Přírodou inspirované metody umělé inteligence

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Přírodou inspirované metody umělé inteligence"

Transkript

1 Přírodou inspirované metody umělé inteligence Roman Neruda Ústav informatiky AVČR Nové Hrady, červenec 2012

2 Od Darwina a Mendela...

3 ... k inteligentním agentům.

4 Umělá inteligence

5 2 přístupy Inteligence: schopnost individua účelně jednat, rozumně myslet a efektivně se vyrovnávat se svým o a. The capacity to acquire and apply knowledge. b. The faculty of thought and reason. Silná: cílem je stvořit umělý myslící systém Slabá: systémy, které se chovají v určitém kontextu inteligentně

6 Turingův stroj a test Alan Turing základy teorie výpočtů, Turingův stroj Turingův test: Poznat muže/ženu Poznat člověka/stroj Eliza Paradox čínského pokoje

7 Umělá inteligence Inteligentní chování Učení Schopnost adaptace Řízení Plánování Rozpoznávání (řeč, písmo, obrázky) Symbolická Expertní systémy, formální logika Výpočetní Neuronové sítě Evoluční algoritmy Fuzzy logika

8 Umělý život

9 Podstata života? Kombinace 4 elementů Voda, vzduch, oheň, zem (Empedokles) Duše/psyche/anima (Demokritos) 3 duše (Aristoteles) Nic (Descartes) Élan vital (Bergson) Elektřina (M. Shelly)

10 Dnešní biologie Živé organismy lze charakterizovat jako strukturálně vysoce složité, hierarchicky uspořádané, termodynamicky otevřené a autoregulující se nukleoproteinové soustavy, jejichž podstatnými vlastnostmi jsou metabolismus, autoreprodukce a schopnost vyvíjet se. (Rozsypal a kol, 1994) Things with the capacity for metabolism and motion. Life is a self-sustained chemical system capable of undergoing Darwinian evolution. Life is matter that can reproduce itself and evolve as survival dictates.

11 A-life, život jaký by mohl být Studuje základní rysy, procesy a zákony života Pomocí počítačových modelů, hardwarových robotů a biochemických technologií Soft, hard, wet

12 Celulární automaty Von Neumann: Sebereplikující se roboti Matematický model CA Studium chaotického chování, emergence

13 Řád chaosu Lindenmayerovy systémy Popis rostoucích struktur pomocí formálních gramatik Nástroj k modelování růstu rostlin, (X F-[[X]+X]+F[+FX]-X), (F FF)

14 Hejna, stáda, roje Craig Reynolds: boid Pohyb hejn ptáků se dá popsat 3 jednoduchými pravidly Aplikace v počítačové grafice Aplikace v řešení úloh umělé inteligence Mravenčí algoritmy: nepřímá komunikace

15 Tierra, svět je operační systém T. S. Ray simulace ekologických vztahů v počítači: Živočich = sebereplikující se software Zdroje = paměť a čas procesoru Evoluce = mutace, vymírání Parazitismus

16 Karl Simms, operační systém je svět Karl Simms: vývoj abstraktních organismů s reálnými fyzikálními zákony Řízení neuronovou sítí Emergence chování pohyb, plavání, V 90.letech superpočítač, dnes PC (3DVCE)

17 Golem, roboti už jdou Spojení evoluce a 3D tiskárny Evoluce robotických živočichů řízených umělou neuronovou sítí v SW simulátoru Realizace a testování v HW prototypu

18 Budoucnost patří bakteriím? Martyn Amos: DNA computing Zákodujme problém do DNA, Nechme přírodu počítat Bio-počítač hraje piškvorky Řešení problému obchodního cestujícího pomocí svítící E.coli

19 Umělé neuronové sítě

20 Perceptron 1943: McCulloch, Pitts: formální neuron 1958: Rosenblatt: perceptron Lineárně separabilní Učící algoritmus Důkaz konvergence Hardware

21 XOR 1969: Minsky, Pappert: Perceptrons. Neumí XOR Sítě s více vrstavmi asi nejde učit Konec NS na 15 let Kohonen, Hopfield, Grossberg, Amari, Ruso

