Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Rozměr: px
Začít zobrazení ze stránky:

Download "Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy."

Transkript

1 Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě, kde začíná.

2 Příklad instance problému:

3 Příklad instance problému: Nejkratší okružní cesta má délku 8.

4 Můžeme uvažovat dvě různé varianty tohoto problému: Každé město musí být navštíveno právě jednou. Města je možné navštěvovat opakovaně.

5 V následujícím výkladu se nám bude hodit poněkud formálnější definice problému: Na instanci problému(tj. množinu měst a vzdálenosti mezi nimi) semůžemedívatjakonaúplnýneorientovanýgrafg=(v,e) sohodnocenímhrand(kded:e N). ProlibovolnoumnožinuhranE Edefinujeme d(e )= e E d(e) ProlibovolnýcyklusCpakdefinujemed(C)=d(E ),kdee je množinahranležícíchnacykluc.

6 Problém TSP pak můžeme formulovat následovně: Problém obchodního cestujícího(tsp) Vstup:ÚplnýneorientovanýgrafG=(V,E)sohodnocením hran d. Výstup: Cyklus C procházející všemi vrcholy grafu G takový, žehodnotad(c)jeminimálnímožná.

7 Následující problém je NP-úplný(ať už je či není povoleno navštěvovat vrcholy opakovaně): Problém obchodního cestujícího(tsp) rozhodovací varianta Vstup:ÚplnýneorientovanýgrafG=(V,E)sohodnocením hrandačíslol. Otázka: Existuje v grafu G cyklus C procházející všemi vrcholytakový,žed(c) L? Poznámka: Nemůžeme tedy očekávat, že by problém TSP(ať už vtéčionévariantě)bylřešitelnývpolynomiálnímčase,ledažeby platilo PTIME = NPTIME.

8 Pro problém TSP, kde vyžadujeme aby byl každý vrchol navštíven právě jednou, se dá dokázat následující: Tvrzení Pokud PTIME NPTIME, pak pro problém TSP neexistuje k-aproximační algoritmus pro žádné k.

9 Pro problém TSP, kde vyžadujeme aby byl každý vrchol navštíven právě jednou, se dá dokázat následující: Tvrzení Pokud PTIME NPTIME, pak pro problém TSP neexistuje k-aproximační algoritmus pro žádné k. Důkaz(náznak): Ukáže se, jak bychom pomocí polynomiálního k-aproximačního algoritmu pro TSP vytvořili polynomiální algoritmus řešící problém HK(problém hamiltonovské kružnice), okterémjeznámo,žejenp-úplný. (Konstrukce je podobná jako konstrukce v důkazu NP-obtížnosti problému TSP převodem z problému HK.)

10 Není těžké si rozmyslet, že varianta TSP kde je povoleno opakovaně navštěvovat vrcholy se dá snadno převést na variantu, kde musí být každý vrchol navštíven právě jednou: ProdanýgrafGsohodnocenímdsestrojímenové ohodnoceníd,kded (u,v)jedélkanejkratšícestyzudov Poznámka: Pro nalezení nejkratších cest mezi dvojicemi vrcholů existují rychlé polynomiální algoritmy(např. Dijkstrův, Floydův-Warshallův apod.) Grafsohodnocenímd navícsplňujetzv.trojúhelníkovou nerovnost.

11 V grafu G s ohodnocením d je splněna trojúhelníková nerovnost, jestližeprolibovolnoutrojicijehovrcholůu,v,wplatí d(u,w) d(u,v)+d(v,w) v d(u, v) d(v, w) u d(u, w) w Tj.nejkratšícestazudowjevždypohraně(u,w)anemácenu jít oklikou přesnějakýjinývrchol.

12 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP.

13 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP. Pro problém -TSP je znám /-aproximační polynomiální algoritmus, tj. algoritmus, který pro daný graf G s ohodnocením d vrátí cyklus C procházející všemi vrcholy takový, že d(c) d(c ) kdec optimálnířešení(tj.cyklussminimálníhodnotoud(c )).

