AIBO CleanMate 365 ACECAD Enterprises DigiMemo

Rozměr: px
Začít zobrazení ze stránky:

Download "AIBO CleanMate 365 ACECAD Enterprises DigiMemo"

Transkript

1 ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který za Vás doma perfektně vysaje a zamete. První generace robota AIBO: krok směrem k umělé inteligenci ACECAD Enterprises DigiMemo A502 digitální poznámkový blok ACECAD MyScript Notes Handwriting Recognition - Praktický program pro převod ručně psaného textu do editovatelné podoby určený pro ACECAD DigiMemo A502. More interactions, alliances and realistic artificial intelligence responses put players in the middle of negotiations, trade systems and diplomatic actions. (www.civ3.com) P. Berka, /20

2 Umělá inteligence = = umělá + inteligence Umělé = člověkem vytvořený artefakt (umělá hmota, umělý sníh, umělý kloub ) existuje nějaká přirozená věc, kterou je možno duplikovat existuje záměr člověka vytvořit duplikát oné přirozené věci došlo k provedení záměru P. Berka, /20

3 Inteligence Inteligence je všeobecná schopnost individua vědomě orientovat vlastní myšlení na nové požadavky, je to všeobecná duchovní schopnost přizpůsobit se novým životním úkolům a podmínkám. (W. Stern) Inteligence je vnitřně členitá a zároveň globální schopnost individua účelně jednat, rozumně myslet a efektivně se vyrovnávat se svým okolím. (D. Wechsler) Inteligence je schopnost zpracovávat informace. Informacemi je třeba chápat všechny dojmy, které člověk vnímá. (J. P. Guilford) Inteligence je to, co dokáží lidé a ne stroje. (odpůrci AI) P. Berka, /20

4 Druhy inteligence Abstraktní inteligence - schopnost řešit dobře definované akademické problémy s jednoznačnou odpovědí. Dobře koreluje s úspěšností v akademickém životě. Praktická inteligence - schopností řešit problémy každodenního života. V těchto případech řešení není jednoznačné a zpravidla existuje několik alternativních způsobů. Nejasná je často i formulace úkolu. Sociální inteligence - schopnost pohybovat se v sociálním prostředí, tj. umět jednat s lidmi. Emoční inteligence - ovlivňuje úspěšnost jedince v rodině, na pracovišti, v sociálních a intimních vztazích. P. Berka, /20

5 Umělá inteligence (AI) Umělá inteligence je věda o vytváření strojů nebo systémů, které budou při řešení určitého úkolu užívat takového postupu, který - kdyby ho dělal člověk - bychom považovali za projev jeho inteligence. (Minsky, 1967) Umělá inteligence se zabývá tím, jak počítačově řešit úlohy, které dnes zatím zvládají lidé lépe. (Rich, 1991)... Umělá inteligence je označení uměle vytvořeného jevu, který dostatečně přesvědčivě připomíná přirozený fenomén lidské inteligence. Umělá inteligence označuje tu oblast poznávání skutečnosti, která se zaobírá hledáním hranic a možností symbolické, znakové reprezentace poznatků a procesů jejich nabývání, udržování a využívání. P. Berka, /20

6 Umělá inteligence se zabývá problematikou postupů zpracování poznatků - osvojováním a způsobem použití poznatků při řešení problémů.... Nejrůznější definice, které mohou být klasifikovány do čtyř skupin (Russell, Norvig, 2003): jako lidé racionálně Myslet Silná AI Jednat Slabá AI Klasická AI Nová AI P. Berka, /20

7 Silná (strong) AI Povaha mysli je algoritmická, přičemž není podstatné, v jakém médiu (mozek, počítač, ) jsou algoritmy implementovány = v počítači lze replikovat lidskou mysl. Slabá (weak) AI Modelování dílčích projevů mysli (např. schopnosti usuzovat nebo řešit problémy). Klasická AI Modelování mysli na logicko-symbolické úrovni. Nová AI K racionálnímu chování není třeba racionální usuzování. P. Berka, /20

8 Tři pohledy na AI Klasická AI chápe inteligenci jako atribut jedné mysli Distribuovaná AI chápe inteligenci jako produkt sociálních interakcí více myslí Nová AI vidí inteligenci jako emergentní výsledek činnosti primitivních entit P. Berka, /20

9 Dva základní myšlenkové proudy Logicko-symbolický (klasický) modelování shora dolů reprezentacionalizmus deliberativnost Konekcionistický, případně nová AI modelování zdola nahoru emergentní funkcionalita dekompozice na úrovni úloh reaktivita P. Berka, /20

10 Začátky umělé inteligence 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s Mohou stroje myslet? Turingův test: úkolem stroje je v komunikaci s experimentátorem předstírat, že je člověk. od roku 1991 Loebnerova cena pro program, který nejlépe uspěje v redukované podobě Turingova testu viz Hlavní námitka: test neměří myšlení ale chování J. Searle (1980): Čínská komnata P. Berka, /20

11 Eliza (1965), J. Weizenbaum pacient: Ahoj. Eliza: AHOJ, JAK SE CÍTÍŠ? pacient: Cítím se strašně. Eliza: CO TÍM PŘESNĚ MYSLÍŠ? pacient: Jsem v depresi. Eliza: PROČ SI MYSLÍŠ, ŽE JSI V DEPRESI. pacient: Protože je mi smutno. Eliza: ŽIJEŠ S RODINOU? pacient: Ne. Eliza: MÁŠ PŘÁTELE? pacient: Celkem ne. Eliza: PROČ? pacient: Nevím. Eliza: OPRAVDU NEVÍŠ NEBO SE JEN VYHÝBÁŠ ODPOVĚDI? pacient: Dřív jsem přátele měl. Eliza: KDY? pacient: Než jsem se oženil. Eliza: NEŘEKL JSI MI, ŽE SES OŽENIL. pacient: Už jsem se zase rozvedl. Eliza: POVĚZ MI O SVÉM ROZVODU. (D. Lodge, Svět je malý) P. Berka, /20