22 Back Propagation Učení sítě = nastavení hodnot vah dle tréningov Učení s učitelem Nelineární optimalizace - minimalizace chyby Metoda největšího spádu, apod. Derivaci de/dw lze odvodit

23 Evoluční algoritmy

24 Princip Genetických Algoritmů Gen = zakódované řešení problému Fitness Populace genů Selekce: Ruleta Turnaje Mutace Křížení

25 Genetické programování Evoluce programů Reprezentace syntaktickými stromy S-expressions, LISP Křížení, Mutace, Procedury

26 Proč evoluce funguje? Mutace = náhodné změny Selekce = pohyb správným směrem Věta o schématech: GA rekombinují kompaktní parciální řešení při hledání optima. Nadějná Implicitní paralelismus: GA s n jedinci v populaci pracuje zh Křížení: výměna informací Zabraňuje uvíznutí v lokálních minimech.

27 Roboti

28 Khepera (2000 př.n.l.)

29 Khepera (2000 n.l.)

30 průměr 7cm, výška 3cm váha 80g, uveze 250g rychlost 0,02 m/s 0,5 m/s procesor Motorola 68331, 25MHz 512KB RAM 2 servo motorky 8 aktivních infra čidel (5cm dosah) moduly (věže) pro komunikaci, zrak, hmat Khepera HW

31 Jak řídit Kheperu pomocí NS

32 Jak učit NS pomocí GA Učitel nehodnotí každý krok (nejde to) Evidují se 'správné' a 'špatné' typy chování To je zakódováno v účelové funkci (fitness) GA Hlavní problém GA v ER: volba fitness obecná vs. konkrétní více kritérií najednou(multiobjective optimization) Softwarová simulace Desítky pokusů, stovky jedinců, tisíce generací

33 Budoucnost?

34 Inteligentní agenti

35 Wearable computing

36 Kyborgové?

37 V rámci umělé inteligence: hybridní metody Soft computing: EA+NS+Fuzzy Soft + tradiční UI (symbolická) Soft + hard computing (numerika, statistika) V IT: inteligentní (adaptivní) agenti Autonomní software, Mobilní, komunikativní, sociální Nálady, emoce, model dle lidské mysli Kolem nás: všudypřítomné počítače Smart devices, ubiquitus, wearable computing V nás: Kyborgové, DNA computing (?)

Evoluční algoritmy a umělý život

Evoluční algoritmy a umělý život Evoluční algoritmy a umělý život Roman Neruda Ústav informatiky AVČR roman@cs.cas.cz Olomouc, červen 2012 Od Darwina a Mendela... ... k inteligentním agentům. Umělý život Odkazy: Steven Levy: Artificial

Více

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky

Biologicky inspirované výpočty. Schématické rozdělení problematiky a výuky Biologicky inspirované výpočty Schématické rozdělení problematiky a výuky 1 Biologicky inspirované výpočty - struktura problematiky Evoluční systémy: evoluční algoritmy, evoluční hardware, víceúčelová

Více

Genetické algoritmy a jejich praktické využití

Genetické algoritmy a jejich praktické využití Genetické algoritmy a jejich praktické využití Pavel Šturc PB016 Úvod do umělé inteligence 21.12.2012 Osnova Vznik a účel GA Princip fungování GA Praktické využití Budoucnost GA Vznik a účel GA Darwinova

Více

Emergence chování robotických agentů: neuroevoluce

Emergence chování robotických agentů: neuroevoluce Emergence chování robotických agentů: neuroevoluce Petra Vidnerová, Stanislav Slušný, Roman Neruda Ústav Informatiky, AV ČR Kognice a umělý život VIII Praha 28. 5. 2008 Evoluční robotika: EA & neuronové

Více

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460

Expertní Systémy. Umělá inteligence. 1950 Alan Turing: Computing Machinery and Intelligence. Mind 59, 1950, s.433-460 Umělá inteligence Věda, jejímž úkolem je naučit stroje, aby dělaly věci, které vyžadují inteligenci, jsouli prováděny člověkem. Marvin Minsky 1950 Alan Turing: Computing Machinery and Intelligence. Mind

