MATEMATIKA A 3 Metodický list č. 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATIKA A 3 Metodický list č. 1"

Transkript

1 Metodický list č. 1 Název tématického celku: Úvod do problematiky diskrétní matematiky Cíl: Cílem tohoto tématického celku je vymezení oblasti diskrétní matematiky a příprava na další výklad kurzu. Jedná se zopakování některých pojmů, jejich definice v jiné souvislosti, zavedení nových pojmů a přiblížení matematického formalismu, který bude v přednášce používán. Tématický celek je rozdělen do následujících dílčích témat: 1. dílčí téma: relace (ekvivalence, uspořádání), uspořádané množiny 2. dílčí téma: kombinatorické počítání 1. dílčí téma: relace (ekvivalence, uspořádání), uspořádané množiny Uvědomte si, co je to diskrétní matematika zejména práce s konečnými, popř. spočetnými množinami. Zopakujte si operace s množinami: sjednocení, průnik a rozdíl, mohutnost množiny, počet podmnožin. Pochopte, co je relace a její matice sousednosti. Najděte si příklady relací. Uvědomte si definici ekvivalence a její vlastnosti a rozhodněte, zda vaše příklady relací jsou, či nejsou ekvivalence. Pamatujte, že uspořádání nemusí být jen větší, popř.větší nebo rovno a že jednu množinu lze uspořádat podle různých relací uspořádání různě. 2002; str Studijní materiál MaA3-1 pro první soustředění kombinovaného studia. 1

2 2. dílčí téma: kombinatorické počítání Formulujte kombinatorické úlohy pomocí funkcí a množin a jejich podmnožin. Zopakujte si permutace, faktoriály a kombinační čísla. Pro další výklad budou užitečné odhady faktoriálů a kombinačních čísel pro větší a velká čísla, zapamatujte si je. 2002; str Studijní materiál MaA3-1 pro první soustředění kombinovaného studia. 2

3 Metodický list č. 2 Název tématického celku: Úvod do teorie grafů Cíl: cílem tohoto tématu je seznámení se s pojmy graf, podgraf, souvislost, metrika a matice sousednosti v grafu. Pochopit a umět nalézt isomorfismus mezi grafy. Osvojit si Dijkstrův algoritmus nalezení nejkratší cesty v grafu. Seznámit se s matematickou formulací jednotažek, neboli eulerovských grafů a poznat podmínky pro jejich řešitelnost. Osvojit si algoritmus na kreslení grafu jedním tahem. Pochopit definici 2-souvislosti a umět vytvořit 2-souvislý graf syntézou z trojúhelníku. Tématický celek je rozdělen do následujících dílčích témat: 1. dílčí téma: graf a jeho vlastnosti 2. dílčí téma: eulerovské grafy 3. dílčí téma: 2-souvislost 1. dílčí téma: graf a jeho vlastnosti V tomto dílčím tématu se seznamte s různorodými grafy a co je sjednocuje a co je isomorfismus. Co jsou vrcholy, hrany (oblouky) jejich váha, kružnice, co je to podgraf, souvislost, metrika a matice sousednosti v grafu. Osvojte si Dijkstrův algoritmus nalezení nejkratší cesty v grafu a pochopte jeho omezenost. 2002; str ,. Studijní materiál MaA3-2 pro druhé soustředění kombinovaného studia. 3

4 2. dílčí téma:eulerovské grafy Eulerovské grafy představují to, co znáte z dětských let získejte na ně matematický náhled a poznejte, kdy je jednotažka řešitelná. Osvojte si rovněž algoritmus nalezení jednotažky. 2002; str Studijní materiál MaA3-2 pro druhé soustředění kombinovaného studia. 3. dílčí téma: 2-souvislost Seznamte se s definicí 2-souvislosti a naučíte se některé (jednoduché) grafové operace. Pomocí těchto operací se naučte vytvořit 2-souvislý graf syntézou z trojúhelníku. 2002; str Studijní materiál MaA3-2 pro druhé soustředění kombinovaného studia. 4