12 Etapy výzkumu léta: hledání univerzálního řešícího postupu léta: otázka reprezentace znalostí 90.- léta: učení a adaptace, komunikace P. Berka, /20

13 Historie AI 1943 model neuronu McCulloch, Pitts 1950 Turingův test Turing 1950 šachy jako prohledávání Shanon 1956 Dartmouthská konference (pojem AI) Minsky, McCarthy, Simon, Newell 1957 Perceptron Rosenblatt GPS (General Problem Solver) Newell, Simon, Shaw formální gramatiky Chomsky 1958 LISP McCarthy 1965 DENDRAL Feigenbaum, Buchanan fuzzy logika Zadeh rezoluční princip Robinson 1968 sémantické sítě Quillian SHRDLU Winograd Macsyma (symbolické Moses integrování) 1969 kniha Perceptrons Minsky, Papert robot Shakey SRI 1970 PROLOG Colmerauer, Roussell 1971 HEARSAY I Lesser 1973 MYCIN Shortliffe, Buchanan 1975 rámce Minsky 1976 Dempster-Shaferova teorie Dempster, Shafer PROSPECTOR Duda, Hart 1977 OPS Forgy 1978 R1/XCON McDermott 1979 ReTe algoritmus Forgy P. Berka, /20

14 1981 japonský projekt počítačů páté generace connection machine Hillis 1982 Hopfieldova neuronová síť Hopfield 1983 intervalová aritmetika Allen 1984 CyC Lenat 1987 kniha Society of Mind Minski reaktivní agenti Brooks 1989 ALVINN (autonomous land Pomerleau vehicle in a neural network) 1993 humanoidní robot Cog Brooks 1995 robotické auto Dickmanns 1997 Deep Blue IBM RoboCup (fotbal) 1998 semantický web Berners-Lee 2000 sociální robot Kismet Breazeal 2004 web ontology language OWL 2006 OpenCyC P. Berka, /20

15 Oblasti (technologicky) 1. Řešení úloh a. Prohledávání b. Plánování 2. Reprezentování znalostí 3. Usuzování 4. Zpracování neurčitosti 5. Učení 6. Adaptace 7. Komunikace 8. Reaktivita 9. Vnímání P. Berka, /20

16 Oblasti (oborově) 1. Hraní her 2. Dokazování teorémů 3. Rozpoznávání obrazů 4. Zpracování přirozeného jazyka 5. Expertní systémy 6. Robotika 7. Strojové učení 8. Dobývání znalostí z databází 9. Neuronové sítě 10. Počítačové vidění 11. Multiagentní systémy 12. Umělý život P. Berka, /20

17 S. Russell, P. Norvig: Artificial Intelligence: A Modern Approach Prentice Hall, 2002 Part I Artificial Intelligence 1 Introduction 2 Intelligent Agents Part II Problem Solving 3 Solving Problems by Searching 4 Informed Search and Exploration 5 Constraint Satisfaction Problems 6 Adversarial Search Part III Knowledge and Reasoning 7 Logical Agents 8 First-Order Logic 9 Inference in First-Order Logic 10 Knowledge Representation Part IV Planning 11 Planning 12 Planning and Acting in the Real World Part V Uncertain Knowledge and Reasoning 13 Uncertainty 14 Probabilistic Reasoning 15 Probabilistic Reasoning Over Time 16 Making Simple Decisions 17 Making Complex Decisions Part VI Learning 18 Learning from Observations 19 Knowledge in Learning 20 Statistical Learning Methods 21 Reinforcement Learning Part VII Communicating, Perceiving, and Acting 22 Communication 23 Probabilistic Language Processing 24 Perception 25 Robotics Part VIII Conclusions 26 Philosophical Foundations 27 AI: Present and Future P. Berka, /20

18 P.H.Winston: Artificial Intelligence, Addison-Wesley, 1992 I Representations and Methods 1 The Intelligent Computer 2 Semantic Nets and Description Matching 3 Generate and Test, Means-Ends Analysis, and Problem Reduction 4 Nets and Basic Search 5 Nets and Optimal Search 6 Trees and Adversarial Search 7 Rules and Rule Chaining 8 Rules, Substrates, and Cognitive Modeling 9 Frames and Inheritance 10 Frames and Commonsense 11 Numeric Constraints and Propagation 12 Symbolic Constraints and Propagation 13 Logic and Resolution Proof 14 Backtracking and Truth Maintenance 15 Planning II Learning and Regularity Recognition 16 Analyzing Differences 17 Explaining Experience 18 Correcting Mistakes 19 Recording Cases 20 Managing Multiple Models 21 Building Identification Trees 22 Training Neural Nets 23 Training Perceptrons 24 Training Approximation Nets 25 Simulating Evolution III Vision and Language 26 Recognizing Objects 27 Describing Images 28 Expressing Language Constraints 29 Responding to Questions and Commands Appendix: Relational Databases P. Berka, /20

