NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE

Rozměr: px
Začít zobrazení ze stránky:

Download "NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE"

Transkript

1 14 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2015 June 11-12, 2015, Plzeň, Czech Republic NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE KLAVÍK Petr, RATKOVSKÁ Katarína This article deals with the experimental Particle image velocimetry - PIV equipment and subsequent implementation. PIV experimental device will be used for subsequent experiment in Department power system enginnering. The experiment is to find the critical value of the Reynolds number for transition from laminar to turbulent flow in a pipe of circular cross section optical measurement methods PIV. Klíčová slova: Particle image velocimetry (PIV), Reynoldsovo číslo, proudění, optimalizace Úvod Experiment nebo též vědecký pokus lze obecně považovat za soubor jednání či pozorování, čímž je možné ověřit nebo vyvrátit danou hypotézu nebo poznatek o příčinných vztazích. V mechanice tekutin je pojem experiment velice rozšířený, neboť i přes velmi značný rozvoj výpočetní techniky nejsme dosud schopni řešit složité úlohy zabývající se prouděním tekutin. Experiment je velmi nákladný, ale i přes to je v mnoha oblastech nepostradatelný. V mém příspěvku se zabýváme návrhem a realizací experimentálního zařízení vhodného pro zmapování rychlostního pole tekutiny proudící v trubici a stanovení rychlostního profilu proudícího média pomocí metody PIV. 1. Metoda PIV Anemometrie vychází z řeckého slova anemos, které znamená vítr. Jedná se o vědní obor, který zkoumá proudění v tekutinách. Ať se jedná o měření rychlosti, tlaku proudění nebo detekování směru proudění. Anemometrickými metodami se rozumí metody měření parametrů proudění tekutin za použití rozličných měřících přístrojů a zařízení, a využívající nejrůznější fyzikální principy. Mezi tyto přístroje patří například čistě mechanické miskové anemometry známé z meteorologických stanic, termoanemometrické sondy, nebo optické metody jako PIV a LDA využívající podstatně složitější principy. Tyto optické metody označujeme jako bezkontaktní. Jejich hlavní výhodou je, že do cesty měřeného proudu nevkládají žádné měřicí přístroje a neovlivňují průběh měření. Proto se snažíme nevkládat do proudu žádné přístroje. Tyto metody jsou vesměs založeny na technologii laseru jako monochromatického zdroje světla, který slouží k pozorování zkoumané oblasti. Tyto metody používají sofistikované optické zařízení, v některých případech spojené s vyhodnocovacím softwarem. [1], [3] Po roce 2000 vyústil vývoj velmi efektivní metody druhu laserové anemometrie, která je v odborné literatuře označována zkratkou PIV - Particle Image Velocimetry. Na rozdíl od laserové dopplerovské anemometrie, která měří rychlost pouze v jednom daném bodě, metoda PIV umožňuje změřit komplikovaná pole v definované rovině měřeného. prostoru. Navíc tato technika zaznamenává vývoj v čase a s velmi výkonnou technikou vyhodnocuje zaznamenaná data. Tato metoda má tak velmi dobré předpoklady k použití pro experimentální studium nestacionárních polí. [2]

2 KLAVÍK Petr, RATKOVSKÁ Katarína 2. Základní princip metody PIV Základní princip této metody je založen na zaznamenání posunutí malých částic, které jsou unášeny proudem tekutiny, a následném vyhodnocení tohoto posunu v čase. Metoda PIV využívá jako zdroj světla Laser. Pomocí Laseru a optiky se vytvoří světelný list, který ve sledované oblasti proudového pole osvítí stopovací částice minimálně dvěma krátkými vygenerovanými laserovými pulsy s časovým odstupem. Polohy osvětlených stopovacích částic jsou zaznamenány pomocí snímacího zařízení, a to buď na fotografický film, nebo CCD kamerou. Snímací zařízení snímá kolmo osvětlenou oblast proudového pole. Vyhodnocení získaných snímků je založeno na elementární rovnici: 1, kde vzdálenost vyjadřuje posun stopovacích částic unášených proudící tekutinou za čas. Výsledkem je, že lze určit směr a rychlost pohybu. Výstup je 2D obraz s polem vektorů. Pro získání 3D obrazu je zapotřebí dvou snímajících zařízení. [1], [2] Obr. 1 Schéma metody PIV 3. Záznam PIV obrazů V proudovém poli se vytvoří měřící rovina pomocí laserového paprsku, který válcová optika tvaruje do tvaru světelného listu (řezu). V proudovém poli jsou unášeny částice. Při průchodu měřící rovinou částice rozptylují světlo, které na ně dopadá. Rozptýlené světlo je zachyceno pomocí záznamového zařízení, tedy objektivem kamery či fotoaparátu. Záznamové zařízení je umístěno kolmo na měřící rovinu laserového paprsku. Osa objektivu je kolmá na tuto rovinu. Částice, které se v daný časový okamžik nacházejí v měřící rovině, jsou promítnuty do obrazové roviny, ve které se nachází záznamové zařízení. Částice se zde jeví jako malé světlé skvrny na tmavém pozadí. Měřící rovina není spojitě osvětlena, ale pouze po krátký časový úsek, aby bylo možné zaznamenat okamžitou polohu částic v určeném čase. Záznamové zařízení je citlivé na světlo a osvětlené částice jsou zaznamenány CCD maticovým detektorem kamery nebo na film fotoaparátu. Pro vytvoření nespojitého osvětlení měřící roviny se používají lasery s možností pulsace světelného paprsku. V praxi se nejvíce používá dvoukomorový Nd:YAG laser. Tento laser umožňuje poskytnutí konstantního vysokého světelného výkonu po libovolný krátký čas, potřebný pro kvalitní zaznamenání okamžité polohy částic unášených v proudu. Definice krátkého času znamená, že poloha částice během zaznamenání nemění svou polohu, a to ani při značných rychlostech proudu. Pro určení (vyhodnocení) vektoru rychlosti je potřeba pořídit minimálně dva záznamy s daným časovým odstupem. První záznam je označen jako počáteční poloha částic a druhý je označen jako koncová poloha částic v měřené rovině. Zaznamenání poloh částic je možné dvěma způsoby:

3 Návrh experimentálního PIV zařízení a jeho následná realizace Jednotlivé expozice Jak z názvu vyplývá, každý záznam polohy částic je zaznamenán na samostatném obrazu. Dvojnásobná expozice Znamená, že počáteční poloha i koncová poloha částic je zaznamenána do jednoho obrazu. Oblast měřící roviny je určena světelným řezem. Tato oblast je promítnuta do roviny snímacího zařízení. Transformace mezi rovinami způsobí změnu měřítka, tedy zvětšení M mezi obrazem a objektem. Výhodou digitálních snímacích zařízení jako jsou CCD kamery, je přímé poskytnutí digitalizovaného obrazu pro následující vyhodnocení (analýzu). [3] 4. Analýza PIV obrazů Získané expozice v digitální podobě jsou rozděleny na shodné malé pravoúhlé oblasti (interrogation area). Poté se každá oblast analyzuje a stanovuje se průměrné posunutí částic ve všech oblastech. Výstupem metody PIV je obvykle prezentace ve formě vektorové mapy pro měřenou oblast. K určení vektoru je nutné znát alespoň dvě polohy částice. Proto je důležité, aby po rozdělení PIV obrazu na jednotlivé vyhodnocovací oblasti se v každé této oblasti nacházely nějaké obrazy částic. Podle toho, jaká je koncentrace sytících částic, se vybírá vhodný algoritmus pro vyhodnocení. Koncentrace má nejen výrazný vliv na výsledky měření, ale především na celý experiment. U moderních PIV zařízení provádí analýzu pořízených záznamů PC a výsledky měření lze snadno získat v reálném čase.[1], [2], [4] 5. Popis experimentálního zařízení Na základě rad a nových poznatků byl vytvořen finální návrh experimentálního zařízení, který splňuje veškeré kladené požadavky. Experimentální PIV zařízení je sestava tří nádob, které jsou zakomponovány do konstrukce z hliníkových profilů. Měřící vodní trať je poháněna spádem kapaliny, a to tak, že na vstupu do měřící transparentní trubice a na výstupu se nachází dvě velké nádoby s konstantní výškou kapaliny, rozdíl výšek hladin vytváří hydrostatický tlak, který poté se ztrátami určuje rychlost v trubici. Cirkulace kapaliny je zajištěna oběhovým čerpadlem umístěným ve třetí hlavní nádobě. Nejprve byl stanoven vnitřní průměr transparentní trubice na hodnotu 40 mm. Tento rozměr byl zvolen z důvodu dostupných materiálů na trhu, z hlediska výroby a především z požadavku na možnost většího spektra úloh. V trubici musí být ustálené, nebo-li stacionární proudění. Jak již bylo zmíněno, rychlost v trubici je dána ztrátami v potrubí. Pro tuto regulaci byl zvolen speciální redukční ventil Invar TopBall, který plynule a lineárně mění průřez potrubí. Tím vytváří ztráty škrcením. Aby experimentální zařízení splnilo podmínku všestranné použitelnosti, je zapotřebí dosáhnout vyšších rychlostí. Proto byl zvolen větší rozdíl hladin, a tím i vyšší možná rychlost v trubici. Pro převod rychlosti na Reynoldsovo číslo to znamená, že lze dosáhnout až Re = Kapalina, která přepadá z nádoby umístěné na konci trubice je pomocí hadice svedena do hlavní nádoby, odkud je pomocí oběhového čerpadla dopravena do horní nádoby umístěné na vstupu. Konstantní výška hladiny v nádobách je zajištěna vložením přepadové příčky. Jedině tímto technickým řešením lze dosáhnout kvalitního proudu v trubici. V experimentální praxi je známo, že k dosažení kvalitního proudu v trubici se musí navíc zajistit vstupní a výstupní délka v trubici. Minimální hodnota vstupní

4 KLAVÍK Petr, RATKOVSKÁ Katarína délky je 40 x D (vnitřní průměr trubice) a pro výstupní délku je to hodnota 20 x D. Při kritické hodnotě Reynoldsova čísla je v trubici velmi malá rychlost. Takto malá rychlost je obtížná běžnou technikou změřit. Indukční průtokoměry, které jsou finančně dostupné, ji změří s velikou chybovostí. Ultrazvukové průtokoměry jsou velmi nákladné. Pro experimentální zařízení byla zvolena kýblová metoda, která je velmi přesná, ale nepohodlná. Tato metoda spočívá v měření objemu kapaliny, která přiteče do nádoby umístěné na výstupu z transparentní trubice za časový úsek. Jestliže je znám průměr potrubí lze snadno vypočítat rychlost v trubici. Pro tuto metodu byl na výstupu v přepadové komoře výstupní nádoby umístěn kulový ventil, který se uzavře a v přepadové komoře začne stoupat hladina kapaliny. Výška, do které za daný časový úsek kapalina vystoupá, udává objem vyteklé kapaliny. Obr. 2 Schéma toku kapaliny v nádobě Za inovativní technické řešení lze považovat celou soustavu transparentní trubice navržené z plexiskla. Tato trubice je sestavena z 8 nestejně dlouhých částí, které lze různě poskládat, a tím umožnit variabilitu vstupní a výstupní délky trubice. Tato trubice navíc splňuje veškeré kritéria kladené metodou PIV. Navíc její technické řešení není pro výrobu náročné, a tím pádem i nákladné. Veškeré propojení nádob a trubice je zajištěno pomocí flexibilních pružných hadic a příslušenství z PVC. Rám experimentálního zařízení je z hliníkových profilů, které mají velikou výhodu ve snadné stavbě i přestavbě. Zařízení lze snadno poupravit pro více úloh. Obr. 3 Finální návrh experimentálního zařízení. 1-Transparentní část, 2- Trubice, 3- Oběhové čerpadlo, 4- Hlavní nádoba, 5-Horní nádoba s přepadem, 6- Dolní nádoba s přepadem, 7-Redukční ventil, 8- Rám z Hliníkových profilů, 9- Záznamové zařízení, 10- Laserové zařízení, 11- Kulový venti

5 Návrh experimentálního PIV zařízení a jeho následná realizace 6. Měření Po sestavení celé konstrukce experimentálního PIV zařízení a kompletaci všech komponent bylo zařízení naplněné kapalinou. Následně byl proveden krátký test na těsnost všech spojů a na správnou funkčnost celého celku. Nejprve byla ověřena funkčnost oběhového čerpadla. Po naplnění všech částí kapalinou byla sledována těsnost všech spojů. Na závěr byl proveden test na zjištění maximální možné rychlosti, která může být v trubici dosažena. To znamená, že oběhové čerpadlo bylo puštěné na plný výkon. Redukčním ventilem byl postupně zvyšován průtok v trubici. V horní nádobě byla sledována konstantní hladina, tedy jestli není přepad nulový. V koncové nádobě se pomocí kýblové metody měřil maximální objemový průtok trubicí. Po testu, kterým byl ověřen maximální výkon čerpadla následovala možnost plynulé regulace pomocí speciálního kulového ventilu Invar TopBall. Ventilem se postupně otáčelo a každá změna pootočení byla změřena pomocí kýblové metody. Pomocí testů byla ověřená správná činnost celého experimentálního PIV zařízení. Při testování nebyla nalezena žádná netěsnost a zařízení bylo shledáno funkčním. Následně mohl začít proces přípravy na měření. K experimentálnímu PIV zařízení byly nainstalovány komponenty PIV systému DANTEC. Celá sestava je znázorněna na obrázku č. 4.[5] Obr. 4 Sestava celého experimentálního PIV zařízení. Nejprve byl nainstalován rám z hliníkových profilů s pohyblivým upevněním pro kameru. Po vyrovnání rámu byla upevněna kamera. Následně byl nainstalován rám z hliníkových profilů s pohyblivým upevněním pro laser. Po vyrovnání rámu byl nainstalován laser. Dále byly nainstalovány zbylé komponenty, jako počítač s příslušenstvím, synchronizér a základní část laserového zařízení. Vše bylo propojeno pomocí příslušných vodičů. Po zkontrolování správnosti zapojení celého celku, byl nejprve spuštěn počítač a následně software Dantec DynamicStudio. Jako první se nastavil obraz snímané oblasti. S kamerou se postupně pohybovalo pro dosažení co nejvyšší kvality obrazu. Nejvyšší kvalita obrazu byla při umístění objektivu ve vzdálenosti 235 mm od osy symetrie transparentní trubice. Zbylé směry nastaveny tak, aby snímaná oblast byla symetrická trubici a v polovině délky transparentní měřící části trubice. Po odladění snímaného obrazu byla nastavena laserová rovina. Podobně jako s laděním