14 Variantu TSP, ve které se omezujeme pouze na instance, ve kterých je splněna trojúhelníková nerovnost(a kde musí být každý vrchol navštíven právě jednou), označujeme -TSP. Pro problém -TSP je znám /-aproximační polynomiální algoritmus, tj. algoritmus, který pro daný graf G s ohodnocením d vrátí cyklus C procházející všemi vrcholy takový, že d(c) d(c ) kdec optimálnířešení(tj.cyklussminimálníhodnotoud(c )). My si ukážeme poněkud jednodušší -aproximační polynomiální algoritmus pro problém -TSP.

15 Před vlastním popisem algoritmu si připomeňme některé pojmy: KostragrafuG=(V,E)jelibovolnýsouvislýacyklickýgraf T=(V,E ),kdev=v ae E(tj.Tjesouvislýpodgraf grafugobsahujícívšechnyvrcholyzg). Hodnotu d(t) definujeme jako součet hodnot hran v této kostře, tj.d(t)=d(e ). KostraTjeminimální,jestližeprolibovolnoujinoukostruT vgrafugplatíd(t) d(t ). Pro problém nalezení minimální kostry v daném ohodnoceném grafu jsou známy rychlé polynomiální algoritmy(např. Kruskalův nebo Jarníkův(Primův)).

16 PříkladkostryT,kded(T)=8:

17 PříkladminimálníkostryT,kded(T)=6:

18 -aproximační algoritmus pro -TSP pracuje v následujících krocích: Najde minimální kostru grafu G. Vytvoří uzavřený tah podél této kostry. Z vytvořeného tahu odstraní opakující se vrcholy a výsledný cyklus vrátí jako výsledek.

19 Vezměme si následující instanci -TSP.

20 Krok : Nalezení minimální kostry T

21 Krok : Nalezení minimální kostry T

22 Všimněmesi,žed(T) <d(c ): PokudzC odstranímelibovolnouhranu,dostaneme kostrut. Zjevněplatíd(T ) <d(c ). ProlibovolnoukostruT platíd(t) d(t ).

23 Příklad: Vezměme si optimální cyklus

24 Příklad: Odstraněním jedné hrany vznikne kostra

25 Krok : Nalezení minimální kostry

26 Krok : Vytvoření tahu C podél kostry

27 Krok : Vytvoření tahu C podél kostry Každou hranu procházíme dvakrát, platí tedy d(c)=d(t) <d(c ).

28 Krok : Vytvoření tahu C podél kostry

29 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

30 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

31 Krok : Postupné vypouštění opakujících se vrcholů z tahu C Každé vypuštění vrcholu tah leda zkrátí.

32 Nalezený cyklus:

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry.

zejména Dijkstrův algoritmus pro hledání minimální cesty a hladový algoritmus pro hledání minimální kostry. Kapitola Ohodnocené grafy V praktických aplikacích teorie grafů zpravidla graf slouží jako nástroj k popisu nějaké struktury. Jednotlivé prvky této struktury mají často přiřazeny nějaké hodnoty (může jít

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

TGH08 - Optimální kostry

TGH08 - Optimální kostry TGH08 - Optimální kostry Jan Březina Technical University of Liberec 14. dubna 2015 Problém profesora Borůvky řešil elektrifikaci Moravy Jak propojit N obcí vedením s minimální celkovou délkou. Vedení

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

Přijímací zkouška - matematika

Přijímací zkouška - matematika Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,

Více

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta

STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach fronta STROMOVE ALGORITMY Prohledavani do sirky (level-order) Po vodorovnejch carach vlož do fronty kořen opakuj, dokud není fronta prázdná 1. vyber uzel z fronty a zpracuj jej 2. vlož do fronty levého následníka

Více

Grafové algoritmy. Programovací techniky

Grafové algoritmy. Programovací techniky Grafové algoritmy Programovací techniky Grafy Úvod - Terminologie Graf je datová struktura, skládá se z množiny vrcholů V a množiny hran mezi vrcholy E Počet vrcholů a hran musí být konečný a nesmí být

Více

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy

STROMY. v 7 v 8. v 5. v 2. v 3. Základní pojmy. Řešené příklady 1. příklad. Stromy STROMY Základní pojmy Strom T je souvislý graf, který neobsahuje jako podgraf kružnici. Strom dále budeme značit T = (V, X). Pro graf, který je stromem platí q = n -, kde q = X a n = V. Pro T mezi každou