19 G. Luger: AI: Structures and Strategies for Complex Problem Solving Addison Wesley 2002 I ARTIFICIAL INTELLIGENCE: ITS ROOTS AND SCOPE 1 AI: HISTORY AND APPLICATIONS II ARTIFICIAL INTELLIGENCE AS REPRESENTATION AND SEARCH 2 THE PREDICATE CALCULUS 3 STRUCTURES AND STRATEGIES FOR STATE SPACE SEARCH 4 HEURISTIC SEARCH 5 STOCHASTIC METHODS 6 CONTROL AND IMPLEMENTATION OF STATE SPACE SEARCH III REPRESENTATION AND INTELLIGENCE: THE AI CHALLENGE 7 KNOWLEDGE REPRESENTATION 8 STRONG METHOD PROBLEM SOLVING 9 REASONING IN UNCERTAIN SITUATIONS IV MACHINE LEARNING 10 MACHINE LEARNING: SYMBOL-BASED 11 MACHINE LEARNING: CONNECTIONIST 12 MACHINE LEARNING: SOCIAL AND EMERGENT V ADVANCED TOPICS FOR AI PROBLEM SOLVING 13 AUTOMATED REASONING 14 UNDERSTANDING NATURAL LANGUAGE VI LANGUAGES AND PROGRAMMING TECHNIQUES FOR ARTIFICIAL INTELLIGENCE 15 AN INTRODUCTION TO PROLOG 16 AN INTRODUCTION TO LISP VII EPILOGUE 17 ARTIFICIAL INTELLIGENCE AS EMPIRICAL ENQUIRY P. Berka, /20

20 Nils Nilsson: Artificial Intelligence, A New Synthesis Morgan Kaufman, 1998 II Search in State Spaces 7 Agents that Plan 8 Uninformed Search 9 Heuristic Search 10 Planning, Acting, and Learning 11 Alternative Search Formulations and Applications 12 Adversarial Search III Knowledge Representation and Reasoning 13 The Propositional Calculus 14 Resolution in The Propositional Calculus 15 The Predicate Calculus 16 Resolution in the Predicate Calculus 17 Knowledge-Based Systems 18 Representing Commonsense Knowledge 19 Reasoning with Uncertain Information 20 Learning and Acting with Bayes Nets 1 Introduction I Reactive Machines 2 Stimulus-Response Agents 3 Neural Network 4 Machine Evolution 5 State Machines 6 Robot Vision IV Planning Method Based on Logic 21 The Situation Calculus 22 Planning V Communication and Integration 23 Multiple Agents 24 Communication Among Agents 25 Agent Architectures P. Berka, /20

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií www.sony.cz Umělá inteligence = = umělá + inteligence CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který

Více

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460 Umělá inteligence Věda, jejímž úkolem je naučit stroje, aby dělaly věci, které vyžadují inteligenci, jsouli prováděny člověkem. Marvin Minsky 1950 Alan Turing: Computing Machinery and Intelligence. Mind

Více

Historie a vývoj umělé inteligence

Historie a vývoj umělé inteligence Historie a vývoj umělé inteligence 11. února 2015 1-1 Co je to inteligence? Encyklopedie Duden : Intelligenz = Fähigkeit des Menschen abstrakt und vernünftig zu denken und daraus zweckvolles Handeln abzuleiten.

Více

Umělá inteligence (1. přednáška)

Umělá inteligence (1. přednáška) Umělá inteligence (1. přednáška) Co je to AI (Artificial Intelligence) systém, který myslí jako lidé myslí racionálně se chová jako lidé se chová racionálně Jednat jako lidé systém, který myslí jako lidé

Více

Počátky umělé inteligence

Počátky umělé inteligence Počátky umělé inteligence Pavel Ircing NTIS - UN 562 ircing@kky.zcu.cz KKY/HKUI Založení oboru John McCarthy přesvědčil v roce 1955 Marvina Minskyho, Nathaniela Rochestera and C. Shannona, aby mu v následujícím

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Inteligentní systémy a neuronové sítě

Inteligentní systémy a neuronové sítě Inteligentní systémy a neuronové sítě Arnošt Veselý, Česká zemědělská univerzita, Kamýcká, Praha 6 - Suchdol Summary: In the article two main architectures of inteligent systems: logical-symbolic and connectionist

Více

Přírodou inspirované metody umělé inteligence

Přírodou inspirované metody umělé inteligence Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Nové Hrady, červenec 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělá inteligence 2 přístupy

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ metodický list č. 1 Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do těchto dílčích témat: 1. Řešení úloh ve stavovém

Více

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Metodický list č. 1 Název tématického celku: Řešení úloh Cílem tohoto tematického celku je vysvětlení vybraných pojmů z oblasti řešení úloh. Tématický celek je rozdělen do

Více

Vysoká škola ekonomická v Praze

Vysoká škola ekonomická v Praze Vysoká škola ekonomická v Praze Fakulta informatiky a statistiky Katedra informačního a znalostního inženýrství Obor: Aplikovaná informatika Student : Filip Hrbek Vedoucí bakalářské práce : prof. Ing.

Více

Web 2.0 vs. sémantický web

Web 2.0 vs. sémantický web Web 2.0 vs. sémantický web Vilém Sklenák sklenak@vse.cz Vysoká škola ekonomická, fakulta informatiky a statistiky, katedra informačního a znalostního inženýrství Inforum2007, 24. 5. 2007 Vilém Sklenák

Více

Robotika. Reaktivní agenty (nová AI) Deliberativní agenty (klasická AI)

Robotika. Reaktivní agenty (nová AI) Deliberativní agenty (klasická AI) Robotika Autonomní mobilní robot je inteligentní stroj schopen vykonávat úkoly samostatně, bez lidské pomoci. Nejdůležitější vlastností autonomního robota je jeho schopnost reagovat na změny prostředí.

