Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Rozměr: px
Začít zobrazení ze stránky:

Download "Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy."

Transkript

1 Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě, kde začíná.

2 Příklad instance problému:

3 Příklad instance problému: Nejkratší okružní cesta má délku 8.

4 Můžeme uvažovat dvě různé varianty tohoto problému: Každé město musí být navštíveno právě jednou. Města je možné navštěvovat opakovaně.

5 V následujícím výkladu se nám bude hodit poněkud formálnější definice problému: Na instanci problému(tj. množinu měst a vzdálenosti mezi nimi) semůžemedívatjakonaúplnýneorientovanýgrafg=(v,e) sohodnocenímhrand(kded:e N). ProlibovolnoumnožinuhranE Edefinujeme d(e )= e E d(e) ProlibovolnýcyklusCpakdefinujemed(C)=d(E ),kdee je množinahranležícíchnacykluc.

6 Problém TSP pak můžeme formulovat následovně: Problém obchodního cestujícího(tsp) Vstup:ÚplnýneorientovanýgrafG=(V,E)sohodnocením hran d. Výstup: Cyklus C procházející všemi vrcholy grafu G takový, žehodnotad(c)jeminimálnímožná.

7 Následující problém je NP-úplný(ať už je či není povoleno navštěvovat vrcholy opakovaně): Problém obchodního cestujícího(tsp) rozhodovací varianta Vstup:ÚplnýneorientovanýgrafG=(V,E)sohodnocením hrandačíslol. Otázka: Existuje v grafu G cyklus C procházející všemi vrcholytakový,žed(c) L? Poznámka: Nemůžeme tedy očekávat, že by problém TSP(ať už vtéčionévariantě)bylřešitelnývpolynomiálnímčase,ledažeby platilo PTIME = NPTIME.

8 Pro problém TSP, kde vyžadujeme aby byl každý vrchol navštíven právě jednou, se dá dokázat následující: Tvrzení Pokud PTIME NPTIME, pak pro problém TSP neexistuje k-aproximační algoritmus pro žádné k.

9 Pro problém TSP, kde vyžadujeme aby byl každý vrchol navštíven právě jednou, se dá dokázat následující: Tvrzení Pokud PTIME NPTIME, pak pro problém TSP neexistuje k-aproximační algoritmus pro žádné k. Důkaz(náznak): Ukáže se, jak bychom pomocí polynomiálního k-aproximačního algoritmu pro TSP vytvořili polynomiální algoritmus řešící problém HK(problém hamiltonovské kružnice), okterémjeznámo,žejenp-úplný. (Konstrukce je podobná jako konstrukce v důkazu NP-obtížnosti problému TSP převodem z problému HK.)

10 Není těžké si rozmyslet, že varianta TSP kde je povoleno opakovaně navštěvovat vrcholy se dá snadno převést na variantu, kde musí být každý vrchol navštíven právě jednou: ProdanýgrafGsohodnocenímdsestrojímenové ohodnoceníd,kded (u,v)jedélkanejkratšícestyzudov Poznámka: Pro nalezení nejkratších cest mezi dvojicemi vrcholů existují rychlé polynomiální algoritmy(např. Dijkstrův, Floydův-Warshallův apod.) Grafsohodnocenímd navícsplňujetzv.trojúhelníkovou nerovnost.

11 V grafu G s ohodnocením d je splněna trojúhelníková nerovnost, jestližeprolibovolnoutrojicijehovrcholůu,v,wplatí d(u,w) d(u,v)+d(v,w) v d(u, v) d(v, w) u d(u, w) w Tj.nejkratšícestazudowjevždypohraně(u,w)anemácenu jít oklikou přesnějakýjinývrchol.

12 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP.

13 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP. Pro problém -TSP je znám /-aproximační polynomiální algoritmus, tj. algoritmus, který pro daný graf G s ohodnocením d vrátí cyklus C procházející všemi vrcholy takový, že d(c) d(c ) kdec optimálnířešení(tj.cyklussminimálníhodnotoud(c )).