Více

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO

HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO HEURISTICKÉ ALGORITMY PRO ŘEŠENÍ ÚLOH OBCHODNÍHO CESTUJÍCÍHO Heuristické algoritmy jsou speciálními algoritmy, které byly vyvinuty pro obtížné úlohy, jejichž řešení je obtížné získat v rozumném čase. Mezi

Více

Jarníkův algoritmus. Obsah. Popis

Jarníkův algoritmus. Obsah. Popis 1 z 6 28/05/2015 11:44 Jarníkův algoritmus Z Wikipedie, otevřené encyklopedie Jarníkův algoritmus (v zahraničí známý jako Primův algoritmus) je v teorii grafů algoritmus hledající minimální kostru ohodnoceného

Více

12. Aproximační algoritmy

12. Aproximační algoritmy 12. Aproximační algoritmy (F.Haško,J.enda,.areš, ichal Kozák, Vojta Tůma) Na minulých přednáškách jsme se zabývali různými těžkými rozhodovacími problémy. Tato se zabývá postupy, jak se v praxi vypořádat

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014

Teorie grafů. Kostra grafu. Obsah. Radim Farana Podklady pro výuku pro akademický rok 2013/2014 Teorie grafů Radim Farana Podklady pro výuku pro akademický rok 013/014 Obsah Kostra grafu. Tahy,. Úloha čínského pošťáka. Zdroj: Vítečková, M., Přidal, P. & Koudela, T. Výukový modul k předmětu Systémová

Více

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém

Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT

Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT PEF ČZU Modely teorie grafů, min.kostra, max.tok, CPM, MPM, PERT Okruhy SZB č. 5 Zdroje: Demel, J., Operační výzkum Jablonský J., Operační výzkum Šubrt, T., Langrová, P., Projektové řízení I. a různá internetová

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová

Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy

Více

GRAFY A GRAFOVÉ ALGORITMY

GRAFY A GRAFOVÉ ALGORITMY KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO GRAFY A GRAFOVÉ ALGORITMY ARNOŠT VEČERKA VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole.

které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Kapitola 7 Stromy Stromy jsou jednou z nejdůležitějších tříd grafů. O tom svědčí i množství vět, které je z různých pohledů charakterizují. Několik z nich dokážeme v této kapitole. Představíme také dvě

Více

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet.

4 Stromy a les. Definice a základní vlastnosti stromů. Kostry grafů a jejich počet. 4 Stromy a les Jedním ze základních, a patrně nejjednodušším, typem grafů jsou takzvané stromy. Jedná se o souvislé grafy bez kružnic. Přes svou (zdánlivou) jednoduchost mají stromy bohatou strukturu a

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

MATEMATIKA A 3 Metodický list č. 1

MATEMATIKA A 3 Metodický list č. 1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA struktury) Doba trvání: 90 minut Max. zisk: 62 bodů Minimální bodový zisk nutný k uznání: 25 bodů jealenutnétakédocílitalespoňminima11bodůseparátněukaždézedvoučástípísemky

Více

Metody síťové analýzy

Metody síťové analýzy Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

9.Cosipočítstěžkýmproblémem

9.Cosipočítstěžkýmproblémem 9.Cosipočítstěžkýmproblémem V předchozí kapitole jsme zjistili, že leckteré rozhodovací problémy jsou NPúplné.Ztohoplyne,žejsouekvivalentní,alebohuželtaké,žeanijedenznichzatím neumíme vyřešit v polynomiálním

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ

VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ VYUŽITÍ NĚKTERÝCH METOD TEORIE GRAFŮ PŘI ŘEŠENÍ DOPRAVNÍCH PROBLÉMŮ Markéta Brázdová 1 Anotace: Metody operačního výzkumu mají při řešení praktických problémů široké využití. Článek se zabývá problematikou

Více

Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém

Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém 1. Nejkrat¹í cesty Často potřebujeme hledat mezi dvěma vrcholy grafu cestu, která je v nějakém smyslu optimální typicky nejkratší možná. Už víme, že prohledávání do šířky najde cestu s nejmenším počtem