Více

I. Úvod do agentních a multiagentních systémů

I. Úvod do agentních a multiagentních systémů Obsah přednášky I. Úvod do agentních a multiagentních systémů Podklady k přednáškám kurzu AGS ---------------------------------------------------- 2005, 2006 František Zbořil ml. zborilf@fit.vutbr.cz Organizační

Více

INFORMAČNÍ SEMINÁŘ PRO DOKTORANDY FIM

INFORMAČNÍ SEMINÁŘ PRO DOKTORANDY FIM Inovace a podpora doktorského studijního programu CZ.1.07/2.2.00/28.0327 INFORMAČNÍ SEMINÁŘ PRO DOKTORANDY FIM Jak psát odborný článek Hledání vhodné konference 2 Naleznete sami (např. na internetu) Doporučení

Více

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů

Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Návrh a implementace algoritmů pro adaptivní řízení průmyslových robotů Design and implementation of algorithms for adaptive control of stationary robots Marcel Vytečka 1, Karel Zídek 2 Abstrakt Článek

Více

Co je kognitivní informatika?

Co je kognitivní informatika? Co je kognitivní informatika? Václav Řepa Kognitivní informatika a) jako studijní obor Na VŠE: http://kogninfo.vse.cz b) jako vědní obor: Yingxu Wang, University of Calgary, Canada Witold Kinsner, University

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 5 Komunikace a kooperace Komunikace se jako jeden z principů objevuje v umělé inteligenci až v druhé polovině 80. let. V roce 1986 uveřejňuje M.

Více

České vysoké učení technické v Praze je jednou z nejstarších technicky zaměřených univerzit.

České vysoké učení technické v Praze je jednou z nejstarších technicky zaměřených univerzit. České vysoké učení technické v Praze je jednou z nejstarších technicky zaměřených univerzit. Poskytuje kvalitní vysokoškolské vzdělání v rozsáhlém spektru zejména inženýrských disciplín, zajišťuje základní

Více

Zpracování neurčitosti

Zpracování neurčitosti Zpracování neurčitosti Úvod do znalostního inženýrství, ZS 2015/16 7-1 Usuzování za neurčitosti Neurčitost: Při vytváření ZS obvykle nejsou všechny informace naprosto korektní mohou být víceznačné, vágní,

Více

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci)

Vědecký tutoriál, část I. A Tutorial. Vilém Vychodil (Univerzita Palackého v Olomouci) ..! POSSIBILISTIC Laboratoř pro analýzu INFORMATION: a modelování dat Vědecký tutoriál, část I A Tutorial Vilém Vychodil (Univerzita Palackého v Olomouci) George J. Klir State University of New York (SUNY)

Více

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14 UITS / ISY Výzkumná skupina inteligentních systémů Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně ISY: Výzkumná skupina inteligentních systémů 1 / 14 Obsah Představení skupiny

Více

IB013 Logické programování I Hana Rudová. jaro 2011

IB013 Logické programování I Hana Rudová. jaro 2011 IB013 Logické programování I Hana Rudová jaro 2011 Hodnocení předmětu Zápočtový projekt: celkem až 40 bodů Průběžná písemná práce: až 30 bodů (základy programování v Prologu) pro každého jediný termín:

Více

1. Data mining. Strojové učení. Základní úlohy.

1. Data mining. Strojové učení. Základní úlohy. 1... Základní úlohy. Učení s učitelem a bez učitele. Petr Pošík Katedra kybernetiky ČVUT FEL P. Pošík c 2010 Aplikace umělé inteligence 1 / 36 Obsah P. Pošík c 2010 Aplikace umělé inteligence 2 / 36 Co

Více

Umělá&inteligence! Co#o#nás#říká,#i#když#to#(někdy)#nechceme#slyšet?#

Umělá&inteligence! Co#o#nás#říká,#i#když#to#(někdy)#nechceme#slyšet?# Umělá&inteligence! Co#o#nás#říká,#i#když#to#(někdy)#nechceme#slyšet?# Roman Barták Matematicko-fyzikální fakulta, Univerzita Karlova v Praze Umělá& inteligence& je& věda& o& vytváření& strojů& nebo&systémů,&které&budou&při&řešení&určitého&

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

Vývojové trendy 1. Dnešní téma. Vývojové trendy 2. Vývojové trendy ve zpracování informací a znalostí

Vývojové trendy 1. Dnešní téma. Vývojové trendy 2. Vývojové trendy ve zpracování informací a znalostí Dnešní téma Vývojové trendy 1 Vývojové trendy ve zpracování informací a znalostí Znalostní management Využití umělé inteligence Sémantický web Zpracování přirozeného jazyka 1 Hnacím motorem vývoje v současnosti

Více

Uznávání předmětů ze zahraničních studijních pobytů

Uznávání předmětů ze zahraničních studijních pobytů Uznávání předmětů ze zahraničních studijních pobytů Podnikání a administrativa 7 Mezinárodní obchod Ekonometrie Obecná ekonomie III 8 Velkoobchod a maloobchod Management 9 Marketingové řízení Strategický

Více

Úvod do umělé inteligence, jazyk Prolog

Úvod do umělé inteligence, jazyk Prolog Úvod do umělé inteligence, jazyk Prolog Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Organizace předmětu PB016 Co je umělá inteligence Stručné shrnutí Prologu Úvod do umělé inteligence

Více

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1.1 VÝVOJ MECHATRONIKY Ve vývoji mechatroniky lze vysledovat tři období: 1. etapa polovina 70. let, Japonsko, založení nového oboru shrnuje poznatky z mechaniky,

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

Typy filozofických otázek vztahující se k umělé inteligenci

Typy filozofických otázek vztahující se k umělé inteligenci Typy filozofických otázek vztahující se k umělé inteligenci Ontologické otázky (ontologie = učení o bytí, o jeho nejobecnějších určeních a pojmech [http://slovnik-cizich-slov.abz.cz]) Týkají se povahy

Více

Úvod do umělé inteligence, jazyk Prolog

Úvod do umělé inteligence, jazyk Prolog Úvod do umělé inteligence, jazyk Prolog Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ Obsah: Organizace předmětu PB016 Co je umělá inteligence Stručné shrnutí Prologu Úvod do umělé inteligence

Více

CASE. Jaroslav Žáček

CASE. Jaroslav Žáček CASE Jaroslav Žáček jaroslav.zacek@osu.cz http://www1.osu.cz/~zacek/ Co znamená CASE? Definice dle SEI A CASE tool is a computer-based product aimed at supporting one or more software engineering activities

Více

Curriculum Vitae. Jméno disertace: Algebraic Properties of Fuzzy Logics Školitel: prof. Ing. Mirko Navara, DrSc.