5 Metodický list č. 3 Název tématického celku: Speciální třída grafů - stromy Cíl: V tomto tématickém celku se studenti seznámí s významnou speciální třídou grafů, tj. se stromy a charakterizací stromů. Pochopit definici kostry grafu a problém minimální kostry. Osvojit si algoritmy na hledání minimální kostry. Ukázat užitečnost stromů na praktických příkladech. Věnujte pozornost definici stromu a jejím ekvivalentním vyjádřením, který charakterizují tuto třídu grafů. Uvědomte si co jsou kořenové a pěstěné stromy a jak se liší jejich isomorfismy. Zapamatujte si kódování a dekódování pěstěného stromu. Všimněte si co to je kostra grafu a osvojte si algoritmus jejího nalezení. Věnujte se problému minimální kostry a algoritmům jejího nalezení. 2002; str Studijní materiál MaA3-3 pro třetí soustředění kombinovaného studia. 5

6 Metodický list č. 4 Název tématického celku: Speciální třída grafů rovinné grafy Cíl: smyslem tohoto tématického celku je pochopení problematiky speciální třídy grafů, jejichž hrany se nekříží. Pozornost je věnována rozdílu mezi rovinnými grafy a grafy na jiných plochách. Z formalismu rovinných grafů vyplyne Eulerův vztah. Je rozebrána problematika barevnosti mapy. Tématický celek je rozdělen do následujících dílčích témat: 1. dílčí téma: Kreslení grafů do roviny a na další plochy 2. dílčí téma: Eulerův vztah 3. dílčí téma: barevnost mapy problém čtyř barev 1. dílčí téma: Kreslení grafů do roviny a na další plochy Pochopte, co je rovinné kreslení, co jsou stěny grafu. Rozmyslete si kreslení na jiných plochách, než je rovina na kouli, na anuloidu, Möbiově listu, na kou s ušima a ukažte, že některý graf, který nelze nakreslit bez křížení hran v rovině, se na těchto plochách nemusí křížit. Naučte se stereografickou projekci z koule na rovinu. Seznamte se s topologickou kružnicí v rovinných grafech. 2002; str Studijní materiál MaA3-4 pro čtvrté soustředění kombinovaného studia. 6

7 2. dílčí téma: Eulerův vztah Naučte se Eulerův vztah a seznamte se s jeho aplikací na tzv. platónská tělesa pomocí stereografické projekce. 2002; str Studijní materiál MaA3 4 pro čtvrté soustředění kombinovaného studia. 3. dílčí téma: barevnost mapy problém čtyř barev Seznamte se s problematikou barevnosti rovinné mapy klasickým kombinatorickým problémem čtyř barev. Jaká je maximální barevnost grafů na jiných plochách? 2002; str Studijní materiál MaA3-4 pro čtvrté soustředění kombinovaného studia. Způsob zakončení: Zápočet + Zkouška 7

8 Metodický list č. 5 Název tématického celku: Základy diskrétního matematického modelování Cíl: cílem tohoto tématického celku je ukázat jakým způsobem souvisí matematické modely s reálným světem, jak jsou cyklicky zdokonalovány, popsat jednotlivé fáze tohoto cyklu. Jako příklad třídy diskrétních matematických modelů stochastických procesů lze uvést Markovovy řetězce. Tématický celek je rozdělen do následujících dílčích témat: 1. dílčí téma: cykly matematického modelování 2. dílčí téma: Markovovy řetězce 1. dílčí téma: cykly matematického modelování Všimněte si rozdílu mezi čistou matematickou teorií a matematickým modelováním. Uvědomte si cyklickou povahu matematického modelování. Zapamatujte si jednotlivé fáze matematického modelování a přechody mezi nimi. Nalezněte příklady matematického modelování. Studijní materiál MaA3-5 pro páté soustředění kombinovaného studia. Roberts,F.S., Discrete Mathematical Models, Prentience-Hall Inc., New Jersey 1976; str dílčí téma: Markovovy řetězce 8

9 Seznamte se se stochastickými procesy. Naučte se definici Markovových řetězců a procvičte si rozhodování, co je Markovovým řetězcem a co nikoli. Pochopte, co je přechodová pravděpodobnost a přechodová matice. Naučte se kreslit přechodové grafy. Seznamte se s klasifikací stavů a řetězců. Uveďte příklady Markovových řetězců. Studijní materiál MaA3-5 pro páté soustředění kombinovaného studia. Roberts,F.S., Discrete Mathematical Models, Prentience-Hall Inc., New Jersey 1976; str Způsob zakončení: Zápočet + Zkouška 9