Více

Á Í Č Ě Č ň ť Š Č Ť ň ň ď Ť Ú ť Č ň ď ť Č Š Ž Ú Ť Ť Ť Ť ň Ť Ť ť Ť Ť Á Ť Ť Ť ď Ť Ť Ť Ť Ť Ť Ť Ť Ť ň ďť Ť Ť Ť Š Š Š ď ň Č Š ň Š ť Š ň Š Š Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ť Ú Š ň ť ť Š ň Š Ž ť ť ť ň Š Č Š Š Í

Více

Složitost a moderní kryptografie

Složitost a moderní kryptografie Složitost a moderní kryptografie Radek Pelánek Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Složitost a moderní kryptografie

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu...

a jiné elektronické přístroje včetně mobilů. Pracujte samostatně. Povolen je 1 list A4 vlastnoručně psaných poznámek k předmětu... Písemný test MA010 Grafy: 11.1. 2007, var A... 1). Dány jsou následující tři grafy na 8 vrcholech každý. 1 A B C Vašim úkolem je mezi nimi najít všechny isomorfní dvojice. Pro každou isomorfní dvojici

Více

Jan Pavĺık. FSI VUT v Brně 14.5.2010

Jan Pavĺık. FSI VUT v Brně 14.5.2010 Princip výškovnice Jan Pavĺık FSI VUT v Brně 14.5.2010 Osnova přednášky 1 Motivace 2 Obecný princip 3 Příklady Světové rekordy Turnajové uspořádání Skupinové hodnocení Rozhledny 4 Geografická výškovnice

Více

Minimální kostra. Kapitola 1

Minimální kostra. Kapitola 1 Kapitola 1 Minimální kostra Motivace 1: (prohrnování silnic) V království je N měst a některá z nich jsou spojena přímou silnicí. Křižovatky jsou pouze ve městech. Mezi některými městy přímá silnice nevede,

Více

Důkazy vybraných geometrických konstrukcí

Důkazy vybraných geometrických konstrukcí Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 Ročníková práce Důkazy vybraných geometrických konstrukcí Vypracovala: Ester Sgallová Třída: 8.M Školní rok: 015/016 Seminář : Deskriptivní geometrie

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

Vzorce počítačové grafiky

Vzorce počítačové grafiky Vektorové operace součet vektorů rozdíl vektorů opačný vektor násobení vektoru skalárem úhel dvou vektorů velikost vektoru a vzdálenost dvojice bodů v rovině (v prostoru analogicky) u = B A= b a b a u

Více

1. Nejkratší cesta v grafu

1. Nejkratší cesta v grafu 08. Nekratší cesty. Úloha obchodního cestuícího. Heurstky a aproxmační algortmy. Metoda dynamckého programování. Problém batohu. Pseudopolynomální algortmy 1. Nekratší cesta v grafu - sled e lbovolná posloupnost

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Problém obchodního cestujícího

Problém obchodního cestujícího Problém obchodního cestujícího Zdeněk Hanzálek hanzalek@fel.cvut.cz ČVUT FEL Katedra řídicí techniky 9. května 2011 Z. Hanzálek (ČVUT FEL) Problém obchodního cestujícího 9. května 2011 1/ 21 1 Obsah přednášky

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 md at robotika.cz, zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 27. listopadu 2007 1 Mapa světa Exaktní plánování 2 3 Plánování s otáčením Mapa světa - příklad Obsah Mapa světa Exaktní

Více

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu

Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Univerzita Pardubice Fakulta elektrotechniky a informatiky Programový nástroj pro plánování svozných a rozvozových tras v regionu Bc. Zuzana Karlíková Diplomová práce 2009 University od Pardubice Faculty

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Vedoucí práce: RNDr. Martin Pergel, Ph.D.