Curriculum Vitae. Jméno disertace: Algebraic Properties of Fuzzy Logics Školitel: prof. Ing. Mirko Navara, DrSc. Curriculum Vitae Ing. Rostislav Horčík, Ph.D. 1. Jméno a příjmení, tituly, vědecká hodnost Ing. Rostislav Horčík, Ph.D. 2. Pracoviště AV ČR Ústav informatiky 3. Funkce na pracovišti, celkové zaměření vědecké

Více

Systémy pro podporu managementu 1

Systémy pro podporu managementu 1 Systémy pro podporu managementu 1 Přednášky pro im2, im3, im5, ai2, ai3 Ing. Karel Mls, Ph.D. 1 2 Základní literatura EFRAIM TURBAN, JAY E. ARONSON: DECISION SUPPORT SYSTEMS AND INTELLIGENT SYSTEMS. PRENTICE

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Rozdělení sub-oborů robotiky Učební text jméno a příjmení autora Doc. Ing. Mgr. Václav Záda, CSc. Liberec 2010 Materiál

Více

dokumentu: Proceedings of 27th International Conference Mathematical Methods in

dokumentu: Proceedings of 27th International Conference Mathematical Methods in 1. Empirical Estimates in Stochastic Optimization via Distribution Tails Druh výsledku: J - Článek v odborném periodiku, Předkladatel výsledku: Ústav teorie informace a automatizace AV ČR, v. v. i., Dodavatel

Více

Znalostní technologie proč a jak?

Znalostní technologie proč a jak? Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci

Více

Automatizační a měřicí technika (B-AMT)

Automatizační a měřicí technika (B-AMT) Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence

Více

Pokročilé operace s obrazem

Pokročilé operace s obrazem Získávání a analýza obrazové informace Pokročilé operace s obrazem Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 (BFÚ LF MU) Získávání

Více

Komunikace a paměť pro plausibilní agenty

Komunikace a paměť pro plausibilní agenty Komunikace a paměť pro plausibilní agenty Vojtěch Kopal, Ondřej Sýkora Univerzita Karlova v Praze, Matematicko-fyzikální fakulta Malostranské námestí 25, 118 00 Praha 1 vojtech.kopal@gmail.com, sykora@ktiml.mff.cuni.cz

Více

ANALYTICKÉ PROGRAMOVÁNÍ

ANALYTICKÉ PROGRAMOVÁNÍ ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE

Více

Pojednání k SDZ. Ing. Martin Ondra. Ústav Konstruování Odbor Průmyslového Designu Fakulta strojního inženýrství Vysoké učení technické v Brně

Pojednání k SDZ. Ing. Martin Ondra. Ústav Konstruování Odbor Průmyslového Designu Fakulta strojního inženýrství Vysoké učení technické v Brně Ing. Martin Ondra Ústav Konstruování Odbor Průmyslového Designu Fakulta strojního inženýrství Vysoké učení technické v Brně Základní informace Název: Identita značky v designu průmyslového výrobku Školitel:

Více

Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří

Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří Univerzita J. E. Purkyně, Fakulta životního prostředí Registrační číslo projektu: MMR WD-44-07-1 Modelové řešení revitalizace průmyslových regionů a území po těžbě uhlí na příkladu Podkrušnohoří Závěrečná

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics)

Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Metody analýzy dat I (Data Analysis I) Úvod do sítí (Networks Basics) Literatura Newman, M. (2010). Networks: An Introduction. Oxford University Press. [15-77] Leskovec, J., Rajaraman, A., Ullman, J. D.

Více

Petr Hájek and Fuzzy Logic in this Country

Petr Hájek and Fuzzy Logic in this Country Institute of Computer Science Academy of Sciences of the Czech Republic ManyVal 2013, Prague Petr Hájek s books P. Vopěnka, P. Hájek: The Theory of Semisets. Academia Praha/North Holland Publishing Company,

Více

Jazyk názvu DiP: cs 1 / 6

Jazyk názvu DiP: cs 1 / 6 1 FEI INF prof. RNDr. Václav Snášel, CSc. DNA assembler DNA assembler 2 FEI INF prof. RNDr. Václav Snášel, CSc. Deep learning Deep learning 3 FEI INF prof. RNDr. Václav Snášel, CSc. Dynamic graph visualization

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Projektové řízení (PR) Číslo předmětu: 548-0049 Garantující institut: Garant předmětu: Institut geoinformatiky doc. Ing. Petr Rapant, CSc. Kredity: 5 Povinnost:

Více

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ

POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ POČÍTAČOVÁ FORMALIZACE MENTÁLNÍCH MODELŮ METODAMI PRAVDĚPODOBNOSTNÍHO JAZYKOVÉHO MODELOVÁNÍ ON MENTAL MODELS FORMALIZATION THROUGH THE METHODS OF PROBABILISTIC LINGUISTIC MODELLING Zdeňka Krišová, Miroslav

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Expertní systémy. Typy úloh: Klasifikační Diagnostické Plánovací Hybridní Prázdné. Feingenbaum a kol., 1988

