NP-úplnost problému SAT

Rozměr: px
Začít zobrazení ze stránky:

Download "NP-úplnost problému SAT"

Transkript

1 Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x 1 ] ν =1,[x 2 ] ν =0,[x 3 ] ν =1,je [ϕ 1 ] ν =1. Formule ϕ 2 =(x 1 x 1 ) ( x 2 x 3 x 2 )nenísplnitelná: prolibovolnéohodnocení νplatí[ϕ 2 ] ν =0.

2 Ukázat,žeSATpatřídotřídyNPTIMEjesnadné. Nedeterministický algoritmus řešící SAT v polynomiálním čase pracuje následovně: Nedeterministicky zvolí ohodnocení ν, které přiřazuje booleovskou hodnotu každé proměnné vyskytující se ve formuli ϕ. Vyhodnotí ϕpřiohodnocení ν,tj.spočítáhodnotu[ϕ] ν. Pokud[ϕ] ν =1,vrátíalgoritmusodpověďAno. Jinak vrátí odpověď Ne.

3 Ukázat, že problém SAT je NP-těžký je složitější. Je třeba ukázat, že pro libovolný problém P NPTIME existuje polynomiální redukce z problému P na problém SAT, tj. ukázat, že existuje algoritmus, který: dostane na svůj vstup(libovolnou) instanci problému P, k této instanci vyrobí booleovskou formuli ϕ takovou, že ϕ bude splnitelná právě tehdy, když pro danou instanci problému P bude odpověď Ano, bude mít polynomiální časovou složitost.

4 Jestliže P NPTIME, musí existovat nedeterministický Turingův strojmapolynomp(n)takový,že: Pro libovolnou instanci w problému P(reprezentovanou slovem v nějaké abecedě Σ) platí, že: PokudjeodpověďprowAno,pakexistujealespoňjeden výpočetstrojemnadslovemw,přikterémstrojmvydá odpověď Ano. PokudjeodpověďprowNe,pakvšechnyvýpočtystrojeM nadslovemwskončísodpovědíne. Stroj M provede při libovolném výpočtu nad slovem w nejvýše p( w ) kroků.

5 Ukážeme, jak pro daný nedeterministický Turingův stroj M=(Q,Σ,Γ,δ,q 0,F),polynomp(n)aslovow Σ vyrobit booleovskou formuli ϕ takovou, že: ϕ bude splnitelná právě tehdy, když existuje výpočet stroje M nadslovemw,přikterémmudělánejvýšep( w )krokůa vydá odpověď Ano. Formuli ϕ bude možné vyrobit algoritmem v čase polynomiálním vzhledem k délce slova w.

6 Připomeňme,ževdefiniciTuringovastrojeM=(Q,Σ,Γ,δ,q 0,F): Q množina stavů řídící jednotky Σ vstupníabeceda(σ Γ) Γ pásková abeceda δ:(q F) Γ P(Q Γ { 1,0,+1}) přechodová funkce q 0 Q počátečnístavřídícíjednotky F Q množinakoncovýchstavů Dále předpokládáme, že Γ obsahuje speciální prázdný symbol (blank),přičemž Σ.

7 Vzhledem k tomu, že se v následující konstrukci budeme zabývat pouze stroji, které řeší rozhodovací problémy, budeme předpokládat, že F= {q ano,q ne } Pokudstrojskončívestavuq ano,znamenáto,ževydal odpověď Ano. Pokudstrojskončívestavuq ne,znamenáto,ževydal odpověď Ne.

8 a b a b b a a b q 5 Konfigurace Turingova stroje je dána: stavem řídící jednotky obsahem pásky pozicí hlavy

9 a b a b b a a b q 5 KonfiguracimůžemezapsatjakoslovovabeceděΓ (Q Γ): a b a b q 5 b a a b Totoslovo,vždyobsahujeprávějedenznakz(Q Γ),kterývyznačuje stav řídící jednotky i pozici hlavy.

10 a b a b b a a b q 5 KonfiguracimůžemezapsatjakoslovovabeceděΓ (Q Γ): a b a b q 5 b a a b Poznámka:Znakyz(Q Γ)píšemejako q a místo (q,a).

11 a b a b b a a b q 5 KonfiguracimůžemezapsatjakoslovovabeceděΓ (Q Γ): a b a b q 5 b a a b Ostatní symboly(z Γ) reprezentují obsah pásky.

12 a b a b b a a b q 5 KonfiguracimůžemezapsatjakoslovovabeceděΓ (Q Γ): a b a b q 5 b a a b Políčka pásky, která nejsou ve slově vyznačena, obsahují symbol.

13 a b a b b a a b q 5 Budeme předpokládat, že Turingův stroj používá jednostranně omezenou pásku. Políčkapáskysimůžemeočíslovatčísly1,2,3,...

14 Výpočet Turingova stroje je posloupnost konfigurací, kde: První konfigurace je počáteční konfigurace q 0 w 1 w 2 w 3 w 4 w 5 w 6 w n 1 w n kdew 1 w 2...w n jsoujednotlivésymbolyslovaw,kteréje vstupem Turingova stroje M. Každá další konfigurace v posloupnosti je konfigurace, do které se může stroj dostat z předchozí konfigurace provedením jednoho kroku podle přechodové funkce δ. Pokud je výpočet konečný, v poslední konfiguraci musí být řídící jednotka v některém koncovém stavu z množiny F.