14 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP. Pro problém -TSP je znám /-aproximační polynomiální algoritmus, tj. algoritmus, který pro daný graf G s ohodnocením d vrátí cyklus C procházející všemi vrcholy takový, že d(c) d(c ) kdec optimálnířešení(tj.cyklussminimálníhodnotoud(c )). My si ukážeme poněkud jednodušší -aproximační polynomiální algoritmus pro problém -TSP.

15 Před vlastním popisem algoritmu si připomeňme některé pojmy: KostragrafuG=(V,E)jelibovolnýsouvislýacyklickýgraf T=(V,E ),kdev=v ae E(tj.Tjesouvislýpodgraf grafugobsahujícívšechnyvrcholyzg). Hodnotu d(t) definujeme jako součet hodnot hran v této kostře, tj.d(t)=d(e ). KostraTjeminimální,jestližeprolibovolnoujinoukostruT vgrafugplatíd(t) d(t ). Pro problém nalezení minimální kostry v daném ohodnoceném grafu jsou známy rychlé polynomiální algoritmy(např. Kruskalův nebo Jarníkův(Primův)).

16 PříkladkostryT,kded(T)=8:

17 PříkladminimálníkostryT,kded(T)=6:

18 -aproximační algoritmus pro -TSP pracuje v následujících krocích: Najde minimální kostru grafu G. Vytvoří uzavřený tah podél této kostry. Z vytvořeného tahu odstraní opakující se vrcholy a výsledný cyklus vrátí jako výsledek.

19 Vezměme si následující instanci -TSP.

20 Krok : Nalezení minimální kostry T

21 Krok : Nalezení minimální kostry T

22 Všimněmesi,žed(T) <d(c ): PokudzC odstranímelibovolnouhranu,dostaneme kostrut. Zjevněplatíd(T ) <d(c ). ProlibovolnoukostruT platíd(t) d(t ).

23 Příklad: Vezměme si optimální cyklus

24 Příklad: Odstraněním jedné hrany vznikne kostra

25 Krok : Nalezení minimální kostry

26 Krok : Vytvoření tahu C podél kostry

27 Krok : Vytvoření tahu C podél kostry Každou hranu procházíme dvakrát, platí tedy d(c)=d(t) <d(c ).

28 Krok : Vytvoření tahu C podél kostry

29 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

30 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

31 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

32 Nalezený cyklus:

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

12. Aproximační algoritmy

12. Aproximační algoritmy 12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Jan Pavĺık. FSI VUT v Brně 14.5.2010

Jan Pavĺık. FSI VUT v Brně 14.5.2010 Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

9.Cosipočítstěžkýmproblémem

9.Cosipočítstěžkýmproblémem 9.Cosipočítstěžkýmproblémem V předchozí kapitole jsme zjistili, že leckteré rozhodovací problémy jsou NPúplné.Ztohoplyne,žejsouekvivalentní,alebohuželtaké,žeanijedenznichzatím neumíme vyřešit v polynomiálním

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou

Více

Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém

Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém 1. Nejkrat¹í cesty Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém smyslu optimální typicky nejkratší možná. Už víme, že prohledávání do šířky najde cestu s nejmenším počtem

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu... Písemný test MA010 Grafy: 11.1. 2007, var A... 1). Dány jsou následující tři grafy na 8 vrcholech každý. 1 A B C Vašim úkolem je mezi nimi najít všechny isomorfní dvojice. Pro každou isomorfní dvojici

Více

Minimální kostra. Kapitola 1

Minimální kostra. Kapitola 1 Kapitola 1 Minimální kostra Motivace 1: (prohrnování silnic) V království je N měst a některá z nich jsou spojena přímou silnicí. Křižovatky jsou pouze ve městech. Mezi některými městy přímá silnice nevede,

Více

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Bc. Zuzana Karlíková Diplomová práce 2009 University od Pardubice Faculty

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Vedoucí práce: RNDr. Martin Pergel, Ph.D.

