základy ekologie S třední škola stavební J i h l a v a Základy ekologie 14. Energie klasické zdroje Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Tomáš Krásenský

Více