15 Předpokládejme nyní, že časová složitost stroje M je shora omezena nějakou funkcí p(n). (Bez ztráty na obecnosti budeme předpokládat, že pro všechna n je p(n) n.) PokudstrojMdostanejakovstupslovowdélkyn,provedeběhem výpočtu nanejvýš p(n) kroků. Protožestrojzačínáshlavounapolíčkučíslo1,můžeseběhem tohovýpočtudostathlavananejvýšnapolíčkočíslop(n)+1 (v každém kroku se posune nanejvýš o jedno políčko).

16 Pokud je tedy časová složitost stroje M shora omezena funkcí p(n), můžeme všechny konfigurace ve výpočtu nad vstupem velikostinzapsatjakoslovadélkyp(n)+1 Napolíčkasčíslyvětšíminežp(n)+1sestrojběhemvýpočtu hlavou nedostane a tato políčka budou obsahovat symbol (připomeňme, že předpokládáme p(n) n).

17 Slova popisující jednotlivé konfigurace ve výpočtu stroje M nad slovemw=w 1 w 2 w n tedymůžemezapsatpodsebedotabulky, kde: Řádky odpovídají jednotlivým konfiguracím(zapsaným jako slovavabeceděγ (Q Γ)). Sloupceodpovídajípolíčkůmpáskysčísly1,2,...,p(n)+1. Z technických důvodů přidáme ještě zleva a zprava sloupce obsahující jen speciální oddělovací znaky# (přičemž# Q Γ).

18 q # 0 w w 2 w 3 w w n... # # # # # p(n)+1 # # p(n)+3

19 Jednotlivá políčka tabulky tedy budou obsahovat symboly zabecedy =Γ (Q Γ) {#} Řádkytabulkybudoumítčísla0ažp(n)+1. (Řádek 0 bude obsahovat počáteční konfiguraci). Sloupcebudoumítčísla0ažp(n)+2. (Sloupce0ap(n)+2budouobsahovatznaky#.)

20 Poznámka:Výpočetmůžebýtkratšínežp(n)krokůavtakovém případě by nebyla vyplněna celá tabulka. Abychom i v tomto případě vyplnili celou tabulku, můžeme udělat to, že poslední konfiguraci, ve které se výpočet zastavil, zopakujeme ve všech zbylých řádcích tabulky.

21 Pokud tedy máme dán(nedeterministický) Turingův stroj M s časovou složitostí omezenou shora polynomem p(n) řešící problémpainstancitohotoproblémuzapsanoujakoslovow,je pro tuto instanci odpověď Ano právě tehdy, když existuje nějaký přijímající výpočet stroje M nad slovem w. Takový přijímající výpočet můžeme výše popsaným způsobem zapsatdotabulkyop(n)+1řádcíchap(n)+3sloupcích. Poznámka: Všimněte si, že velikost tabulky je polynomiální vzhledem k n.

22 ProdanýstrojM,polynomp(n)aslovowvytvořímeformuli ϕ takovou, že: Různá ohodnocení ν booleovských proměnných ve formuli ϕ budou reprezentovat všechny možné(i nesmyslné) obsahy dané tabulky. [ϕ] ν =1budeplatitprávěprotaohodnocení ν,která reprezentují takový obsah tabulky, který je zápisem přijímajícího výpočtu stroje M nad vstupem w. Formule ϕ tedy bude splnitelná právě tehdy, pokud bude existovat přijímající výpočet stroje M nad vstupem w.

23 Formule ϕ bude složena pomocí booleovských spojek z atomických tvrzení typu: Políčko(i,j)obsahujesymbola. kde i, j, a budou konkrétní konstanty, například: Políčko(9, 4) obsahuje symbol q 5 b. Poznámka:Kdyžmluvímeopolíčku(i,j),mámetímnamysli políčkovi-témřádkuaj-témsloupcitabulky.

24 Formule ϕtedybudeobsahovatbooleovsképroměnnéx a i,j,kde: 0 i p(n)+1 0 j p(n)+2 a (kde =Γ (Q Γ) {#}) stím,že[x a i,j ] ν=1znamená,že νreprezentujeobsahtabulky,při kterémpolíčko(i,j)obsahujesymbola, a[x a i,j ] ν=0znamená,že νreprezentujeobsahtabulky,přikterém políčko(i,j)neobsahujesymbola.

25 Příklad:Proměnnáx q 5,b 9,4 reprezentuje tvrzení: Políčko(9, 4) obsahuje symbol q 5 b. Poznámka:Uhodnotz(Q Γ)budemevindexechraději používatzápisq,amísto q a. Pokudtedy[x q 5,b 9,4 ] ν=1,znamenáto,žepřiobsahutabulky q reprezentovaném ν políčko(9, 4) obsahuje symbol 5 b, apokud[x q 5,b 9,4 ] ν=0,takpři νpolíčko(9,4)neobsahuje q 5 b.

26 Celá formule ϕ, která jako celek bude říkat: Tabulka obsahuje přijímající výpočet stroje M nad slovemw, bude složena z mnoha podformulí, kde každá z těchto podformulí bude formulovat nějakou jednoduchou podmínku, která musí být splněna, aby obsah tabulky byl přijímajícím výpočtem stroje M nad slovemw. Tyto podformule budou spojeny pomocí konjunkce. Pokud tedy bude při daném ohodnocení ν některá z těchto podmínek porušena, bude celá formule ϕ při ν nabývat hodnoty false,tj.[ϕ] ν =0.