Cíl výuky: Cílem předmětu je uvedení studentů do problematiky projektování, seznámit posluchače se zásadami

Cíl výuky: Cílem předmětu je uvedení studentů do problematiky projektování, seznámit posluchače se zásadami PM_prezenční a kombinované bakalářské studium Česky Projektový management Anglicky Project Management Garant Ing. Zdeněk Voznička, CSc. Zakončení Zápočet Anotace: Úvod do projektového managementu, základní

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

předmětu ZÁKONNÉ POJIŠTĚNÍ

předmětu ZÁKONNÉ POJIŠTĚNÍ Metodický list pro první soustředění kombinovaného studia předmětu Název tematického celku: Zákonné pojištění úvod do problematiky Cíl: Základním cílem tohoto tematického celku je seznámit posluchače se

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit

Teorie grafů. zadání úloh. letní semestr 2008/2009. Poslední aktualizace: 19. května 2009. First Prev Next Last Go Back Full Screen Close Quit Teorie grafů zadání úloh letní semestr 2008/2009 Poslední aktualizace: 19. května 2009 Obsah Úloha číslo 1 5 Úloha číslo 2 6 Úloha číslo 3 7 Úloha číslo 4 8 Úloha číslo 5 9 Úloha číslo 6 10 Úloha číslo

Více

Matematická témata matematický seminář A

Matematická témata matematický seminář A Vzdělávací oblast: ČLOVĚK A PŘÍRODA Vyučovací předmět: Matematický seminář A rozšiřující učivo Matematický seminář B procvičování základního učiva Ročník: 6. až 9. Cílová skupina: skupina žáků složená

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

SOFTWAROVÉ INŽENÝRSTVÍ 1

SOFTWAROVÉ INŽENÝRSTVÍ 1 Metodický list č. 1 Název tématického celku: Úvod do softwarového inženýrství Základním cílem tohoto tematického celku je vysvětlení smyslu discipliny nazývané softwarové inženýrství. Tematický celek zahrnuje

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

ve výuce na střední škole

ve výuce na střední škole Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Lukáš Jirovský Vybrané problémy z teorie grafů ve výuce na střední škole Katedra didaktiky matematiky Vedoucí bakalářské práce:

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Učební texty : Matematika a její aplikace Matematika 1. období 2. ročník Mgr. M. Novotný, F. Novák: Matýskova matematika 4.,5.,6.díl

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03

65-42-M/01 HOTELNICTVÍ A TURISMUS PLATNÉ OD 1.9.2012. Čj SVPHT09/03 Školní vzdělávací program: Hotelnictví a turismus Kód a název oboru vzdělávání: 65-42-M/01 Hotelnictví Délka a forma studia: čtyřleté denní studium Stupeň vzdělání: střední vzdělání s maturitní zkouškou

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti

3.2 MATEMATIKA A JEJÍ APLIKACE (M) Charakteristika vzdělávací oblasti 3.2 MATEMATIKA A JEJÍ APLIKACE (M) 51 Charakteristika vzdělávací oblasti Vzdělávací oblast matematika a její aplikace v základním vzdělávání je založena především na aktivních činnostech, které jsou typické

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek

Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY. učební text. Jan Famfulík. Jana Míková. Radek Krzyžanek Vysoká škola báňská Technická univerzita Ostrava TEORIE ÚDRŽBY učební text Jan Famfulík Jana Míková Radek Krzyžanek Ostrava 2007 Recenze: Prof. Ing. Milan Lánský, DrSc. Název: Teorie údržby Autor: Ing.