Univerzita Karlova v Praze Matematicko-fyzikální fakulta. Vedoucí práce: RNDr. Martin Pergel, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta SVOČ 2011 Jindřich Ivánek Heuristikou řízené hledání optima v NP-těžkých úlohách Vedoucí práce: RNDr. Martin Pergel, Ph.D. Obsah 1 Úvod 3 2 Algoritmus

Více

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe

1. Minimální kostry. 1.1. Od mìsteèka ke kostøe . Minimální kostry Napadl sníh a přikryl peřinou celé městečko. Po ulicích lze sotva projít pěšky, natož projet autem. Které ulice prohrneme, aby šlo dojet odkudkoliv kamkoliv, a přitom nám házení sněhu

Více

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE

OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE OPTIMALIZACE PLÁNOVÁNÍ TRAS PRO OSOBY S POSTIŽENÍM ZRAKU OPTIMIZATION OF ROUTING FOR BLIND PEOPLE Jaroslav Matuška 1 Anotace: Příspěvek prezentuje možnosti užití metod operačního výzkumu (teorie grafů)

Více

1. Toky, řezy a Fordův-Fulkersonův algoritmus

1. Toky, řezy a Fordův-Fulkersonův algoritmus 1. Toky, řezy a Fordův-Fulkersonův algoritmus V této kapitole nadefinujeme toky v sítích, odvodíme základní věty o nich a také Fordův-Fulkersonův algoritmus pro hledání maximálního toku. Také ukážeme,

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.

Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný

Více

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A =

3. Grafy a matice. Definice 3.2. Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = 3 Grafy a matice Definice 32 Čtvercová matice A se nazývá rozložitelná, lze-li ji napsat ve tvaru A = A 11 A 12 0 A 22 kde A 11 a A 22 jsou čtvercové matice řádu alespoň 1 a 0 je nulová matice, anebo lze-li

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

Dijkstrův algoritmus (připomenutí)

Dijkstrův algoritmus (připomenutí) Dijkstrův algoritmus (připomenutí) Základní předpoklad w : H R + (nezáporné délky hran) Upravený algoritmus prohledávání do šířky Dijkstra(G,s,w) 1 InitPaths(G,s) 2 S:= ; InitQueue(Q) 3 for každý uzel

Více

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz ::

Diskrétní matematika DISKRÉTNÍ MATEMATIKA. RNDr. Ivan Havlíček, CSc., ivan.havlicek@vsfs.cz :: DISKRÉTNÍ MATEMATIKA pro obor aplikovaná informatika 1. diskrétní 1. ohleduplný, taktní 2. zachovávající tajemství 3. nespojitý, přetržitý Akademický slovník cizích slov (1998): 2. Literatura Berka, M.,

Více

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u.

Poznámka. V některých literaturách se pro označení vektoru také používá symbolu u. Vektory, operace s vektory Ž3 Orientovaná úsečka Mějme dvojici bodů, (na přímce, v rovině nebo prostoru), které spojíme a vznikne tak úsečka. Pokud budeme rozlišovat, zda je spojíme od k nebo od k, říkáme,

Více

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

CVIČNÝ TEST 43. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 CVIČNÝ TEST 43 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Pro a, b R + určete hodnotu výrazu ( a b) 2 ( a + b) 2, víte-li,

Více

Matematické důkazy Struktura matematiky a typy důkazů

Matematické důkazy Struktura matematiky a typy důkazů Matematické důkazy Struktura matematiky a typy důkazů Petr Liška Masarykova univerzita 18.9.2014 Motto: Matematika je tvořena z 50 procent formulemi, z 50 procent důkazy a z 50 procent představivostí.

Více

Od Turingových strojů k P=NP

Od Turingových strojů k P=NP Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně

Kódy pro detekci a opravu chyb. INP 2008 FIT VUT v Brně Kódy pro detekci a opravu chyb INP 2008 FIT VUT v Brně 1 Princip kódování 0 1 0 vstupní data kodér Tady potřebujeme informaci zabezpečit, utajit apod. Zakódovaná data: 000 111 000 Může dojít k poruše,

Více

ň ú Ě É Ř ď ú ú ú ú Č Č Č Č ú ú ú ú Ú ú ú Ú ú ú Ú ú ú ň ú ú ú Ť ú ň ú ť ú ť ú ú ú ť ú ň ú ú Ú Č ú ť ú ú Ď ú ú Ú ú ú ú Ý ú ň ť Ř ť Ř ť ť Ř ť ť ť ť Ý Ž ť ť ť ť ň ť Ř ť É ť ť ňů Ý ť Č ú ť ť Ů ť ť ú Ý ť ť