27 V následujícím výkladu si popíšeme tyto jednotlivé podformule. Pokudvdalšímvýkladuonějakéformuli ψřekneme,že ψpřidámedo ϕ, mámetímnamysli,že ψspojímepomocíkonjunkce( )sdosud vytvořenou částí formule ϕ.

28 Aby tabulka obsahovala přijímající výpočet stroje M nad vstupem w, musí být splněny následující podmínky: 1 Každé políčko tabulky obsahuje právě jeden symbol z. 2 Řádekčíslo0obsahujepočátečníkonfiguraciseslovemw. 3 Každý řádek tabulky(kromě řádku 0) obsahuje buď: konfiguraci, která je jedním krokem(podle přechodové funkce δ) dosažitelná z konfigurace zapsané v předchozím řádku, nebo koncovou konfiguraci shodnou s konfigurací v předchozím řádku. 4 Poslednířádektabulkyobsahujekonfiguracisestavemq ano.

29 Je zřejmé, že pokud tabulka obsahuje přijímající výpočet, tak jsou tyto čtyři podmínky splněny. Nadruhoustranujerovněžzřejmé,žepokudbudoutytočtyři podmínky splněny, tak tabulka opravdu obsahuje přijímající výpočetstrojemnadslovemw.

30 Podívejme se nejprve na první podmínku: Každé políčko tabulky obsahuje právě jeden symbol z. Tuzajistímetak,žeprokaždépolíčko(i,j)přidámedo ϕ podformuli, která bude říkat: Políčko(i,j)obsahujeprávějedensymbolz, což můžeme formulovat též takto: Právějednazproměnnýchx a 1 hodnotu true, i,j,xa 2 i,j,...,xa k i,j má kde {a 1,a 2,...,a k }jemnožinavšechsymbolůz.

31 Vyjádřittvrzení,žeprávějednazproměnnýchx 1,x 2,...,x k má hodnotutrue(kdex 1,x 2,...,x k jsounějakélibovolnébooleovské proměnné) není složité. Ukážeme si to na příkladě, kde pro jednoduchost budeme mít jen čtyřibooleovsképroměnnéa,b,c,d: ( A B C D) ( A B C D) ( A B C D) ( A B C D) Není těžké ověřit, že tato formule nabývá hodnoty true právě při těch ohodnoceních, při kterých má právě jedna z proměnných A,B,C,Dhodnotutrue.

32 ObecněpromnožinuproměnnýchX= {x 1,x 2,...,x k }můžeme tuto podmínku zapsat následovně: x i x j x i X x j X {x i } Všimněmesi,žeprokproměnnýchmátatoformulevelikostO(k 2 ). V našem případě je k =, takže velikost podformule, kterou přidávámeprokaždépolíčko,jeo( 2 )ajetotedykonstanta nezávislá na velikosti vstupu w. Poznámka: Existuje způsob, jak zapsat výše uvedenou podmínku tak,abyvelikostvytvořenéformulebylao(klogk),alemytozde nepotřebujeme.

33 Další podmínkou, která musí být splněna, je: Řádek 0 obsahuje počáteční konfiguraci se slovem w. Pokudtedyw 1 w 2...w n jsoujednotlivésymbolyslovaw,přičemž n 1, musí platit následující: Políčko(0,1)obsahujesymbol(q 0,w 1 ),kdeq 0 jepočáteční stav. Políčka(0,2),(0,3),...,(0,n)obsahují symbolyw 2,w 3,...,w n. Políčka(0,n+1),(0,n+2),...,(0,p(n+1))obsahují symboly. Políčka(0,0)a(0,p(n)+2)obsahujísymboly#.

34 Tuto podmínku tedy můžeme zapsat následující formulí, kterou přidáme do ϕ: ( n ) p(n)+1 x q 0,w 1 0,1 x w i 0,i x 0,i x # 0,0 x# 0,p(n)+2 i=2 i=n+1 Velikost této formule je O(p(n)). Poznámka:Případ,kdyn=0,byselišiljenvtom,žemísto x q 0,w 1 0,1 byformuleobsahovalax q 0, 0,1.

35 Asi nejsložitější je zajištění třetí podmínky: Každý řádek(kromě řádku 0) obsahuje konfiguraci, která vznikne z předchozí provedením jednoho kroku(a nebo je kopií předchozí koncové konfigurace). Vezměme si nějaké dvě po sobě jdoucí konfigurace. Tyto dvě konfigurace se vždy liší nanejvýš na dvou pozicích: napozici,kdesevprvníznichnacházíhlava, anajednézpozic,kterésníbezprostředněsousedí. Obsahydvojicřádkůiai+1vtabulcejsoutedyveliceúzce svázány.

36 Pokud obsah řádku i + 1 neodpovídá konfiguraci dosažitelné jednímkrokemzkonfiguracenařádkui,pakseotommůžeme přesvědčit tak, že najdeme konkrétní pozici, kde konfigurace do sebe nepasují. Můžete si rozmyslet, že v takovém případě můžeme vždycky najít vdanédvojiciřádků okénko velikosti2 3takové,žeotom,že řádky neobsahují dvě po sobě jdoucí konfigurace se můžeme přesvědčit jen prozkoumáním obsahu tohoto okénka(tj. aniž bychom se museli dívat na obsah ostatních políček). j 2 j 1 j j+1 j+2 j+3 j+4 i i+1

37 q # 0 w w 2 w 3 w w n... # # # # # p(n)+1 okénko # # p(n)+3

38 Obsahům okének, které se mohou vyskytnout ve dvou po sobě jdoucích konfiguracích budeme říkat korektní a těm, které se nemohou vyskytnout ve dvou po sobě jdoucích konfiguracích (akterétedydosvědčují,žedanédvařádkyneobsahujídvěposobě jdoucí konfigurace) budeme říkat nekorektní. Přesné konkrétní podmínky, které musí korektní obsahy okének splňovat, zde nebudeme uvádět. Místo toho si ukážeme konkrétní příklady korektních a nekorektních okének. Zkuste si však(po prohlédnutí příkladů) tyto podmínky sami zformulovat.