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Vedoucí práce: RNDr. Martin Pergel, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta SVOČ 2011 Jindřich Ivánek Heuristikou řízené hledání optima v NP-těžkých úlohách Vedoucí práce: RNDr. Martin Pergel, Ph.D. Obsah 1 Úvod 3 2 Algoritmus

Více

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe . Minimální kostry Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE Jaroslav Matuška 1 Anotace: Příspěvek prezentuje možnosti užití metod operačního výzkumu (teorie grafů)

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz ::

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz :: DISKRÉTNÍ MATEMATIKA pro obor aplikovaná informatika 1. diskrétní 1. ohleduplný, taktní 2. zachovávající tajemství 3. nespojitý, přetržitý Akademický slovník cizích slov (1998): 2. Literatura Berka, M.,

Více

Dijkstrův algoritmus (připomenutí)

Dijkstrův algoritmus (připomenutí) Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

ň ú Ě É Ř ď ú ú ú ú Č Č Č Č ú ú ú ú Ú ú ú Ú ú ú Ú ú ú ň ú ú ú Ť ú ň ú ť ú ť ú ú ú ť ú ň ú ú Ú Č ú ť ú ú Ď ú ú Ú ú ú ú Ý ú ň ť Ř ť Ř ť ť Ř ť ť ť ť Ý Ž ť ť ť ť ň ť Ř ť É ť ť ňů Ý ť Č ú ť ť Ů ť ť ú Ý ť ť

Více

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1 Princip kódování 0 1 0 vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: 000 111 000 Může dojít k poruše,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Projekt programu Inženýrská Informatika 2

Projekt programu Inženýrská Informatika 2 Projekt programu Inženýrská Informatika 2 Realizace grafu v jazyce Java Ústav počítačové a řídicí techniky, VŠCHT Praha Řešitel: Jan Hornof (ININ 258) Vedoucí: doc. Ing. Jaromír Kukal, Ph.D. 1. Obsah 1.

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy

Více

10 Důkazové postupy pro algoritmy

10 Důkazové postupy pro algoritmy 10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší

Více

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at

Software Dynamická geometrie v optice. Andreas Ulovec Andreas.Ulovec@univie.ac.at PROMOTE MSc POPIS TÉMATU FYZIKA 4 Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Software Dynamická geometrie v optice Optika Andreas Ulovec Andreas.Ulovec@univie.ac.at Užití

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

Teorie grafů a diskrétní optimalizace 1

Teorie grafů a diskrétní optimalizace 1 KMA/TGD1 Teorie grafů a diskrétní optimalizace 1 Pracovní texty přednášek Obsahem předmětu KMA/TGD1 jsou základy algoritmické teorie grafů a výpočetní složitosti Kapitoly 1 5 rozšiřují a prohlubují předchozí

Více

Složitost her. Herní algoritmy. Otakar Trunda

Složitost her. Herní algoritmy. Otakar Trunda Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost

Více

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ

vzdělávací oblast vyučovací předmět ročník zodpovídá MATEMATIKA A JEJÍ APLIKACE MATEMATIKA 4. BÁRTOVÁ, VOJTÍŠKOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky 4. ročník OPAKOVÁNÍ UČIVA 3. ROČNÍKU Rozvíjí dovednosti s danými

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Dynamické programování

Dynamické programování Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D ZS 2014 1 Základní princip Dynamické programování Princip dynamického programování je založen na podobné myšlence jako rozděl a panuj. Vstupní

Více

8. Slovní úlohy na extrémy

8. Slovní úlohy na extrémy 8. Slovní úlohy na extrémy Vtétokapitolenaznačíme,jakřešitněkteré praktické (většinougeometrické) úlohy související s extrémy funkcí jedné proměnné. Novým prvkem bude nutnost slovně zadanou úlohu nejdříve

Více

Požadavky k písemné přijímací zkoušce z tematického okruhu 1 (Logistika)