6 KLAVÍK Petr, RATKOVSKÁ Katarína kamery se pohybovalo s laserem a to pomocí pohyblivého upevnění, které dovoluje jemné nastavení konečné polohy. Nejprve se nastavila výška světelné roviny tak, aby byla v ose symetrie transparentní trubice. Poté vzdálenost ohniska laseru od osy symetrie transparentní trubice, která byla 585 mm. Na závěr bylo manipulováno s laserem tak, aby jeho osa byla v rovině kamery, tedy v polovině délky transparentní měřící části trubice. Po nastavení PIV komponent byly do kapaliny přidány sytící částice. Po malých dávkách se postupně přidávaly stopovací částice rozmíchané v malém množství kapaliny, až se dosáhlo požadované koncentrace sytících částic v kapalině. Následně byl naplněn měřící prostor kolem transparentní trubice kapalinou. Všechny odrazové plochy v měřící oblasti byly zakryty. Nejprve bylo provedeno kontrolní měření. Byl nastaven redukční ventil a čerpadlo na stupeň výkonu pro měření. Kontrolním měřením byl objeven problém s odrazy světla do snímané roviny. Pomocí tmavých matných prvků okolo měřeného prostoru byly světelné odrazy odfiltrovány. Po odstranění nežádoucích světelných odrazů byla provedena kalibrace. Poté bylo experimentální PIV zařízení připravené k měření. Při měření byla v laboratoři teplota vzduchu i kapaliny 18 ± 0.5 C. Při samotném měření byla nejprve nastavena hodnota průtoku v transparentní trubici. Kdy se pomocí redukčního ventilu nastavila na stupnici hodnota a následně pomocí kýblové metody ověřila. Ukázalo se, že pomocí stupnice na redukčním ventilu nelze přesně nastavit hodnotu průtoku v trubici. Proto pomocí kýblové metody byla požadovaná hodnota doladěna. Po nastavení požadované hodnoty bylo možné začít s měřením. Následně bylo provedeno krátké měření. Toto měření sloužilo k nastavení parametrů v softwaru Dantec DynamicStudio. Poté bylo provedeno měření, které se následně analyzovalo. Celkem bylo provedeno 8 měření při různých hodnotách průtoku v trubici. Analýza z pořízených záznamů z každého měření byla pokaždé shodná. Při měření bylo vždy pořízeno 200 dvoj snímků. Jeden pořízený snímek je patrný na obrázku č. 5. [5] Obr. 5 Záznam PIV obrazu.

7 Návrh experimentálního PIV zařízení a jeho následná realizace 7. Vyhodnocení měření Pořízené záznamy z každého měření byly shlédnuty. Snímky na kterých byly objeveny vady, např. shluk částic nebo nečistoty v kapalině, které negativně rozptylují světlo z roviny světelného řezu do roviny objektivu kamery, byly odstraněny. Tyto snímky by negativně ovlivnily výsledky měření. Po odstranění nekvalitních snímků byla provedena na zbývajících záznamech analýza. Nejprve byla použita funkce Masking, kterou byla oříznuta oblast okolo proudového pole u každého pořízeného snímku. Následně na upravené záznamy byla použita Adaptive Correlation jejíž výsledkem je vektorové pole pro každý snímek. Pomocí funkce Vector Statistic byla vytvořena jedna vektorová mapa, ze které byl vytvořen rychlostní profil pomocí funkce Profile Plot. Tento postup byl aplikován na každé měření. Výsledný rychlostní profil pro Re = je znázorněn na obrázku č. 6. Obr. 6 Rychlostní profil pro hodnotu Re = Obr. 7 Rychlostní profil pro hodnotu Re =

8 KLAVÍK Petr, RATKOVSKÁ Katarína Závěr Cílem projektu bylo navrhnout, sestavit sofistikované experimentální zařízení a následně provést měření rychlostních profilů v trubici. Konstrukce celého zařízení byla směřována tak, aby v budoucnu šla lehce poupravit, a tím vyhovovala více uživatelům a jejich požadavkům. Již jsou připraveny nové úlohy, které se budou na experimentálním zařízení měřit. Dále jsou připraveny technické inovace na zařízení, pomocí kterých bude měření snazší a také přesnější. Literatura [1] KOPECKÝ, V.; Laserová anemometrie v mechanice tekutin, Brno, Tribun EU, 2008, ISBN [2] DANTEC. 2D PIV reference manual. Denmark: Dantec Dynamics A/S, Třídící znak Second edition. ISRC 9040U1752. [3] MALÍK, M. a J. PRIMAS. Technická univerzita v Liberci. [Anemometrické metody] In: Fakulta mechatroniky [online]. 2011, verze 1.1 [cit Listopad-10]. Dostupné z: anemometrick%c3%a9%20metody?query=anemometrick%c3%a9%20metody&cx= %3At m5kqgqj6fg&cof=forid%3a11&sitesearch= [4] WILLERT, C. et al. Particle image velocimetry a practical guide. second edition. Berlin: Springer, ISRC ISBN. [5] KLAVÍK P.: Návrh experimentálního PIV zařízení a jeho následná realizace, Soutěžní přehlídka studentských a doktorských prací, Plzeň 2015 ZČU FST, ISBN KLAVÍK Petr, Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení, Univerzitní 22, Plzeň, , klavik@students.zcu.cz Ing. RATKOVSKÁ Katarína, Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení, Univerzitní 22, Plzeň, , katkaratkovska@gmail.com

NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE SVOČ FST 2015

NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE SVOČ FST 2015 NÁVRH EXPERIMENTÁLNÍHO PIV ZAŘÍZENÍ A JEHO NÁSLEDNÁ REALIZACE SVOČ FST 2015 Petr Klavík, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá návrhem experimentálního

Více

Time-Resolved PIV and LDA Measurements of Pulsating Flow

Time-Resolved PIV and LDA Measurements of Pulsating Flow Colloquium FLUID DYNAMICS 2007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 2007 p.1 MĚŘENÍ PERIODICKÉHO PROUDĚNÍ METODOU TIME-RESOLVED PIV A LDA Time-Resolved PIV and LDA Measurements

Více

THE MEASUREMENT OF FLOW PARAMETERS IN SQUARE CROSS SECTION BEND

THE MEASUREMENT OF FLOW PARAMETERS IN SQUARE CROSS SECTION BEND THE MEASUREMENT OF FLOW PARAMETERS IN SQUARE CROSS SECTION BEND Zubík. P., Šulc J. Summary: The article deals with measurement of flow parameters in defined 90 bend profiles of square constant cross section

Více

PIV MEASURING INSIDE DRAFT TUBE OF MODEL WATER TURBINE PIV MĚŘENÍ V SAVCE MODELOVÉ VODNÍ TURBÍNY

PIV MEASURING INSIDE DRAFT TUBE OF MODEL WATER TURBINE PIV MĚŘENÍ V SAVCE MODELOVÉ VODNÍ TURBÍNY PIV MEASURING INSIDE DRAFT TUBE OF MODEL WATER TURBINE PIV MĚŘENÍ V SAVCE MODELOVÉ VODNÍ TURBÍNY Pavel ZUBÍK Abstrakt Příklad použití bezkontaktní měřicí metody rovinné laserové anemometrie (Particle Image

Více

LDA MEASUREMENT BEHIND GENERATOR OF ROTATION LDA MĚŘENÍ ZA GENERÁTOREM ROTACE

LDA MEASUREMENT BEHIND GENERATOR OF ROTATION LDA MĚŘENÍ ZA GENERÁTOREM ROTACE LDA MEASUREMENT BEHIND GENERATOR OF ROTATION LDA MĚŘENÍ ZA GENERÁTOREM ROTACE P. Zubík Abstrakt: Technique and results of measurement of flow parameters in the piping model of circular cross section with

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B 2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení BAKALÁŘSKÁ PRÁCE Zmapování proudového pole kapaliny

Více

9 Charakter proudění v zařízeních

9 Charakter proudění v zařízeních 9 Charakter proudění v zařízeních Egon Eckert, Miloš Marek, Lubomír Neužil, Jiří Vlček A Výpočtové vztahy Jedním ze způsobů, který nám v praxi umožňuje získat alespoň omezené informace o charakteru proudění

Více

Particle image velocimetry (PIV) Základní princip metody

Particle image velocimetry (PIV) Základní princip metody Particle image velocimetry (PIV) Základní princip metody PIV metoda umožňuje získat informace o okamžitém rozložení rychlostí v proudící tekutině. Rychlosti se určují z měřené vzdálenosti, kterou urazí

Více

Moderní trendy měření Radomil Sikora

Moderní trendy měření Radomil Sikora Moderní trendy měření Radomil Sikora za společnost RMT s. r. o. Členění laserových měřičů Laserové měřiče můžeme členit dle počtu os na 1D, 2D a 3D: 1D jsou tzv. dálkoměry, které měří vzdálenost pouze

Více

Měření proudění v rozvaděči rotočerpadla

Měření proudění v rozvaděči rotočerpadla Měření proudění v rozvaděči rotočerpadla Pavel Zubík, Ústav vodohospodářského výzkumu. Integrální laserová anemometrie - Particle Image Velocimetry (PIV) je metoda měření rychlostí současně v celém rovinném

Více

EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění

EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I 6. Měření rychlostí proudění OSNOVA 6. KAPITOLY Úvod do měření rychlosti

Více

FLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION

FLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION FLOW PARAMETERS MEASUREMENT IN THE CURVED DIFFUSER OF THE RECTANGULAR CROSS-SECTION Zubík. P., Šulc J. Summary: The article deals with measurement of flow parameters in the bend diffuser of the rectangular

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky

CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky Konference ANSYS 011 CFD simulace teplotně-hydraulické charakteristiky na modelu palivové tyči v oblasti distanční mřížky D. Lávička Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení,

Více

PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity flow at high Reynolds numbers

PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity flow at high Reynolds numbers Colloquium FLUID DYNAMICS 27 Institute of Thermomechanics AS CR, v. v. i., Prague, October 24-26, 27 p.1 PROUDĚNÍ V KAVITĚ VYVOLANÉ SMYKOVÝM TOKEM PŘI VELKÝCH REYNOLDSOVÝCH ČÍSLECH Shear-driven cavity

Více

LDA měření nestacionárního proudění v dvourozměrném poli

LDA měření nestacionárního proudění v dvourozměrném poli LDA měření nestacionárního proudění v dvourozměrném poli Pavel Zubík, Ústav vodohospodářského výzkumu. V průběhu roků 1998 a 1999 byla provedena první a druhá etapa měření v rámci grantu GAČR 101/97/0826

Více

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU

SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 4.ročník MĚŘICKÝ SNÍMEK PRVKY VNITŘNÍ A VNĚJŠÍ ORIENTACE CHYBY SNÍMKU MĚŘICKÝ SNÍMEK Základem měření je fotografický snímek, který je v ideálním případě

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření rychlosti a rychlosti proudění Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu měření rychlosti a rychlosti

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace měření průtoku 17.SPEC-t.4 ZS 2015/2016 2015 - Ing. Václav Rada, CSc. Další pokračování o principech měření Průtok je určen střední

Více

ÚVOD DO PROBLEMATIKY PIV

ÚVOD DO PROBLEMATIKY PIV ÚVOD DO PROBLEMATIKY PIV Jiří Nožička, Jan Novotný ČVUT v Praze, Fakulta strojní, Ú 207.1, Technická 4, 166 07, Praha 6, ČR 1. Základní princip PIV Particle image velocity PIV je měřící technologie, která

Více

ANALÝZA PROUDĚNÍ VZDUCHU POMOCÍ PARTICLE IMAGE VELOCIMETRY

ANALÝZA PROUDĚNÍ VZDUCHU POMOCÍ PARTICLE IMAGE VELOCIMETRY Energeticky efektivní budovy 2015 sympozium Společnosti pro techniku prostředí 15. října 2015, Buštěhrad ANALÝZA PROUDĚNÍ VZDUCHU POMOCÍ PARTICLE IMAGE VELOCIMETRY Vojtěch Mazanec, Karel Kabele Laboratoř