39 Příklady nekorektních okének, přičemž předpokládáme, že δ(q 5,a)={(q 8,b, 1),(q 3,a,+1)}: a b a b # a a q 5 a a b a a q 5 a a b q 4 q b 7 a q 5 a b a q b 6 a b q ano a a a b q 8 a b a b b a b a

40 Příklady korektních okének, přičemž předpokládáme, že δ(q 5,a)={(q 8,b, 1),(q 3,a,+1)}: a b a a b a q 5 a a b q a a 3 b b a q 3 b a q 5 a b a b b a a a q ano b a a q ano b # #

41 Množinu všech šestic znaků, které tvoří korektní obsah okének(pro danýkonkrétnístrojm)sioznačímecorr. Tj.(a,b,c,d,e,f) Corrprávěkdyž a b c d e f je korektní obsah okénka. Celkovýpočetvšechmožnýchobsahůokénekje 6,cožje konstanta nezávislá na velikosti vstupu w, takže i počet prvků množiny Corr je konstanta nezávislá na velikosti vstupu.

42 Pro každé okénko v tabulce přidáme do ϕ podformuli, která tvrdí, že obsah daného okénka je korektní(neboli jinak řečeno, že obsahuje některou z korektních šestic). Tj.prokaždéitakové,že0 i <p(n),akaždéjtakové,že 0 j p(n),přidámedo ϕformuli (a,b,c,d,e,f) Corr ( ) xi,j a xb i,j+1 xc i,j+2 xd i+1,j xe i+1,j+1 xf i+1,j+2 KaždáztěchtopodformulímávelikostmaximálněO( 6 ), tj. omezenou nějakou konstantou nezávislou na velikosti vstupu w. CelkovýpočettěchtopodformulíjeO(p(n) 2 )

43 Nyní zbývá zaručit poslední podmínku: Poslední řádek obsahuje koncovou konfiguraci, kde stav řídícíjednotkyjeq ano. To je opět jednoduché stačí přidat do ϕ podformuli, která tvrdí, ženaněkterépozicivposlednímřádku(tj.řádkup(n))senachází dvojice(q ano,a),kdeajenějakýsymbolzγ. Tato podformule vypadá takto: p(n)+1 j=1 a Γ x a p(n),j Velikost této formule je O(p(n)).

44 Z předchozího výkladu vidíme, že velikost formule ϕ vytvořené kdanémuvstupuwvelikostinjeo(p(n) 2 ). Jestližejep(n)polynom,takip(n) 2 jepolynom,takževelikost ϕ je polynomiální vzhledem k n. Vzhledem k jednoduché a pravidelné struktuře formule ϕ je zřejmé, že časová složitost algoritmu, který ke slovu w formuli ϕ vyrobí, je vpodstatěúměrnávelikostiformule ϕ,tedytakéo(p(n) 2 ).

45 Ukázali jsme tedy, že konstrukce je polynomiální, a nyní stručně shrneme, proč je korektní: Předpokládejme,žeprowjevproblémuPodpověďAno,což znamená, že existuje výpočet nedeterministického stroje M (který řeší problém P) nad slovem w vedoucí k odpovědi Ano. Tento výpočet můžeme zapsat do odpovídající tabulky a proměnným ve formuli ϕ můžeme přiřadit booleovské hodnoty podle obsahu této tabulky. Jezřejmé,žepřitomtoohodnoceníbudemít ϕ hodnotu true, protože všechny podmínky testované ve formuli ϕ budou splněny.

46 Předpokládejme nyní, že formule ϕ je splnitelná, tj. pro nějaké ohodnocení νplatí[ϕ] ν =1. Podle ohodnocení ν nyní můžeme vyplnit tabulku. Ztoho,žepřiohodnocení νmusíbýtsplněnyvšechny podmínky popsané ve formuli ϕ, vyplývá, že takto vyplněná tabulkaobsahujepopisvýpočtustrojemnadslovemw,při kterém stroj vydá odpověď Ano, a že tedy takovýto výpočet existuje. Vidíme tedy, že formule ϕ je splnitelná právě tehdy, když existuje výpočetstrojemvedoucíkpřijetíslovaw,tj.právětehdy,když odpověďprowjeano.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování.

Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. 9.5 Třída NP Definice 9.4. Nedeterministický algoritmus se v některých krocích může libovolně rozhodnout pro některé z několika možných různých pokračování. Příklad. Uvažujme problém IND a následující

Více

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i,

Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, [161014-1204 ] 11 2.1.35 Konstrukce relace. Postupně konstruujeme na množině všech stavů Q relace i, kde i = 0, 1,..., takto: p 0 q právě tehdy, když bud p, q F nebo p, q F. Dokud i+1 i konstruujeme p

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly.

Výhody a nevýhody jednotlivých reprezentací jsou shrnuty na konci kapitoly. Kapitola Reprezentace grafu V kapitole?? jsme se dozvěděli, co to jsou grafy a k čemu jsou dobré. rzo budeme chtít napsat nějaký program, který s grafy pracuje. le jak si takový graf uložit do počítače?