Expertní systémy. Typy úloh: Klasifikační Diagnostické Plánovací Hybridní Prázdné. Feingenbaum a kol., 1988 Expertní systémy Počítačové programy, simulující rozhodovací činnost experta při řešení složitých úloh a využívající vhodně kvality rozhodování na úrovni experta. Typy úloh: Klasifikační Diagnostické Plánovací

Více

Pokroky matematiky, fyziky a astronomie

Pokroky matematiky, fyziky a astronomie Pokroky matematiky, fyziky a astronomie Zdeněk Renc Myšlení a umělá inteligence Pokroky matematiky, fyziky a astronomie, Vol. 21 (1976), No. 4, 212--219 Persistent URL: http://dml.cz/dmlcz/139508 Terms

Více

Industry 4.0 @ Robert BOSCH

Industry 4.0 @ Robert BOSCH Inovační think-tank TA ČR - Robert Bosch spol.s r.o. Industry 4.0 @ Robert BOSCH Internet der Dingen Virtual Prototyping Cyber- physical things Services Robert Bosch České Budějovice v roce 202x??? Finding

Více

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. 1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím

Více

Kognitivní informatika očima studentů

Kognitivní informatika očima studentů Kognitivní informatika očima studentů Výsledky ankety ZS 2011/2012 Kateřina Farská O dotazníku Reponse rate relativně vysoká: 49% (odpovědělo 26 z 53 aktuálně studujících) Až na výjimky vysoká kvalita

Více

Deterministický chaos principy a aplikace Popis deterministického chaosu Turbulence Atraktory Motýlí efekt Řízení deterministického chaosu Fraktály

Deterministický chaos principy a aplikace Popis deterministického chaosu Turbulence Atraktory Motýlí efekt Řízení deterministického chaosu Fraktály Průvodka dokumentem Umělá inteligence: - nadpisy tří úrovní (pomocí stylů Nadpis 1 2), před nimi je znak - na začátku dokumentu je automatický obsah ( Obsah) - tabulky jsou v textu pouze symetrické, vloženy

Více

Pomáháme vám využívat vaše informace VYHLEDÁVACÍ TECHNOLOGIE PRO ON-LINE INFORMAČNÍ ZDROJE SEARCH DRIVEN INNOVATION

Pomáháme vám využívat vaše informace VYHLEDÁVACÍ TECHNOLOGIE PRO ON-LINE INFORMAČNÍ ZDROJE SEARCH DRIVEN INNOVATION Pomáháme vám využívat vaše informace VYHLEDÁVACÍ TECHNOLOGIE PRO ON-LINE INFORMAČNÍ ZDROJE SEARCH DRIVEN INNOVATION INFORUM 2008 P.Kocourek, INCAD FAST X10 partner 29.5.2008 PREZENTACE Technologicky orientovaný

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 zbynek.winkler at mff.cuni.cz http://robotika.cz/guide/umor07/cs 4. října 2007 1 Co jsou to ti mobilní roboti? K čemu je to dobré? Jak bude vypadat přednáška? Jaké jsou další přednášky/semináře o robotech?

Více

Antény pro systémy RFID - bezkontaktní identifikační systémy 2 / 5

Antény pro systémy RFID - bezkontaktní identifikační systémy 2 / 5 1 FEI INF prof. RNDr. Petr Jančar, CSc. Výpočetní složitost verifikačních problémů Computational complexity of verification problems 2 FEI INF prof. RNDr. Petr Jančar, CSc. Výpočetní složitost verifikačních

Více

Filosofické aspekty umělé inteligence v kontextu pedagogických paradigmat

Filosofické aspekty umělé inteligence v kontextu pedagogických paradigmat Issue/Volume/Year: 1/XI/2014 (Article) Filosofické aspekty umělé inteligence v kontextu pedagogických paradigmat Autor: Michal Černý Abstract Philosophical Aspects of Artificial Intelligence in the Context

Více

UMĚLÁ INTELIGENCE ARTIFICIAL INTELLIGENCE (AI)

UMĚLÁ INTELIGENCE ARTIFICIAL INTELLIGENCE (AI) UMĚLÁ INTELIGENCE ARTIFICIAL INTELLIGENCE (AI) Motto: Přirozená inteligence bude zřejmě brzy překonána inteligencí umělou, avšak přirozenou blbost umělá nikdy překonat nedokáže. Jára da Cimrman 1 ÚVOD

Více

Svět v pohybu. Rizika a příležitosti.

Svět v pohybu. Rizika a příležitosti. Svět v pohybu. Rizika a příležitosti. Globální rizika 5 hlavních rizik z hlediska pravděpodobnos ti Extrémní projevy počasí Rozsáhlá nedobrovolná migrace Přírodní pohromy Teroristické útoky Datové podvody

Více

Metody odvozování. matematická východiska: logika, Prolog

Metody odvozování. matematická východiska: logika, Prolog Metody odvozování matematická východiska: logika, Prolog psychologická východiska: rámce biologická východiska: konekcionismus, neuronové sítě statistická východiska: kauzální (bayesovské) sítě ekonomická

Více

EXTRAKT z mezinárodní normy

EXTRAKT z mezinárodní normy EXTRAKT z mezinárodní normy Extrakt nenahrazuje samotnou technickou normu, je pouze informativním materiálem o normě ICS: 03.220.01; 35.240.60 Inteligentní dopravní systémy Komunikační infrastruktura pro

Více

Karta předmětu prezenční studium

Karta předmětu prezenční studium Karta předmětu prezenční studium Název předmětu: Informatika v ekonomice (IE) Číslo předmětu: 545-0340 Garantující institut: Garant předmětu: Institut ekonomiky a systémů řízení Ing. Igor Černý, Ph.D.