Více

Vizualizace recirkulace a interakce proudu se stěnou při hemodialýze

Vizualizace recirkulace a interakce proudu se stěnou při hemodialýze Vizualizace recirkulace a interakce proudu se stěnou při hemodialýze Bc. Miloš Kašpárek Vedoucí práce: Ing. Ludmila Nováková Ph.D. Abstrakt Tato práce prezentuje výsledky experimentálních prací zabývajících

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak)

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření tlaku (podtlak, přetlak) Autor: Doc. Ing. Josef Formánek, Ph.D. Tvorba grafické vizualizace principu

Více

Senzor polohy rotoru vysokootáčkového elektromotoru

Senzor polohy rotoru vysokootáčkového elektromotoru Senzor polohy rotoru vysokootáčkového elektromotoru Vysokootáčkový elektromotor Jednou z cest, jak zvýšit užitné vlastnosti výrobků je intenzifikace jejich užitných vlastností. V oblasti elektromotorů

Více

LDA MEASUREMENT NEAR CAVITATION CENTRE OF VORTEX LDA MĚŘENÍ V OKOLÍ KAVITUJÍCÍHO JÁDRA VÍRU

LDA MEASUREMENT NEAR CAVITATION CENTRE OF VORTEX LDA MĚŘENÍ V OKOLÍ KAVITUJÍCÍHO JÁDRA VÍRU LDA MEASUREMENT NEAR CAVITATION CENTRE OF VORTEX LDA MĚŘENÍ V OKOLÍ KAVITUJÍCÍHO JÁDRA VÍRU P. Zubík Abstrakt: Technique and results of measurement of flow parameters in the piping model of circular cross

Více

Senzory průtoku tekutin

Senzory průtoku tekutin Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

PIV MEASURING PROCESS THROUGH CURVED OPTICAL BOUNDARY PIV MĚŘENÍ PŘES ZAKŘIVENÁ OPTICKÁ ROZHRANÍ. Pavel ZUBÍK

PIV MEASURING PROCESS THROUGH CURVED OPTICAL BOUNDARY PIV MĚŘENÍ PŘES ZAKŘIVENÁ OPTICKÁ ROZHRANÍ. Pavel ZUBÍK PIV MEASURING PROCESS THROUGH CURVED OPTICAL BOUNDARY FLOW LIQUID - OBJECT - VICINITY PIV MĚŘENÍ PŘES ZAKŘIVENÁ OPTICKÁ ROZHRANÍ PROUDÍCÍ KAPALINA OBJEKT OKOLÍ Pavel ZUBÍK Abstrakt Problematika použití

Více

3. Použitá měřicí technika 4. Měření parametrů vstupního pole 5. Měření proudění v prostoru náhlého rozšíření

3. Použitá měřicí technika 4. Měření parametrů vstupního pole 5. Měření proudění v prostoru náhlého rozšíření PIV AND LDA FLOW PARAMETERS MEASUREMENT IN THE WATER CHANNEL WITH HIGH NEGATIVE STEP PIV A LDA MĚŘENÍ PARAMETRŮ PROUDĚNÍ VE VODNÍM KANÁLU S VELKÝM ZÁPORNÝM STUPNĚM VE DNĚ P. Zubík * Summary: Technique

Více

Měření pohybu kapaliny a změn teplot v reálném modelu tepelného výměníku metodou PLIF

Měření pohybu kapaliny a změn teplot v reálném modelu tepelného výměníku metodou PLIF Měření pohybu kapaliny a změn teplot v reálném modelu tepelného výměníku metodou PLIF Jakub Hoffmann TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál

Více

Laboratorní úloha Měření charakteristik čerpadla

Laboratorní úloha Měření charakteristik čerpadla Laboratorní úloha Měření charakteristik čerpadla Zpracováno dle [1] Teorie: Čerpadlo je hydraulický stroj, který mění přiváděnou energii (mechanickou) na užitečnou energii (hydraulickou). Hlavní parametry

Více

Systém větrání využívající Coanda efekt

Systém větrání využívající Coanda efekt Systém větrání využívající Coanda efekt Apollo ID: 24072 Datum: 23. 11. 2009 Typ projektu: G funkční vzorek Autoři: Jedelský Jan, Ing., Ph.D., Jícha Miroslav, prof. Ing., CSc., Vach Tomáš, Ing. Technický

Více

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot

Snímače hladiny. Učební text VOŠ a SPŠ Kutná Hora. Základní pojmy. měření výšky hladiny kapalných látek a sypkých hmot Snímače hladiny Učební text VOŠ a SPŠ Kutná Hora Základní pojmy Použití snímačů hladiny (stavoznaků) měření výšky hladiny kapalných látek a sypkých hmot O výběru vhodného snímače rozhoduje požadovaný rozsah

Více

Měření proudového pole v pružných modelech

Měření proudového pole v pružných modelech Měření proudového pole v pružných modelech Jan Kolínský Abstract Příspěvek se zabývá měřením 2D rychlostního pole v pružném modelu válcové trubice. Ze základního principu PIV vyplývají nároky na samotné

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

Počítačová dynamika tekutin (CFD) Turbulence

Počítačová dynamika tekutin (CFD) Turbulence Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ

MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ MĚŘENÍ PROUDĚNÍ POMOCÍ PIV V PROTÉKANÉM PROSTORU ČERPADLA EMULZÍ P. Zubík * 1. Úvod Pracovníci Odboru fluidního inženýrství Victora Kaplana (OFIVK) Energetického ústavu Fakulty strojního inženýrství na

Více

Proudění tekutiny bifurkací

Proudění tekutiny bifurkací Proudění tekutiny bifurkací Bc., Tadeáš, Balek Vedoucí práce: Ing., Ludmila, Nováková, Ph.D. Abstrakt Cílem práce je stanovení tlakových ztrát a vizualizace proudění v různých geometriích skleněných modelů

Více

Senzor polohy rotoru vysokootáčkového elektromotoru

Senzor polohy rotoru vysokootáčkového elektromotoru Senzor polohy rotoru vysokootáčkového elektromotoru Ing. Vladislav Skála, Ing. Tomáš Koudelka Vedoucí práce: doc. Ing. Martin Novák, Ph.D. Abstrakt Cílem této práce bylo navrhnout a ověřit snímací systém

Více

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE

TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE TEPLOTNÍHO POLE V MEZIKRUHOVÉM VERTIKÁLNÍM PRŮTOČNÉM KANÁLE OKOLO VYHŘÍVANÉ NEREZOVÉ TYČE Autoři: Ing. David LÁVIČKA, Ph.D., Katedra eneegetických strojů a zařízení, Západočeská univerzita v Plzni, e-mail:

Více

DIAGNOSTIKA VARHANNÍ PÍŠŤALY SLEDOVÁNÍM PROUDU VZDUCHU METODOU PARTICLE IMAGE VELOCIMETRY

DIAGNOSTIKA VARHANNÍ PÍŠŤALY SLEDOVÁNÍM PROUDU VZDUCHU METODOU PARTICLE IMAGE VELOCIMETRY DIAGNOSTIKA VARHANNÍ PÍŠŤALY SLEDOVÁNÍM PROUDU VZDUCHU METODOU PARTICLE IMAGE VELOCIMETRY Martin Švejda 1 Úvod Dominantním zdrojem zvuku u retné varhanní píšťaly je kmitající proužek vzduchu (vzdušný jazýček)

Více

Laboratorní úloha Diluční měření průtoku

Laboratorní úloha Diluční měření průtoku Laboratorní úloha Diluční měření průtoku pro předmět lékařské přístroje a zařízení 1. Teorie Diluční měření průtoku patří k velmi používaným nepřímým metodám v biomedicíně. Využívá se zejména tehdy, kdy

Více

Senzory průtoku tekutin

Senzory průtoku tekutin Senzory průtoku tekutin Průtok - hmotnostní - objemový - rychlostní Druhy proudění - laminární parabolický rychlostní profil - turbulentní víry Způsoby měření -přímé: dávkovací senzory, čerpadla -nepřímé:

Více

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů

Univerzita obrany. Měření součinitele tření potrubí K-216. Laboratorní cvičení z předmětu HYDROMECHANIKA. Protokol obsahuje 14 listů Univerzita obrany K-216 Laboratorní cvičení z předmětu HYDROMECHANIKA Měření součinitele tření potrubí Protokol obsahuje 14 listů Vypracoval: Vít Havránek Studijní skupina: 21-3LRT-C Datum zpracování:5.5.2011

Více

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky

Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky Konference ANSYS 2009 Numerické řešení proudění stupněm experimentální vzduchové turbíny a budících sil na lopatky J. Štěch Západočeská univerzita v Plzni, Katedra energetických strojů a zařízení jstech@kke.zcu.cz

Více

PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ. Jaroslav Štěch

PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ. Jaroslav Štěch SOUTĚŽNÍ PŘEHLÍDKA STUDENTSKÝCH A DOKTORSKÝCH PRACÍ FST 2007 PROUDĚNÍ REGULAČNÍ MEZISTĚNOU TURBÍNOVÉHO STUPNĚ PŘI ROTACI OBĚŽNÉHO LOPATKOVÁNÍ Jaroslav Štěch ABSTRAKT Úkolem bylo zjistit numerickou CFD

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Pavol Bukviš 1, Pavel Fiala 2

Pavol Bukviš 1, Pavel Fiala 2 MODEL MIKROVLNNÉHO VYSOUŠEČE OLEJE Pavol Bukviš 1, Pavel Fiala 2 ANOTACE Příspěvek přináší výsledky numerického modelování při návrhu zařízení pro úpravy transformátorového oleje. Zařízení pracuje v oblasti

Více

Měřicí princip hmotnostních průtokoměrů

Měřicí princip hmotnostních průtokoměrů Měřicí princip hmotnostních průtokoměrů 30.7.2006 Petr Komp 1 Úvod Department once on the title page Co to je hmotnostní průtokoměr? Proč měřit hmotnostní průtok? Měření hmotnostního průtoku s využitím

Více

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z

NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z NÁVRH A REALIZACE ÚLOH DO FYZIKÁLNÍHO PRAKTIKA Z MECHANIKY A TERMIKY Ústav fyziky a biofyziky Školitelka: Studentka: Ing. Helena Poláková, PhD. Bc. Lenka Kadlecová AKTUÁLNOST ZPRACOVÁNÍ TÉMATU Původně

Více

Filtrace a katalytický rozklad nežádoucích složek v odpadních vzdušninách a spalinách pomocí nanovlákenných filtrů

Filtrace a katalytický rozklad nežádoucích složek v odpadních vzdušninách a spalinách pomocí nanovlákenných filtrů Filtrace a katalytický rozklad nežádoucích složek v odpadních vzdušninách a spalinách pomocí nanovlákenných filtrů Petr Šidlof 1, Jakub Hrůza 2, Pavel Hrabák 1 1 NTI FM TUL 2 KNT FT TUL Šidlof, Hrůza,

Více

PŘEHLED ČINNOSTÍ PRACOVNÍKŮ LABORATOŘE VODOHOSPODÁŘSKÉHO VÝZKUMU

PŘEHLED ČINNOSTÍ PRACOVNÍKŮ LABORATOŘE VODOHOSPODÁŘSKÉHO VÝZKUMU PŘEHLED ČINNOSTÍ PRACOVNÍKŮ LABORATOŘE VODOHOSPODÁŘSKÉHO VÝZKUMU Vysoké učení technické v Brně, Fakulta stavební Ústav vodních staveb Laboratoř vodohospodářského výzkumu Veveří 331/95, 602 00 Brno Tel.:+420541147287,

Více

ZPRÁVA Z PRŮMYSLOVÉ PRAXE

ZPRÁVA Z PRŮMYSLOVÉ PRAXE ZPRÁVA Z PRŮMYSLOVÉ PRAXE Číslo projektu Název projektu Jméno a adresa firmy Jméno a příjmení, tituly studenta: Modul projektu CZ.1.07/2.4.00/31.0170 Vytváření nových sítí a posílení vzájemné spolupráce

Více

VYUŽITÍ SNÍMACÍCH SYSTÉMU V PRŮMYSLOVÉ AUTOMATIZACI SVOČ FST 2019

VYUŽITÍ SNÍMACÍCH SYSTÉMU V PRŮMYSLOVÉ AUTOMATIZACI SVOČ FST 2019 VYUŽITÍ SNÍMACÍCH SYSTÉMU V PRŮMYSLOVÉ AUTOMATIZACI SVOČ FST 2019 Bc. Michael Froněk Západočeská univerzita v Plzni Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá řešením problému

Více

Zařízení pro testování vyústek kabin dopravních prostředků a hodnocení charakteru proudění

Zařízení pro testování vyústek kabin dopravních prostředků a hodnocení charakteru proudění Zařízení pro testování vyústek kabin dopravních prostředků a hodnocení charakteru proudění Apollo ID: 25931 Datum: 7. 11. 2011 Typ projektu: G funkční vzorek Autoři: Jedelský Jan, Ing., Lízal František,

Více

ZVLÁŠTNOSTI PRAKTICKÉHO POUŽÍVÁNÍ DYNAMOMETRU KISTLER PŘI BROUŠENÍ S PROCESNÍMI KAPALINAMI

ZVLÁŠTNOSTI PRAKTICKÉHO POUŽÍVÁNÍ DYNAMOMETRU KISTLER PŘI BROUŠENÍ S PROCESNÍMI KAPALINAMI ZVLÁŠTNOSTI PRAKTICKÉHO POUŽÍVÁNÍ DYNAMOMETRU KISTLER PŘI BROUŠENÍ S PROCESNÍMI KAPALINAMI Ing. Jaroslav VOTOČEK Technická univerzita v Liberci, Studentská 2, 461 17 Liberec, tel. +420 485 353 371, e-mail:

Více

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator

SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow in pipe with hydraulic accumulator Colloquium FLUID DYNAMICS 2009 Institute of Thermomechanics AS CR, v.v.i., Prague, October 21-23, 2009 p.1 SIMULACE PULZUJÍCÍHO PRŮTOKU V POTRUBÍ S HYDRAULICKÝM AKUMULÁTOREM Simulation of pulsating flow

Více

Fotogammetrie. Zpracoval: Jakub Šurab, sur072. Datum:

Fotogammetrie. Zpracoval: Jakub Šurab, sur072. Datum: Fotogammetrie Zpracoval: Jakub Šurab, sur072 Datum: 7.4.2009 Co je fotogrammetrie Fotogrammetrie je věda, způsob a technologie, která se zabývá získáváním využitelných měření map, digitálních modelů a

Více

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků

EXPERIMENTÁLNÍ METODY I. 4. Měření tlaků FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA 4. KAPITOLY Úvod do problematiky měření tlaků Kapalinové tlakoměry

Více

VY_32_INOVACE_FY.12 OPTIKA II

VY_32_INOVACE_FY.12 OPTIKA II VY_32_INOVACE_FY.12 OPTIKA II Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Optická čočka je optická soustava dvou centrovaných

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

EXPERIMENTÁLNÍ VYŠETŘENÍ VLASTNOSTÍ SYNTETIZOVANÉHO PAPRSKU SVOČ FST 2013

EXPERIMENTÁLNÍ VYŠETŘENÍ VLASTNOSTÍ SYNTETIZOVANÉHO PAPRSKU SVOČ FST 2013 EXPERIMENTÁLNÍ VYŠETŘENÍ VLASTNOSTÍ SYNTETIZOVANÉHO PAPRSKU SVOČ FST 213 Robert Kalista, Západočeská univerzita v Plzni, Univerzitní 8, 36 14 Plzeň Česká republika ABSTRAKT Tato práce se zabývá experimentálním

Více

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ

ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ ZKUŠEBNÍ ZAŘÍZENÍ PRO HODNOCENÍ SKRÁPĚNÝCH TRUBKOVÝCH SVAZKŮ Rok vzniku: 29 Umístěno na: Vysoké učení technické v Brně, Fakulta strojního ženýrství, Technická 2, 616 69 Brno, Hala C3/Energetický ústav

Více

Moderní metody rozpoznávání a zpracování obrazových informací 15

Moderní metody rozpoznávání a zpracování obrazových informací 15 Moderní metody rozpoznávání a zpracování obrazových informací 15 Hodnocení transparentních materiálů pomocí vizualizační techniky Vlastimil Hotař, Ondřej Matúšek Katedra sklářských strojů a robotiky Fakulta

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

Charakteristika předmětu:

Charakteristika předmětu: Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Člověk a příroda Seminář z fyziky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Seminář z fyziky je vzdělávací

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Porovnání metodik měření rozstřikových charakteristik rozstřikovacích trysek RT 240

Porovnání metodik měření rozstřikových charakteristik rozstřikovacích trysek RT 240 České vysoké učení technické v Praze Fakulta strojní, Ústav mechaniky tekutin a energetiky, Odbor mechaniky tekutin a termodynamiky Porovnání metodik měření rozstřikových charakteristik rozstřikovacích

Více

ZKOUŠKY ŽÁRUVZDORNOSTI PANELŮ VYROBENÝCH Z KOMPOZITNÍCH MATERIÁLŮ

ZKOUŠKY ŽÁRUVZDORNOSTI PANELŮ VYROBENÝCH Z KOMPOZITNÍCH MATERIÁLŮ ZKOUŠKY ŽÁRUVZDORNOSTI PANELŮ VYROBENÝCH Z KOMPOZITNÍCH MATERIÁLŮ 1. CÍL Cílem zkoušek bylo ověřit, zda vzorky panelů vyhoví/nevyhoví kriteriím žáruvzdornosti dle prováděcího předpisu [1] AC No.: 20-135

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Geotechnický monitoring učební texty, přednášky Způsoby monitoringu doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009.

Více

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu

Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Konference ANSYS 2009 Numerická simulace sdílení tepla v kanálu mezikruhového průřezu Petr Kovařík Západočeská univerzita v Plzni, Univerzitní 22, 306 14 Plzeň, kovarikp@ntc.zcu.cz Abstract: The paper

Více

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE

CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE CFD SIMULACE VE VOŠTINOVÉM KANÁLU CHLADIČE Autoři: Ing. Michal KŮS, Ph.D., Západočeská univerzita v Plzni - Výzkumné centrum Nové technologie, e-mail: mks@ntc.zcu.cz Anotace: V článku je uvedeno porovnání

Více

Measurement of fiber diameter by laser diffraction Měření průměru vláken pomocí laserové difrakce

Measurement of fiber diameter by laser diffraction Měření průměru vláken pomocí laserové difrakce Progres in textile science and technology TUL Liberec 24 Pokroky v textilních vědách a technologiích TUL v Liberci 24 Sec. 9 Sek. 9 Measurement of fiber diameter by laser diffraction Měření průměru vláken

Více

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy

Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy Proudění vzduchu v chladícím kanálu ventilátoru lokomotivy P. Šturm ŠKODA VÝZKUM s.r.o. Abstrakt: Příspěvek se věnuje optimalizaci průtoku vzduchu chladícím kanálem ventilátoru lokomotivy. Optimalizace

Více

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2

EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU. A.Mikš 1, V.Obr 2 EXPERIMENTÁLNÍ METODA URČENÍ ZÁKLADNÍCH PARAMETRŮ OBJEKTIVU ANALAKTICKÉHO DALEKOHLEDU A.Mikš, V.Obr Katedra fyziky, Fakulta stavební ČVUT, Praha Katedra vyšší geodézie, Fakulta stavební ČVUT, Praha Abstrakt:

Více

Teorie systémů TES 3. Sběr dat, vzorkování

Teorie systémů TES 3. Sběr dat, vzorkování Evropský sociální fond. Praha & EU: Investujeme do vaší budoucnosti. Teorie systémů TES 3. Sběr dat, vzorkování ZS 2011/2012 prof. Ing. Petr Moos, CSc. Ústav informatiky a telekomunikací Fakulta dopravní

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Experimentální metody I

Experimentální metody I Vysoké učení technické v Brně Fakulta strojního inženýrství Energetický ústav Odbor termomechaniky a techniky prostředí Experimentální metody I Podklady ke cvičení VIZUALIZACE PROUDĚNÍ S VÝSKYTEM COANDOVA