Více

Naproti tomu gramatika je vlastně soupis pravidel, jak

Naproti tomu gramatika je vlastně soupis pravidel, jak 1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen

Více

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g).

Definice 7.2. Nejmenší přirozené číslo k, pro které je graf G k-obarvitelný, se nazývá chromatické číslo (barevnost) grafu G a značí se χ(g). 7 Barevnost grafu Definice 71 Graf G se nazývá k-obarvitelný, jestliže každému jeho uzlu lze přiřadit jednu z barev 1 k tak, že žádné dva sousední uzly nemají stejnou barvu Definice 72 Nejmenší přirozené

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška první Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Co a k čemu je logika? 2 Výroky a logické spojky

Více

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.

Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t. 1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co

Více

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.

Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem. Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou

Více

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů?

Kolik existuje různých stromů na pevně dané n-prvkové množině vrcholů? Kapitola 9 Matice a počet koster Graf (orientovaný i neorientovaný) lze popsat maticí, a to hned několika různými způsoby. Tématem této kapitoly jsou incidenční matice orientovaných grafů a souvislosti

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost

Týden 14. Přednáška. Teoretická informatika průběh výuky v semestru 1. PSPACE, NPSPACE, PSPACE-úplnost Teoretická informatika průběh výuky v semestru 1 Týden 14 Přednáška PSPACE, NPSPACE, PSPACE-úplnost Uvědomili jsme si nejprve, že např. pro zjištění toho, zda Bílý má nějakou strategii ve hře ŠACHY, která

Více

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty.

Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. Zpracoval: hypspave@fel.cvut.cz 7. Matematická indukce a rekurse. Řešení rekurentních (diferenčních) rovnic s konstantními koeficienty. (A7B01MCS) I. Matematická indukce a rekurse. Indukční principy patří

Více

Algoritmus pro hledání nejkratší cesty orientovaným grafem

Algoritmus pro hledání nejkratší cesty orientovaným grafem 1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval

Více

Parametrické programování

Parametrické programování Parametrické programování Příklad 1 Parametrické pravé strany Firma vyrábí tři výrobky. K jejich výrobě potřebuje jednak surovinu a jednak stroje, na kterých dochází ke zpracování. Na první výrobek jsou

Více

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu

Místo pojmu výroková formule budeme používat zkráceně jen formule. Při jejich zápisu VÝROKOVÁ LOGIKA Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. Co je výrok nedefinujejme, pouze si řekneme, co si pod

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

Základní pojmy matematické logiky

Základní pojmy matematické logiky KAPITOLA 1 Základní pojmy matematické logiky Matematická logika se zabývá studiem výroků, jejich vytváření a jejich pravdivostí. Základním kamenem výrokové logiky jsou výroky. 1. Výroková logika Co je

Více

10. Složitost a výkon

10. Složitost a výkon Jiří Vokřínek, 2016 B6B36ZAL - Přednáška 10 1 Základy algoritmizace 10. Složitost a výkon doc. Ing. Jiří Vokřínek, Ph.D. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Jiří

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

Výpočetní složitost I

Výpočetní složitost I Výpočetní složitost I prooborlogikanaffuk Petr Savický 1 Úvod Složitostí algoritmické úlohy se rozumí především její časová a paměťová náročnost při řešení na počítači. Časová náročnost se měří počtem

Více

Matematická logika. Rostislav Horčík. horcik

Matematická logika. Rostislav Horčík.  horcik Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 15 Splnitelnost množin Definice Množina

Více

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1

Negativní informace. Petr Štěpánek. S použitím materiálu M.Gelfonda a V. Lifschitze. Logické programování 15 1 Negativní informace Petr Štěpánek S použitím materiálu M.Gelfonda a V. Lifschitze 2009 Logické programování 15 1 Negace jako neúspěch Motivace: Tvrzení p (atomická formule) neplatí, jestliže nelze odvodit

Více

2. Numerické výpočty. 1. Numerická derivace funkce

2. Numerické výpočty. 1. Numerická derivace funkce 2. Numerické výpočty Excel je poměrně pohodlný nástroj na provádění různých numerických výpočtů. V příkladu si ukážeme možnosti výpočtu a zobrazení diferenciálních charakteristik analytické funkce, přičemž

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

4.2 Syntaxe predikátové logiky

4.2 Syntaxe predikátové logiky 36 [070507-1501 ] 4.2 Syntaxe predikátové logiky V tomto oddíle zavedeme syntaxi predikátové logiky, tj. uvedeme pravidla, podle nichž se tvoří syntakticky správné formule predikátové logiky. Význam a

Více

Predikátová logika. prvního řádu

Predikátová logika. prvního řádu Predikátová logika prvního řádu 2 Predikát Predikát je n-ární relace - vyjadřuje vlastnosti objektů a vztahy mezi objekty - z jednoduchého výroku vznikne vypuštěním alespoň jednoho jména objektu (individua)

Více

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace

AUTOMATY A GRAMATIKY. Pavel Surynek. Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně spočetné jazyky Kódování, enumerace AUTOMATY A 11 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Kontextové uzávěrové vlastnosti Turingův stroj Rekurzivně