Požadavky k písemné přijímací zkoušce z tematického okruhu 1 (Logistika) POŽADAVKY K PÍSEMNÉ PŘIJÍMACÍ ZKOUŠCE pro uchazeče o studium v navazujícím magisterském studijním v oboru LO Logistika, technologie a management dopravy Požadavky k písemné přijímací zkoušce z tematického

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202

5.2.3 Duté zrcadlo I. Předpoklady: 5201, 5202 5.2.3 Duté zrcadlo I Předpoklady: 5201, 5202 Dva druhy dutých zrcadel: kulové = odrazivá plocha zrcadla je částí kulové plochy snazší výroba, ale horší zobrazení (aby se zobrazovalo přesně, musíme použít

Více

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek

Hranová konzistence. Arc consistency AC. Nejprve se zabýváme binárními CSP. podmínka odpovídá hraně v grafu podmínek Hranová konzistence Arc consistency AC Nejprve se zabýváme binárními CSP podmínka odpovídá hraně v grafu podmínek Hrana (V i, V j ) je hranově konzistentní, právě když pro každou hodnotu x z aktuální domény

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102

5.1.3 Lom světla. vzduch n 1 v 1. n 2. v 2. Předpoklady: 5101, 5102 5..3 Lom světla Předpoklady: 50, 50 Pokus s mincí a miskou: Opřu bradu o stůl a pozoruji minci v misce. Paprsky odražené od mince se šíří přímočaře ke mně, miska jim nesmí překážet v cestě. Posunu misku

Více

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů

VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE. Optimalizace trasy při revizích elektrospotřebičů VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE FAKULTA INFORMATIKY A STATISTIKY Hlavní specializace: Ekonometrie a operační výzkum Název diplomové práce Optimalizace trasy při revizích elektrospotřebičů Diplomant: Vedoucí

Více

STROMY A KOSTRY. Stromy a kostry TI 6.1

STROMY A KOSTRY. Stromy a kostry TI 6.1 STROMY A KOSTRY Stromy a kostry TI 6.1 Stromy a kostry Seznámíme se s následujícími pojmy: kostra rafu, cyklomatické číslo rafu, hodnost rafu (kořenový strom, hloubka stromu, kořenová kostra orientovaného

Více

Distribuční funkce je funkcí neklesající, tj. pro všechna

Distribuční funkce je funkcí neklesající, tj. pro všechna Téma: Náhodná veličina, distribuční funkce a její graf, pravděpodobnostní funkce a její graf, funkce hustoty pravděpodobnosti a její graf, výpočet střední hodnoty a rozptylu náhodné veličiny 1 Náhodná

Více

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce)

MATEMATIKA / 1. ROČNÍK. Strategie (metody a formy práce) MATEMATIKA / 1. ROČNÍK Učivo Čas Strategie (metody a formy práce) Pomůcky Numerace v oboru do 7 30 pokládání koleček rozlišování čísel znázorňování kreslení a představivost třídění - číselné obrázky -

Více

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost

Úvodní opakování, kladná a záporná čísla, dělitelnost, osová a středová souměrnost Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Úvodní opakování, kladná a záporná, dělitelnost, osová a středová souměrnost Prima 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta

řádově různě rostoucí rostou řádově stejně rychle dvě funkce faktor izomorfismus neorientovaných grafů souvislý graf souvislost komponenta 1) Uveďte alespoň dvě řádově různě rostoucí funkce f(n) takové, že n 2 = O(f(n)) a f(n) = O(n 3 ). 2) Platí-li f(n)=o(g 1 (n)) a f(n)=o(g 2 (n)), znamená to, že g 1 (n) a g 2 (n) rostou řádově stejně rychle

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

1. Pøevody problémù a NP-úplnost

1. Pøevody problémù a NP-úplnost 1. Pøevody problémù a NP-úplnost Všechny úlohy, které jsme zatím potkali, jsme uměli vyřešit algoritmem s polynomiální časovou složitostí. V prvním přiblížení můžeme říci, že polynomialita docela dobře

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Logické programování

Logické programování 30. října 2012 Osnova Principy logického programování 1 Principy logického programování 2 3 1 Principy logického programování 2 3 Paradigmata programování Strukturované programování Procedurální programování

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti ILUSTRAČNÍ DIDAKTICKÝ TEST MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Didaktický test obsahuje 8 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky:

Více

PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky.