Více

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: 612 00 Brno, Křižíkova 11 Témata k ústní maturitní zkoušce z předmětu Účetnictví profilové části maturitní zkoušky Školní rok 2012/2013 třída: 4.T 1. Legislativní úprava účetnictví 2. Účetní dokumentace 3. Manažerské účetnictví

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE

SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE SEZNAM VZDĚLÁVACÍCH MATERIÁLŮ - ANOTACE Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor CZ.1.07/1.5.00/34.0797 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT 2M3 Slovní

Více

Diskrétní Matematika (456-533 DIM)

Diskrétní Matematika (456-533 DIM) Diskrétní Matematika (456-5 DIM) Doc. RNDr. Petr Hliněný, Ph.D. petr.hlineny@vsb.cz 7. července 005 Verze.0. Copyright c 004 005 Petr Hliněný. Obsah 0. Předmluva.................................... iv

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

Kapitola 1. Grafy a podgrafy

Kapitola 1. Grafy a podgrafy Petr Kovář, 1. Grafy a podgrafy 25. února 2011 Kapitola 1. Grafy a podgrafy 1.1. Grafy a jednoduché grafy 1.1.1. Ukažte, že platí G = G, tj. doplněk doplňku grafu G je právě graf G. 1.1.2. Může být graf

Více

N_SSPo Sociální a soukromé pojištění

N_SSPo Sociální a soukromé pojištění pro první soustředění kombinovaného studia předmětu Název tematického celku: Metody sociálního zabezpečení Cíl tématického celku: Tento tématický celek je rozdělen do následujících dílčích témat: 1. dílčí

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor002 Vypracoval(a),

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

projektového řízení a vytvořit předpoklady pro osvojení základů, principů, metod a technik projektové

projektového řízení a vytvořit předpoklady pro osvojení základů, principů, metod a technik projektové PM_prezenční a kombinované bakalářské studium Česky Projektový management Anglicky Project Management Garant Ing. Zdeněk Voznička, CSc. Zakončení předmětu Zápočet Anotace: Úvod do projektového managementu,

Více

Standardy ČJ - 2.stupeň - přehled

Standardy ČJ - 2.stupeň - přehled Standardy ČJ - 2.stupeň - přehled ČJL-9-1-01 Žák odlišuje ve čteném nebo slyšeném textu fakta od názorů a hodnocení, ověřuje fakta pomocí otázek nebo porovnáváním s dostupnými informačními zdroji - 9.r.

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Datové typy a struktury

Datové typy a struktury atové typy a struktury Jednoduché datové typy oolean = logická hodnota (true / false) K uložení stačí 1 bit často celé slovo (1 byte) haracter = znak Pro 8-bitový SII kód stačí 1 byte (256 možností) Pro

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace.

Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Matematika Charakteristika vyučovacího předmětu Předmět Matematika zahrnuje vzdělávací obor Matematika a její aplikace. Výuka matematiky přispívá k pochopení kvantitativních a prostorových vztahů reálného

Více

SOFTWAROVÁ PODPORA TVORBY PROJEKTŮ

SOFTWAROVÁ PODPORA TVORBY PROJEKTŮ Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné SOFTWAROVÁ PODPORA TVORBY PROJEKTŮ Distanční studijní opora Karel Skokan František Huňka Karviná 2012 Projekt OP VK 2.2 (CZ.1.07/2.2.00/15.0176)

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Metodický list pro první soustředění kombinovaného studia předmětu Pojistné právo 1

Metodický list pro první soustředění kombinovaného studia předmětu Pojistné právo 1 Metodický list pro první soustředění kombinovaného studia předmětu Název tématického celku: Právní základy pojištění a pojišťovnictví Vysvětlit současný právní rámec pro činnost subjektů pojistného trhu

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

DAŇOVÁ TEORIE A POLITIKA

DAŇOVÁ TEORIE A POLITIKA Metodické listy pro první soustředění kombinovaného studia DAŇOVÁ TEORIE A POLITIKA Název tematického celku: Úvod do daňové teorie Cíl: Seznámit studenty se základními pojmy z oblasti daňové teorie, pochopení

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY metodický list č. 1 Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových bloků), je nezbytné, abyste

Více

TEORIE ZPRACOVÁNÍ DAT

TEORIE ZPRACOVÁNÍ DAT Vysoká škola báňská - Technická univerzita Ostrava Fakulta elektrotechniky a informatiky TEORIE ZPRACOVÁNÍ DAT pro kombinované a distanční studium Jana Šarmanová Ostrava 2003 Jana Šarmanová, 2003 Fakulta

Více

MATEMATIKA I. období (1. 3. ročník)