Více

Dijkstrův algoritmus

Dijkstrův algoritmus Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované

Více

KMI/VCS1 Vyčíslitelnost a složitost

KMI/VCS1 Vyčíslitelnost a složitost KMI/VCS1 Vyčíslitelnost a složitost Paměťová složitost, Savitchova věta, třída PSPACE, PSPACE-úplné problémy, a jako bonus: Bremermannova mez Jan Konečný 3. prosince 2013 Jan Konečný KMI/VCS1 Vyčíslitelnost

Více

Od Turingových strojů k P=NP

Od Turingových strojů k P=NP Složitost Od Turingových strojů k P=NP Zbyněk Konečný Zimnění 2011 12. 16.2.2011 Kondr (Než vám klesnou víčka 2011) Složitost 12. 16.2.2011 1 / 24 O čem to dnes bude? 1 Co to je složitost 2 Výpočetní modely

Více

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1

Substituce. Petr Štěpánek. S využitím materialu Krysztofa R. Apta. Logické programování 2 1 Substituce Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 2 1 Algebra termů Předpokládáme, že je dán jazyk termů. L, definovali jsme množinu jeho Zavedeme některé užitečné

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

P 1 = P 1 1 = P 1, P 1 2 =

P 1 = P 1 1 = P 1, P 1 2 = 1 Výpočet inverzní matice Věta 1 Necht P U elementární matice vzniklá el úpravou U Pak je P U regulární Důkaz: Protože elementární úprava U je invertovatelná, existuje el úprava U, která vrací změny U

Více

Výroková a predikátová logika - VIII

Výroková a predikátová logika - VIII Výroková a predikátová logika - VIII Petr Gregor KTIML MFF UK ZS 2016/2017 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VIII ZS 2016/2017 1 / 21 Tablo Tablo metoda v PL - rozdíly Formule

Více

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094

ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

Vztah jazyků Chomskeho hierarchie a jazyků TS

Vztah jazyků Chomskeho hierarchie a jazyků TS Vztah jazyků Chomskeho hierarchie a jazyků TS Jan Konečný; (přednáší Lukáš Havrlant) 15. října 2013 Jan Konečný; (přednáší Lukáš Havrlant) Chomskeho hierarchie a jazyky TS 15. října 2013 1 / 23 Rychlé

Více

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice

63. ročník matematické olympiády Řešení úloh krajského kola kategorie B. 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice 63. ročník matematické olympiády Řešení úloh krajského kola kategorie B 1. Odečtením druhé rovnice od první a třetí od druhé dostaneme dvě rovnice (x y)(x + y 6) = 0, (y z)(y + z 6) = 0, které spolu s

Více

Tvar dat a nástroj přeskupování

Tvar dat a nástroj přeskupování StatSoft Tvar dat a nástroj přeskupování Chtěli jste někdy použít data v jistém tvaru a STATISTICA Vám to nedovolila? Jistě se najde někdo, kdo se v této situaci již ocitl. Není ale potřeba propadat panice,

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

Výroková logika - opakování

Výroková logika - opakování - opakování ormální zavedení Výroková formule: Máme neprázdnou nejvýše spočetnou množinu A výrokových proměnných. 1. Každá proměnná je výroková formule 2. Když α, β jsou formule, potom ( α), (α β), (α

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

teorie logických spojek chápaných jako pravdivostní funkce

teorie logických spojek chápaných jako pravdivostní funkce Výroková logika teorie logických spojek chápaných jako pravdivostní funkce zabývá se způsoby tvoření výroků pomocí spojek a vztahy mezi pravdivostí různých výroků používá specifický jazyk složený z výrokových

Více

Rozhodovací procedury a verifikace Pavel Surynek, KTIML

Rozhodovací procedury a verifikace Pavel Surynek, KTIML 6 Rozhodovací procedury a verifikace Pavel Surynek, KTIML http://ktiml.mff.cuni.cz/~surynek/nail094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 Lineární aritmetika Budeme zabývat rozhodovacími

Více

Pozn.MinulejsmesekPSPACEnedostali,protojezdepřekryvstextemzminula.

Pozn.MinulejsmesekPSPACEnedostali,protojezdepřekryvstextemzminula. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Pozn.MinulejsmesekPSPACEnedostali,protojezdepřekryvstextemzminula. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 4 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe.

Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. 8 Afinita Afinita je stručný název pro afinní transformaci prostoru, tj.vzájemně jednoznačné afinní zobrazení bodového prostoru A n na sebe. Poznámka. Vzájemně jednoznačným zobrazením rozumíme zobrazení,

Více

Složitost problémů. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna / 23

Složitost problémů. Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna / 23 Složitost problémů Z. Sawa (VŠB-TUO) Úvod do teoretické informatiky 25. dubna 2012 1/ 23 Složitost problémů Ukazuje se, že různé(algoritmické) problémy jsou různě těžké. Obtížnější jsou ty problémy, k

Více

5 Orientované grafy, Toky v sítích

5 Orientované grafy, Toky v sítích Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost

Více

Základy algoritmizace, návrh algoritmu

Základy algoritmizace, návrh algoritmu Základy algoritmizace, návrh algoritmu Algoritmus Předpoklady automatického výpočtu: předem stanovit (rozmyslet) přesný postup během opakovaného provádění postupu již nepřemýšlet a postupovat mechanicky

Více

AUTOMATY A GRAMATIKY

AUTOMATY A GRAMATIKY AUTOMATY A 1 GRAMATIKY Pavel Surynek Univerzita Karlova v Praze Matematicko-fyzikální fakulta Katedra teoretické informatiky a matematické logiky Stručný přehled přednášky Automaty Formální jazyky, operace

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Složitost. Teoretická informatika Tomáš Foltýnek

Složitost. Teoretická informatika Tomáš Foltýnek Složitost Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Teoretická informatika 2 Opakování z minulé přednášky Co říká Churchova teze? Jak lze kódovat Turingův stroj? Co je to Univerzální

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2

V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2 Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

TGH12 - Problém za milion dolarů

TGH12 - Problém za milion dolarů TGH12 - Problém za milion dolarů Jan Březina Technical University of Liberec 7. května 2013 Složitost problému Co je to problém? Složitost problému Co je to problém? K daným vstupním datům (velkému binárnímu

Více

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi.