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

Příklady z Kombinatoriky a grafů I - LS 2015/2016

Příklady z Kombinatoriky a grafů I - LS 2015/2016 Příklady z Kombinatoriky a grafů I - LS 2015/2016 zadáno 1.-4. 3. 2016, odevzdat do 8.-11. 3. 2016 1. Zjistěte, které z následujících funkcí definovaných pro n N jsou v relaci Θ(), a vzniklé třídy co nejlépe

Více

Diskrétní matematika. DiM /01, zimní semestr 2015/2016

Diskrétní matematika. DiM /01, zimní semestr 2015/2016 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2015/2016 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Projekt programu Inženýrská Informatika 2

Projekt programu Inženýrská Informatika 2 Projekt programu Inženýrská Informatika 2 Realizace grafu v jazyce Java Ústav počítačové a řídicí techniky, VŠCHT Praha Řešitel: Jan Hornof (ININ 258) Vedoucí: doc. Ing. Jaromír Kukal, Ph.D. 1. Obsah 1.

Více

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu?

PROBLÉM ČTYŘ BAREV. Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV Lze obarvit jakoukoliv mapu v rovině čtyřmi barvami tak, aby žádné dvě sousedící oblasti neměly stejnou barvu? ROBLÉM ČTYŘ BAREV L KH ROBLÉM ČTYŘ BAREV Vytvoříme graf Kraje = vrcholy

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série

KoMáR - Řešení 5. série školní rok 2015/2016. Řešení Páté Série Řešení Páté Série Úloha 1. Máte za úkol zaplnit následující útvar čísly od 1 do 13. Součet těchto čísel musí být v každé řadě trojúhelníků stejný. Je možné útvar takto zaplnit? Zdůvodněte své tvrzení.

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP

CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H

Více

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat.

V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. 1 SMĚROVÁNÍ (ROUTING) V kompletním grafu nenastává problém. Každý uzel je soused se zbytkem vrcholů a může s nimi kdykoliv komunikovat. Problém nastává u ostatních grafů: Kritéria dobrého směrování: a)

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

Teorie grafů a diskrétní optimalizace 1

Teorie grafů a diskrétní optimalizace 1 KMA/TGD1 Teorie grafů a diskrétní optimalizace 1 Pracovní texty přednášek Obsahem předmětu KMA/TGD1 jsou základy algoritmické teorie grafů a výpočetní složitosti Kapitoly 1 5 rozšiřují a prohlubují předchozí

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

7. Heuristické metody

7. Heuristické metody Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA) Doba trvání: 90 minut Max. zisk: 65 bodů Minimální bodový zisk nutný k uznání: 25 bodů (jak je ovšem

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Složitost her. Herní algoritmy. Otakar Trunda

Složitost her. Herní algoritmy. Otakar Trunda Složitost her Herní algoritmy Otakar Trunda Úvod měření složitosti Formální výpočetní model Turingův stroj Složitost algoritmu = závislost spotřebovaných prostředků na velikosti vstupu Časová složitost

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Dynamické programování

Dynamické programování Algoritmická matematika 3 KMI/ALM3 Mgr. Petr Osička, Ph.D ZS 2014 1 Základní princip Dynamické programování Princip dynamického programování je založen na podobné myšlence jako rozděl a panuj. Vstupní

Více

1 Algoritmus. 1.1 Úvod

1 Algoritmus. 1.1 Úvod 1 Algoritmus Cílem této kapitoly je seznámi studenty se základními pojmy informatiky jako jsou algoritmus, program, složitost. Student získá také přehled o složitostních třídách problémů (algoritmů). O

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce

Svobodná chebská škola, základní škola a gymnázium s.r.o. Astaloš Dušan. frontální, fixační. samostatná práce, skupinová práce METODICKÝ LIST DA34 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník I. obecný trojúhelník Astaloš Dušan Matematika šestý frontální,

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více