MATEMATIKA I. období (1. 3. ročník) MATEMATIKA I. období (1. 3. ročník) Charakteristika předmětu Při vyučování matematice v prvním období základního vzdělávání při probírání určitého učiva: - seznámíme žáky s prvním pojetím daného problému

Více

Vysoká škola finanční a správní, o.p.s. KMK ML Marketing měst a obcí

Vysoká škola finanční a správní, o.p.s. KMK ML Marketing měst a obcí Marketing měst a obcí ZS 2009 Magisterské studium Garant předmětu:. Ing. M Vaňák Vyučující:.. Ing. M Vaňák Ing. V. Kunz, Ph.D. Typ studijního předmětu: povinný roč./sem.:.. 2/3 Rozsah studijního předmětu:..

Více

4.2 Matematika a její aplikace

4.2 Matematika a její aplikace 4.2 Matematika a její aplikace Charakteristika matematiky Na 1. stupni je vyučováno 24 hodin matematiky (od 2. do 5. třídy po 5 hodinách, v 1. třídě 4 hodiny výuka probíhá v jednotlivých hodinách nebo

Více

II. MATEMATIKA A JEJÍ APLIKACE

II. MATEMATIKA A JEJÍ APLIKACE II. MATEMATIKA A JEJÍ APLIKACE Charakteristika vzdělávací oblasti Tato oblast je v našem vzdělávání zastoupena jedním předmětem matematikou, od 1. do 9. ročníku. Podle vývoje dětské psychiky a zejména

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

ZÁSADY KONCIPOVÁNÍ LOGISTICKÝCH SYSTÉMŮ

ZÁSADY KONCIPOVÁNÍ LOGISTICKÝCH SYSTÉMŮ ZÁSADY KONCIPOVÁNÍ LOGISTICKÝCH SYSTÉMŮ KAPITOLA 5: VZTAH STRATEGIE PODNIKU A LOGISTICKÉHO PLÁNOVÁNÍ, CÍLE, METODY A NÁSTROJE PLÁNOVÁNÍ, POSTUPOVÉ KROKY PLÁNOVÁNÍ LOGISTICKÝCH SYSTÉMŮ, ELEMENTÁRNÍ NÁSTROJE

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Obecné metody systémové analýzy

Obecné metody systémové analýzy Obecné metody systémové analýzy Graf jako pojem matematické teorie grafů (nikoliv např. grafické znázornění průběhu funkce): určitý útvar (rovinný, prostorový), znázorňující vztahy (vazby, relace) mezi

Více

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly

ZLOMKY. Standardy: M-9-1-01 CELÁ A RACIONÁLNÍ ČÍSLA. Záporná celá čísla Racionální čísla Absolutní hodnota Početní operace s racionálními čísly a algoritmů matematického aparátu Vyjádří a zapíše část celku. Znázorňuje zlomky na číselné ose, převádí zlomky na des. čísla a naopak. Zapisuje nepravé zlomky ve tvaru smíšeného čísla. ZLOMKY Pojem zlomku,

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Metodické listy pro soustředění kombinovaného studia předmětu

Metodické listy pro soustředění kombinovaného studia předmětu Metodické listy pro soustředění kombinovaného studia předmětu POJIŠTĚNÍ OBČANSKÝCH RIZIK PFO Metodické listy pro I.semestr 1. Charakteristika pojištění a přehled pojistných odvětví, sdružené formy pojištění.

Více

PŘÍPRAVA NA ÚSTNÍ ZKOUŠKU

PŘÍPRAVA NA ÚSTNÍ ZKOUŠKU PŘÍPRAVA NA ÚSTNÍ ZKOUŠKU Mgr. Michaela Holubová Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Michaela Holubová. Obsah: Jak začít? Jak pracovat s pracovními listy? Jak číst text?

Více

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

1. soustředění (2 hod.)