2. Určete jádro KerL zobrazení L, tj. nalezněte alespoň jednu jeho bázi a určete jeho dimenzi. Řešené příklady z lineární algebry - část 3 Typové příklady s řešením Příklad 3.1: Zobrazení L: P 3 R 23 je zobrazení z prostoru P 3 všech polynomů do stupně 3 (včetně nulového polynomu) do prostoru R

Více

6 Ordinální informace o kritériích

6 Ordinální informace o kritériích 6 Ordinální informace o kritériích Ordinální informací o kritériích se rozumí jejich uspořádání podle důležitosti. Předpokládejme dále standardní značení jako v předchozích cvičeních. Existují tři základní

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce Rekurentní rovnice, strukturální indukce Jiří Velebil: A7B01MCS 26. září 2011: 1/20 Příklad (Parketáž triminy z minulé přednášky) P(n) = počet parket k vyparketování místnosti rozměru n 1 P(1) = 1. 2 P(n

Více

Statistická teorie učení

Statistická teorie učení Statistická teorie učení Petr Havel Marek Myslivec přednáška z 9. týdne 1 Úvod Představme si situaci výrobce a zákazníka, který si u výrobce objednal algoritmus rozpoznávání. Zákazník dodal experimentální

Více

13. Lineární programování

13. Lineární programování Jan Schmidt 2011 Katedra číslicového návrhu Fakulta informačních technologií České vysoké učení technické v Praze Zimní semestr 2011/12 MI-PAA EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI

Více

Paralelní programování

Paralelní programování Paralelní programování přednášky Jan Outrata únor duben 2011 Jan Outrata (KI UP) Paralelní programování únor duben 2011 1 / 14 Atomické akce dále nedělitelná = neproložitelná jiným procesem izolovaná =

Více

Syntaxí řízený překlad

Syntaxí řízený překlad Syntaxí řízený překlad Překladový automat Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 27. listopadu 2008 Zobecněný překladový automat Překladový automat

Více

Interpolace Lagrangeovy polynomy. 29. října 2012

Interpolace Lagrangeovy polynomy. 29. října 2012 Interpolace Lagrangeovy polynomy Michal Čihák 29. října 2012 Problematika interpolace V praxi máme často k dispozici údaje z různých měření tzv. data. Data mohou mít například podobu n uspořádaných dvojic

Více

Operační výzkum. Přiřazovací problém.

Operační výzkum. Přiřazovací problém. Operační výzkum Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu: CZ..7/2.2./28.326

Více

1.5.2 Číselné soustavy II

1.5.2 Číselné soustavy II .. Číselné soustavy II Předpoklady: Př. : Převeď do desítkové soustavy čísla. a) ( ) b) ( ) 4 c) ( ) 6 = + + + = 7 + 9 + = a) = 4 + 4 + 4 = 6 + 4 + = 9 b) 4 = 6 + 6 + 6 = 6 + 6 + = 6 + + = 69. c) 6 Pedagogická

Více

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému

Pumping lemma - podstata problému. Automaty a gramatiky(bi-aag) Pumping lemma - problem resolution. Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 2/22 Pumping lemma - podstata problému BI-AAG (2011/2012) J. Holub: 10. Vlastnosti regulárních jazyků p. 4/22 Automaty a gramatiky(bi-aag)

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Křivky a plochy technické praxe

Křivky a plochy technické praxe Kapitola 7 Křivky a plochy technické praxe V technické praxi se setkáváme s tím, že potřebujeme křivky a plochy, které se dají libovolně upravovat a zároveň je jejich matematické vyjádření jednoduché.

Více

Rekurentní rovnice, strukturální indukce

Rekurentní rovnice, strukturální indukce , strukturální indukce Jiří Velebil: Y01DMA 23. února 2010: Strukturální indukce 1/19 Backusova-Naurova forma Například syntaxe formuĺı výrokové logiky kde a At. Poznámky 1 Relaxace BNF. ϕ ::= a tt (ϕ

Více

Fakulta informačních technologií. Teoretická informatika

Fakulta informačních technologií. Teoretická informatika Vysoké učení technické v Brně Fakulta informačních technologií Teoretická informatika Třetí úkol 2 Jan Trávníček . Tato úloha je řešena Turingovým strojem, který je zobrazen na obrázku, který si můžeme

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé

Více

Jak pracovat s absolutními hodnotami

Jak pracovat s absolutními hodnotami Jak pracovat s absolutními hodnotami Petr Matyáš 1 Co to je absolutní hodnota Absolutní hodnota čísla a, dále ji budeme označovat výrazem a, je jeho vzdálenost od nuly na ose x, tedy je to vždy číslo kladné.