PROGRAMOVÁNÍ. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. Cílem předmětu Programování je seznámit posluchače se způsoby, jak algoritmizovat základní programátorské techniky. V průběhu budou vysvětlena následující témata: 1. Dynamicky alokovaná paměť 2. Jednoduché

Více

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla

Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla Ramseyovy věty Martin Mareš Tento text je stručným shrnutím těch tvrzení Ramseyovy teorie, která zazněla na mé letošní přednášce z Kombinatoriky a grafů I Předpokládá, že čtenář se již seznámil se základní

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY I RADIM BĚLOHLÁVEK, VILÉM VYCHODIL VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM

Více

Výpočetní složitost I

Výpočetní složitost I Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem

Více

Á ÁŽ É Á ž Č ěž ě Č Č Í ě š ú ž ě ě ň ň ť Č ě Ý ě ž ďě Ú Č ě Č ť ě Í ě ď ž ž ž ě ě Í ě ž ň Č Ž š Í ě ě Č ž ě ě Č ě ě ě ž ě š ň ě ě ě Í š ž ž ě ž ž ě Í ě ž ě š š š ž š Ž š ó Í Ž Í Í Ó ž ě Č ž ě ě ě ž Č

Více

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý

Tematický plán pro školní rok 2015/2016 Předmět: Matematika Vyučující: Mgr. Jitka Vlčková Týdenní dotace hodin: 5 hodin Ročník: čtvrtý ČASOVÉ OBDOBÍ Září KONKRÉTNÍ VÝSTUPY KONKRÉTNÍ UČIVO PRŮŘEZOVÁ TÉMATA porovnává přirozená čísla v oboru do zaokrouhluje čísla na desítky a stovky provádí zpaměti jednoduché početní operace řeší a tvoří

Více

Systémové elektrické instalace KNX/EIB (11. část) Ing. Josef Kunc

Systémové elektrické instalace KNX/EIB (11. část) Ing. Josef Kunc Systémové elektrické instalace KNX/EIB (11. část) Ing. Josef Kunc Stmívací akční členy Hlavním úkolem těchto přístrojů je spínání a stmívání světelného zdroje. Stejně jako v klasických elektrických instalacích

Více

MATEMATIKA jak naučit žáky požadovaným znalostem

MATEMATIKA jak naučit žáky požadovaným znalostem 17 30. DUBNA 2008 MATEMATIKA jak naučit žáky požadovaným znalostem Na pomoc učitelům základních škol V rámci systémového projektu Kvalita I, jednoho z projektů Evropského sociálního fondu, vydal Ústav

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

ů é Č ů Ú Řď ů ů ý ý ý ů ů ý ň ď Ť Ť Ť é é ý ů ý É ň é ů ý é ý ů ů ý ý ů ů é ů ý ý ý é é Ť ý é ý ď ý é ý Ó Ů ý Ů Ů Ů ú ů ďů é ý ý é ď ý ý ý ů ů é ů ů é ů é ý é Ů é é é ý Ť ů Ť é é é é ů é ý ý é Ť é é Ú

Více

8. Geometrie vrací úder (sepsal Pavel Klavík)

8. Geometrie vrací úder (sepsal Pavel Klavík) 8. Geometrie vrací úder (sepsal Pavel Klavík) Když s geometrickými problémy pořádně nezametete, ony vám to vrátí! Ale když užzametat,takurčitěnepodkoberecamístosmetákupoužijtepřímku.vtéto přednášce nás

Více