Více

Geometrické indexování a dotazování multimediálních dat

Geometrické indexování a dotazování multimediálních dat Geometrické indexování a dotazování multimediálních dat Tomáš Skopal, Michal Krátký, Václav Snášel Katedra informatiky, VŠB-Technická Univerzita Ostrava 17. listopadu 15, 708 33 Ostrava-Poruba {michal.kratky,

Více

Klepnutím lze upravit styl Click to edit Master title style předlohy nadpisů.

Klepnutím lze upravit styl Click to edit Master title style předlohy nadpisů. nadpisu. Case Study Environmental Controlling level Control Fifth level Implementation Policy and goals Organisation Documentation Information Mass and energy balances Analysis Planning of measures 1 1

Více

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno

Simulace a návrh vyvíjejících Nadpis se 1. Nadpis 3. Božetěchova 2, Brno Simulace a návrh vyvíjejících Nadpis se 1 Nadpis systémů 2 Nadpis 3 Vladimír Jméno Janoušek Příjmení Vysoké Brno učení University technické of v Technology, Brně, Fakulta Faculty informačních of Information

Více

ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE

ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE ADAPTACE PARAMETRU SIMULAČNÍHO MODELU ASYNCHRONNÍHO STROJE PARAMETR ADAPTATION IN SIMULATION MODEL OF THE ASYNCHRONOUS MACHINE Oktavián Strádal 1 Anotace: Článek ukazuje použití metod umělé inteligence

Více

5.5 Evoluční algoritmy

5.5 Evoluční algoritmy 5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův

Více

Sémantický web 10 let poté

Sémantický web 10 let poté Sémantický web 10 let poté Doc. Ing. Vilém Sklenák, CSc. Vysoká škola ekonomická, fakulta informatiky a statistiky, katedra informačního a znalostního inženýrství sklenak@vse.cz INFORUM 2011: 17. konference

Více

UMĚLÁ INTELIGENCE EVA VOLNÁ MARTIN KOTYRBA CZ.1.07/2.2.00/

UMĚLÁ INTELIGENCE EVA VOLNÁ MARTIN KOTYRBA CZ.1.07/2.2.00/ UMĚLÁ INTELIGENCE EVA VOLNÁ MARTIN KOTYRBA CZ.1.07/2.2.00/29.0006 OSTRAVA, ČERVENEC 2013 Studijní opora je jedním z výstupu projektu ESF OP VK. Číslo Prioritní osy: 7.2 Oblast podpory: 7.2.2 Vysokoškolské

Více

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming

u odpovědí typu A, B, C, D, E: Obsah: jako 0) CLP Constraint Logic Programming Průběžná písemná práce Průběžná písemná práce Obsah: Průběžná písemná práce Aleš Horák E-mail: hales@fi.muni.cz http://nlp.fi.muni.cz/uui/ délka pro vypracování: 25 minut nejsou povoleny žádné materiály

Více

Od Aristotela k Prologu

Od Aristotela k Prologu JIHOČESKÁ UNIVERZITA v ČESKÝCH BUDĚJOVICÍCH PEDAGOGICKÁ FAKULTA KATEDRA INFORMATIKY Od Aristotela k Prologu František Sedláček 2010 František Sedláček, Pedagogická fakulta Jihočeská Univerzita v Č.Budějovicích

Více

POPIS STANDARDU CEN TC278/WG1. Oblast: ELEKTRONICKÉ VYBÍRÁNÍ POPLATKŮ (EFC) Zkrácený název: ZKUŠEBNÍ POSTUPY 2. Norma číslo:

POPIS STANDARDU CEN TC278/WG1. Oblast: ELEKTRONICKÉ VYBÍRÁNÍ POPLATKŮ (EFC) Zkrácený název: ZKUŠEBNÍ POSTUPY 2. Norma číslo: POPIS STANDARDU CEN TC278/WG1 Oblast: ELEKTRONICKÉ VYBÍRÁNÍ POPLATKŮ (EFC) Zkrácený název: ZKUŠEBNÍ POSTUPY 2 Norma číslo: 14907-2 Norma název (en): RTTT EFC - TEST PROCEDURES FOR USER AND FIXED EQUIPMENT

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Úvod do mobilní robotiky AIL028

Úvod do mobilní robotiky AIL028 Obsah zbynek.winkler at mff.cuni.cz http://robotika.cz/articles/umor/cs 22. října 2004 Obsah Co jsou to ti mobilní roboti? K čemu je to dobré? Jak bude vypadat přednáška? Jaké jsou další přednášky/semináře

Více

Big Data. Josef Šlerka, Ataxo Interactive, SNM FF UK Business & Information Forum 2011, Praha

Big Data. Josef Šlerka, Ataxo Interactive, SNM FF UK Business & Information Forum 2011, Praha Big Data Josef Šlerka, Ataxo Interactive, SNM FF UK Business & Information Forum 2011, Praha 3 000 000 000 počet hledání na Googlu denně 30 000 000 000 počet zpráv a příspěvků na Facebooku měsíčně 5 000

Více

Strojové učení se zaměřením na vliv vstupních dat

Strojové učení se zaměřením na vliv vstupních dat Strojové učení se zaměřením na vliv vstupních dat Irina Perfilieva, Petr Hurtík, Marek Vajgl Centre of excellence IT4Innovations Division of the University of Ostrava Institute for Research and Applications

Více

Aplikace umělé inteligence a kognitivní vědy v udržitelnosti cestovního ruchu

Aplikace umělé inteligence a kognitivní vědy v udržitelnosti cestovního ruchu Kniha je v tištěné verzi k dispozici ve vědeckých knihovnách ČR a ve vybraných knihovnách vysokých škol. Zdarma je k dispozici ke stažení v plné verzi na URL: https://databaze.op-vk.cz/product/detail/59669