Více

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S

Na libovolnou plochu o obsahu S v atmosférickém vzduchu působí kolmo tlaková síla, kterou vypočítáme ze vztahu: F = pa. S MECHANICKÉ VLASTNOSTI PLYNŮ. Co už víme o plynech? Vlastnosti ply nů: 1) jsou snadno stlačitelné a rozpínavé 2) nemají vlastní tvar ani vlastní objem 3) jsou tekuté 4) jsou složeny z částic, které se neustále

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus)

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 7. ročník M.Macháček : Fyzika pro ZŠ a VG 6/1, 6/2 (Prometheus) M.Macháček : Fyzika pro ZŠ a VG 7 (Prometheus) Očekávané výstupy předmětu

Více

EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal

EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal EXPERIMENTÁLNÍ STUDIUM TOKU MAZIVA V BODOVÉM KONTAKTU Kryštof Dočkal INSTITUTE OF MACHINE AND INDUSTRIAL DESIGN Faculty of Mechanical Engineering BUT Brno Brno 28.06.2018 OBSAH ÚVOD DO PROBLEMATIKY SOUČASNÝ

Více

Clony a dýzy Měření průtoku pomocí tlakové diference

Clony a dýzy Měření průtoku pomocí tlakové diference Clony a dýzy Měření průtoku pomocí tlakové diference - Ověřený normovaný způsob měření - Přesné měření i pro rychle proudící páru a plyn - Absence pohyblivých prvků - Robustní a variabilní provedení -

Více

Čtyři běžné PROBLÉMY PŘI KALIBRACI TLAKU

Čtyři běžné PROBLÉMY PŘI KALIBRACI TLAKU Čtyři běžné PROBLÉMY PŘI KALIBRACI TLAKU Kalibrace tlaku je často důležitou součástí systémů řízení a přispívá k optimalizaci procesů a bezpečnosti závodu. Přístroji pro měření tlaku je sice vybaven téměř

Více

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY

EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY 10 th conference on Power System Engineering, Thermodynamics & Fluid Flow - ES 2011 June 16-17, 2011, Pilsen, Czech Republic EXPERIMENTÁLNÍ A NUMERICKÝ VÝZKUM SPALOVACÍ KOMORY TŮMA Jan, KUBATA Jan, BĚTÁK

Více

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis

MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis MĚŘENÍ ABSOLUTNÍ VLHKOSTI VZDUCHU NA ZÁKLADĚ SPEKTRÁLNÍ ANALÝZY Measurement of Absolute Humidity on the Basis of Spectral Analysis Ivana Krestýnová, Josef Zicha Abstrakt: Absolutní vlhkost je hmotnost

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Vírový průtokoměr Optiswirl 4070 C Měřicí princip Petr Komp,

Vírový průtokoměr Optiswirl 4070 C Měřicí princip Petr Komp, Vírový průtokoměr Optiswirl 4070 C Měřicí princip Petr Komp, 17.10. 2009 1 Úvod Víry vznikají při obtékání těles Kurilské ostrovy v oceánu 2 Vlajka ve větru 3 Schéma vírové stezky 4 Vysvětlení mechanismu

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Anemometrické metody Učební text Ing. Bc. Michal Malík Ing. Bc. Jiří Primas Liberec 2011 Materiál vznikl v rámci

Více

Kalibrace měřiče KAP v klinické praxi. Martin Homola Jaroslav Ptáček

Kalibrace měřiče KAP v klinické praxi. Martin Homola Jaroslav Ptáček Kalibrace měřiče KAP v klinické praxi Martin Homola Jaroslav Ptáček KAP kerma - area product kerma - area produkt, je používán v dozimetrii pacienta jednotky (Gy * m 2 ) kerma - area produkt = plošný integrál

Více

Laboratorní úloha č. 7 Difrakce na mikro-objektech

Laboratorní úloha č. 7 Difrakce na mikro-objektech Laboratorní úloha č. 7 Difrakce na mikro-objektech Úkoly měření: 1. Odhad rozměrů mikro-objektů z informací uváděných výrobcem. 2. Záznam difrakčních obrazců (difraktogramů) vzniklých interakcí laserového

Více

Simplex je bezrozměrná veličina vyjadřující poměr mezi dvěma rozměrově stejnými fyzikálními veličinami. Komplex je bezrozměrná veličina skládající se

Simplex je bezrozměrná veličina vyjadřující poměr mezi dvěma rozměrově stejnými fyzikálními veličinami. Komplex je bezrozměrná veličina skládající se V mnoha případech je nutné provádět měření na zařízeních, které svými rozměry přesahují možnosti laboratoří. Z toho důvodu (i mnoha dalších levnější a rychlejší výroba, snazší manipulace, možnost úprav,

Více

HYDROSTATICKÝ PARADOX

HYDROSTATICKÝ PARADOX HYDROSTATICKÝ PARADOX Vzdělávací předmět: Fyzika Tematický celek dle RVP: Mechanické vlastnosti tekutin Tematická oblast: Mechanické vlastnosti kapalin Cílová skupina: Žák 7. ročníku základní školy Cílem

Více

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová

Digitální fotografie. Mgr. Milana Soukupová Gymnázium Česká Třebová Digitální fotografie Mgr. Milana Soukupová Gymnázium Česká Třebová Téma sady didaktických materiálů Digitální fotografie I. Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu

Více

VYUŽITÍ METODY PIV PŘI VÝVOJI SPALOVACÍCH MOTORŮ

VYUŽITÍ METODY PIV PŘI VÝVOJI SPALOVACÍCH MOTORŮ VYUŽITÍ METODY PIV PŘI VÝVOJI SPALOVACÍCH MOTORŮ Petr Hatschbach 1 Abstract Principles of Particle Image Velocimetry (PIV) the optical non-invasive flow measurement technique. Comparison with more known

Více

Měření průtoku kapaliny s využitím digitální kamery

Měření průtoku kapaliny s využitím digitální kamery Měření průtoku kapaliny s využitím digitální kamery Mareš, J., Vacek, M. Koudela, D. Vysoká škola chemicko-technologická Praha, Ústav počítačové a řídicí techniky, Technická 5, 166 28, Praha 6 e-mail:

Více

KONTROLA PŘESNOSTI VÝROBY S VYUŽITÍM MATLABU

KONTROLA PŘESNOSTI VÝROBY S VYUŽITÍM MATLABU KONTROLA PŘESNOSTI VÝROBY S VYUŽITÍM MATLABU Ing. Vladislav Matějka, Ing. Jiří Tichý, Ing. Radovan Hájovský Katedra měřicí a řídicí techniky, VŠB-TU Ostrava Abstrakt: Příspěvek se zabývá možností využít

Více

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát). Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více