Více

Univerzální Turingův stroj a Nedeterministický Turingův stroj

Univerzální Turingův stroj a Nedeterministický Turingův stroj 27 Kapitola 4 Univerzální Turingův stroj a Nedeterministický Turingův stroj 4.1 Nedeterministický TS Obdobně jako u konečných automatů zavedeme nedeterminismus. Definice 14. Nedeterministický Turingův

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

45 Plánovací kalendář

45 Plánovací kalendář 45 Plánovací kalendář Modul Správa majetku slouží ke tvorbě obecných ročních plánů činností organizace. V rámci plánu je třeba definovat oblasti činností, tj. oblasti, ve kterých je možné plánovat. Každá

Více

0. Lineární rekurence Martin Mareš, 2010-07-04

0. Lineární rekurence Martin Mareš, 2010-07-04 0 Lineární rekurence Martin Mareš, 2010-07-04 V tomto krátkém textu se budeme zabývat lineárními rekurencemi, tj posloupnostmi definovanými rekurentní rovnicí typu A n+k = c 0 A n + c 1 A n+1 + + c k 1

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru

Necht tedy máme přirozená čísla n, k pod pojmem systém lineárních rovnic rozumíme rovnice ve tvaru 2. Systémy lineárních rovnic V této kapitole se budeme zabývat soustavami lineárních rovnic s koeficienty z pole reálných případně komplexních čísel. Uvádíme podmínku pro existenci řešení systému lineárních

Více

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013

2. úkol MI-PAA. Jan Jůna (junajan) 3.11.2013 2. úkol MI-PAA Jan Jůna (junajan) 3.11.2013 Specifikaci úlohy Problém batohu je jedním z nejjednodušších NP-těžkých problémů. V literatuře najdeme množství jeho variant, které mají obecně různé nároky

Více

StatSoft Jak vyzrát na datum

StatSoft Jak vyzrát na datum StatSoft Jak vyzrát na datum Tento článek se věnuje podrobně možnostem práce s proměnnými, které jsou ve formě datumu. A že jich není málo. Pokud potřebujete pracovat s datumem, pak se Vám bude tento článek

Více

Predikátová logika. Teoretická informatika Tomáš Foltýnek

Predikátová logika. Teoretická informatika Tomáš Foltýnek Predikátová logika Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz strana 2 Opakování z minulé přednášky Z čeho se skládá jazyk výrokové logiky? Jaká jsou schémata pro axiomy VL? Formulujte

Více

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.

Soustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová. [1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ÚVOD DO INFORMATIKY RADIM BĚLOHLÁVEK VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ

Více

2. Složitost, grafové algoritmy (zapsal Martin Koutecký)

2. Složitost, grafové algoritmy (zapsal Martin Koutecký) 2. Složitost, grafové algoritmy (zapsal Martin Koutecký) Model Ram Při analýze algoritmu bychom chtěli nějak popsat jeho složitost. Abychom mohli udělat toto, potřebujeme nejprve definovat výpočetní model.

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

[1] samoopravné kódy: terminologie, princip

[1] samoopravné kódy: terminologie, princip [1] Úvod do kódování samoopravné kódy: terminologie, princip blokové lineární kódy Hammingův kód Samoopravné kódy, k čemu to je [2] Data jsou uložena (nebo posílána do linky) kodérem podle určitého pravidla

Více

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.

Regulární matice. Věnujeme dále pozornost zejména čtvercovým maticím. Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice

Více

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů:

1 Predikátová logika. 1.1 Syntax. jaký mohou mít formule význam (sémantiku). 1. Logických symbolů: 2. Speciálních (mimologických) symbolů: 1 Predikátová logika 1.1 Syntax Podobně jako ve výrokové logice začneme nejprve se syntaxí predikátové logiky, která nám říká, co jsou správně utvořené formule predikátové logiky. V další části tohoto

Více

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky.

Poznámka. Kezkoušcejemožnojítjenposplněnípožadavkůkzápočtu. Kromě čistého papíru a psacích potřeb není povoleno používat žádné další pomůcky. PŘÍJMENÍ a JMÉNO: Login studenta: DATUM: Písemná zkouška z předmětu Teoretická informatika (UKÁZKA) Doba trvání: 90 minut Max. zisk: 65 bodů Minimální bodový zisk nutný k uznání: 25 bodů (jak je ovšem

Více

Algoritmizace a programování

Algoritmizace a programování Algoritmizace a programování Řídicí struktury jazyka Java Struktura programu Příkazy jazyka Blok příkazů Logické příkazy Ternární logický operátor Verze pro akademický rok 2012/2013 1 Struktura programu

Více

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta

opravdu považovat za lepší aproximaci. Snížení odchylky o necelá dvě procenta Řetězové zlomky a dobré aproximace Motivace Chceme-li znát přibližnou hodnotu nějakého iracionálního čísla, obvykle používáme jeho (nekonečný) desetinný rozvoj Z takového rozvoje, řekněme z rozvoje 345926535897932384626433832795028849769399375

Více

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů

Kapitola 11. Vzdálenost v grafech. 11.1 Matice sousednosti a počty sledů Kapitola 11 Vzdálenost v grafech V každém grafu lze přirozeným způsobem definovat vzdálenost libovolné dvojice vrcholů. Hlavním výsledkem této kapitoly je překvapivé tvrzení, podle kterého lze vzdálenosti

Více

Symetrické a kvadratické formy

Symetrické a kvadratické formy Symetrické a kvadratické formy Aplikace: klasifikace kvadrik(r 2 ) a kvadratických ploch(r 3 ), optimalizace(mpi) BI-LIN (Symetrické a kvadratické formy) 1 / 20 V celé přednášce uvažujeme číselné těleso

Více