1. soustředění (2 hod.) Metodický list kombinovaného studia předmětu MnJ - MANAGEMENT JAKOSTI Název tématického celku: Systémy jakosti 1. soustředění (2 hod.) Cíl: Cílem tématického celku je objasnit význam systému managementu

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

5 Minimální kostry, Hladový algoritmus

5 Minimální kostry, Hladový algoritmus 5 Minimální kostry, Hladový algoritmus Kromě teoretických hrátek mají kostry grafů (Oddíl 4.4) následující důležité praktické použití: Dříve jsme uvažovali spojení v grafech cestami jdoucími z jednoho

Více

Public Relations (N_PR) LS 08

Public Relations (N_PR) LS 08 Public Relations (N_PR) LS 08 Bakalářské studium Garant předmětu:. Ing. V. Kunz, Ph.D. Vyučující:.. Ing. T. Dvořáková Ing. P. Klička Ing. V. Kunz, Ph.D. Mgr. M. Kykalová Typ studijního předmětu: volitelný

Více

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně

časová dotace: 1. až 3. třída - 4 hodiny týdně, 4. a 5. třída 5 hodin týdně Výuka Matematiky je postavena na rozvíjení vlastních zkušeností žáků a na jejich přirozeném zájmu, přirozené schopnosti vnímat, pozorovat a experimentovat. Žáci se matematiku učí řešením úloh a činnostmi,

Více

Metodické listy pro kombinované studium předmětu. Právo a etika v komunikaci

Metodické listy pro kombinované studium předmětu. Právo a etika v komunikaci Cíl předmětu: Metodické listy pro kombinované studium předmětu Cílem je získat znalosti z oborů soukromého i veřejného práva a právní teorie, týkajících se zejména vztahu právních a etických norem. Seznámení

Více

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

SEZNAM ANOTACÍ. CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie SEZNAM ANOTACÍ Číslo projektu Číslo a název šablony klíčové aktivity Označení sady DUM Tematická oblast CZ.1.07/1.5.00/34.0527 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT VY_32_INOVACE_MA3 Planimetrie

Více

Školní vzdělávací program

Školní vzdělávací program Školní vzdělávací program Obor: 7941K/81, Gymnázium všeobecné ( osmileté ) Obor: 7941/41, Gymnázium všeobecné ( čtyřleté ) Učební osnovy pro vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium Vzdělávací

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY

MANAŽERSKÉ INFORMAČNÍ SYSTÉMY Metodický list č. 1 MANAŽERSKÉ INFORMAČNÍ SYSTÉMY Úvodem: Protože předmětu manažerské informační systémy (MIS) je vyhrazeno ve studijním plánu kombinovaného studia pouze 10 prezenční hodin (5 dvouhodinových

Více

Automatický optický pyrometr v systémové analýze

Automatický optický pyrometr v systémové analýze ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA DOPRAVNÍ K611 ÚSTAV APLIKOVANÉ MATEMATIKY K620 ÚSTAV ŘÍDÍCÍ TECHNIKY A TELEMATIKY Automatický optický pyrometr v systémové analýze Jana Kuklová, 4 70 2009/2010

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

IMPLEMENTACE ECDL DO VÝUKY MODUL 6: GRAFICKÉ MOŽNOSTI PC

IMPLEMENTACE ECDL DO VÝUKY MODUL 6: GRAFICKÉ MOŽNOSTI PC Vyšší odborná škola ekonomická a zdravotnická a Střední škola, Boskovice IMPLEMENTACE ECDL DO VÝUKY MODUL 6: GRAFICKÉ MOŽNOSTI PC Metodika Zpracoval: Ing. David Marek srpen 2009 Úvod Grafické možnosti

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011

MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 MANUÁL K DIDAKTICKÉMU TESTU Z MATEMATIKY PŘIJÍMAČKY MSK 2011 Didaktickým testem z matematiky budou ověřovány matematické dovednosti, které nepřesahují rámec dřívějších osnov ZŠ a jsou definované v Rámcovém

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Programování v jazyku LOGO - úvod

Programování v jazyku LOGO - úvod Programování v jazyku LOGO - úvod Programovací jazyk LOGO je určen pro výuku algoritmizace především pro děti školou povinné. Programovací jazyk pracuje v grafickém prostředí, přičemž jednou z jeho podstatných

Více

Národní hospodářství

Národní hospodářství Národní hospodářství Národní hospodářství VY_32_INOVACE_11_03_01 Tento materiál je určen pro doplnění výuky v rámci předmětu pro druhý ročník oboru Podnikání. Cílem je seznámit žáky se základní problematikou

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více