Více

Modelová složitost neuronových sítí - zdánlivý paradox

Modelová složitost neuronových sítí - zdánlivý paradox Modelová složitost neuronových sítí - zdánlivý paradox Věra Kůrková Ústav informatiky, Akademie věd České republiky Pod Vodárenskou věží 2, 18207 Praha Email: vera@cs.cas.cz Abstrakt V článku jsou studovány

Více

XML Š ABLONY A JEJICH INTEGRACE V LCMS XML TEMPLATES AND THEIN INTEGRATION IN LCMS

XML Š ABLONY A JEJICH INTEGRACE V LCMS XML TEMPLATES AND THEIN INTEGRATION IN LCMS XML Š ABLONY A JEJICH INTEGRACE V LCMS XML TEMPLATES AND THEIN INTEGRATION IN LCMS Roman MALO - Arnošt MOTYČKA This paper is oriented to discussion about using markup language XML and its features in LCMS

Více

Technická komise ISO/JTC1/SC 27 Technická normalizační komise ÚNMZ TNK 20

Technická komise ISO/JTC1/SC 27 Technická normalizační komise ÚNMZ TNK 20 ČSN ISO/IEC 7064 Information technology -- Security techniques -- Check character systems Zpracování dat. Systémy kontrolních znaků ČSN BS 7799-2 Information Security Management Systems -- Specification

Více

MODELOVÁNÍ PLANÁRNÍCH ANTÉN POMOCÍ UMĚLÝCH NEURONOVÝCH SÍTÍ

MODELOVÁNÍ PLANÁRNÍCH ANTÉN POMOCÍ UMĚLÝCH NEURONOVÝCH SÍTÍ ÚSTAV RADIOELEKTRONIKY MODELOVÁNÍ PLANÁRNÍCH ANTÉN POMOCÍ UMĚLÝCH NEURONOVÝCH SÍTÍ Pojednání o disertační práci Doktorand: Ing. Zbyněk Raida Školitel: Prof. Ing. Dušan Černohorský, CSc. Brno, duben 2003

Více

UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Miroslav POKORNÝ Praha 1996, BEN Miroslav Pokorný UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást

Více

Univerzita Karlova v Praze

Univerzita Karlova v Praze Univerzita Karlova v Praze Filozofická fakulta Ústav informačních studií a knihovnictví Studijní program: informační studia a knihovnictví Studijní obor: informační studia a knihovnictví Vojtěch Urban

Více

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK. cz

Gymnázium, Brno, Slovanské nám. 7, SCHEME OF WORK Mathematics SCHEME OF WORK.  cz SCHEME OF WORK Subject: Mathematics Year: first grade, 1.X School year:../ List of topisc # Topics Time period Introduction, repetition September 1. Number sets October 2. Rigtht-angled triangle October,

Více

Informatika na gymnáziu Dan Lessner

Informatika na gymnáziu Dan Lessner Informatika na gymnáziu Dan Lessner ksvi.mff.cuni.cz/ucebnice ucime-informatiku.blogspot.cz Osnova 1. Osnova 2. Úvod 3. Výzkumné otázky 4. Metodika 5. Vymezení oboru 6. Pilotáž a výsledky 7. Závěr Credit:

Více

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ

ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ ROZDÍLY V NÁVRZÍCH RELAČNÍCH A OBJEKTOVÝCH DATABÁZÍ A JEJICH DŮSLEDKY PRO TRANSFORMACI MODELŮ RELATIONAL AND OBJECT DATABASES DESIGN DIFFERENCES AND IT S IMPLICATIONS TO MODEL TRANSFORMATION Vít Holub

Více

Možnosti modelování systému pro elektronickou podporu vzdělání. Modelling Capabilities of the Electronic Support of Education.

Možnosti modelování systému pro elektronickou podporu vzdělání. Modelling Capabilities of the Electronic Support of Education. Možnosti modelování systému pro elektronickou podporu vzdělání Modelling Capabilities of the Electronic Support of Education Martina Janková Abstract: Purpose of the article: This article focuses on systemic

Více

(#%ist #%LargeCorpInternalsMt #%ForAll x (#%HumanResourcesDepartment #%allinstances (#%actsincapacity x #%mediatorinprocesses #%EmployeeHiring

(#%ist #%LargeCorpInternalsMt #%ForAll x (#%HumanResourcesDepartment #%allinstances (#%actsincapacity x #%mediatorinprocesses #%EmployeeHiring Znalostní modelování Podobor znalostního inženýrství, který se zabývá tvorbou znalostních modelů spíše než finální implementací znalostních systémů Model: účelová abstrakce, která umožňuje snížit složitost

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Marta Vomlelová marta@ktiml.mff.cuni.cz

Marta Vomlelová marta@ktiml.mff.cuni.cz Strojové učení Úvod, lineární regrese Marta Vomlelová marta@ktiml.mff.cuni.cz References [1] P. Berka. Dobývání znalostí z databází. Academia, 2003. [2] T. Hastie, R. Tishirani, and J. Friedman. The Elements

Více

3.1 Úvod do problematiky

3.1 Úvod do problematiky 3 Strojové učení rozhodovací stromy 3.1 Úvod do problematiky 3.1.1 Úvod a motivace Naše stroje jsou nedokonalé: potřebují údržbu selhávají (hroutí se),... Rádi bychom dostali varování předem. Konstruktér

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Simulační prostředí pro webové prohlížeče jednotky HONNU. Ing. Miroslav Kopecký

Simulační prostředí pro webové prohlížeče jednotky HONNU. Ing. Miroslav Kopecký Simulační prostředí pro webové prohlížeče jednotky HONNU Ing. Miroslav Kopecký STČ 2007 Obsah 1 Abstrakt... 3 2 Úvod... 4 2.1 Jednotky HONNU... 4 2.2 Synaptická operace... 5 2.3 Algoritmus učení... 5 3

Více