Více

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu

Masarykova univerzita. Fakulta informatiky. Evoluce pohybu Masarykova univerzita Fakulta informatiky Evoluce pohybu IV109 Tomáš Kotula, 265 287 Brno, 2009 Úvod Pohyb je jedním ze základních projevů života. Zdá se tedy logické, že stejně jako ostatní vlastnosti

Více

UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Miroslav POKORNÝ Praha 1996, BEN Miroslav Pokorný UMÌLÁ INTELIGENCE V MODELOVÁNÍ A ØÍZENÍ Bez pøedchozího písemného svolení nakladatelství nesmí být kterákoli èást

Více

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium

Fakulta přírodovědně-humanitní a pedagogická. Okruhy otázek pro státní závěrečné zkoušky. Bakalářské studium Fakulta přírodovědně-humanitní a pedagogická Okruhy otázek pro státní závěrečné zkoušky Bakalářské studium Informatika se zaměřením na vzdělávání Bc. Matematika: Funkce, její průběh a vlastnosti. Popisná

Více

Gramatická evoluce a softwarový projekt AGE

Gramatická evoluce a softwarový projekt AGE Gramatická evoluce a softwarový projekt AGE Adam Nohejl Matematicko-fyzikální fakulta Univerzita Karlova v Praze http://nohejl.name/ 4. 4. 2010 Poznámka: Prezentace založené na variantách těchto slajdů

Více

1. Úvod do genetických algoritmů (GA)

1. Úvod do genetických algoritmů (GA) Obsah 1. Úvod do genetických algoritmů (GA)... 2 1.1 Základní informace... 2 1.2 Výstupy z učení... 2 1.3 Základní pomy genetických algoritmů... 2 1.3.1 Úvod... 2 1.3.2 Základní pomy... 2 1.3.3 Operátor

Více

OBSAH 1 Pøedmluva 19 2 Evoluèní algoritmy: nástin 25 2.1 Centrální dogma evoluèních výpoèetních technik... 26 2.2 Chcete vìdìt víc?... 29 3 Historická fakta trochu jinak 31 3.1 Pár zajímavých faktù...

Více

Neuronové sítě Ladislav Horký Karel Břinda

Neuronové sítě Ladislav Horký Karel Břinda Neuronové sítě Ladislav Horký Karel Břinda Obsah Úvod, historie Modely neuronu, aktivační funkce Topologie sítí Principy učení Konkrétní typy sítí s ukázkami v prostředí Wolfram Mathematica Praktické aplikace

Více

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY

1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1 VZNIK, VÝVOJ A DEFINICE MECHATRONIKY 1.1 VÝVOJ MECHATRONIKY Ve vývoji mechatroniky lze vysledovat tři období: 1. etapa polovina 70. let, Japonsko, založení nového oboru shrnuje poznatky z mechaniky,

Více

Neuropočítače. podnět. vnímání (senzory)

Neuropočítače. podnět. vnímání (senzory) Neuropočítače Princip inteligentního systému vnímání (senzory) podnět akce (efektory) poznání plánování usuzování komunikace Typické vlastnosti inteligentního systému: schopnost vnímat podněty z okolního

Více

brmiversity: Um lá inteligence a teoretická informatika

brmiversity: Um lá inteligence a teoretická informatika brmiversity: Um lá inteligence a teoretická informatika Úvodní p edná²ka brmlab 2011 Outline 1 Slovo úvodem 2 Um lá inteligence 3 Neuronové sít 4 Adaptivní agenti 5 Evolu ní algoritmy 6 Sloºitost 7 Datové

Více

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU

AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU AKCELERACE EVOLUCE PRAVIDEL CELULÁRNÍCH AUTOMATŮ NA GPU Luděk Žaloudek Výpočetní technika a informatika, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

MATEMATICKÁ TEORIE ROZHODOVÁNÍ MATEMATICKÁ TEORIE ROZHODOVÁNÍ Podklady k soustředění č. 5 Komunikace a kooperace Komunikace se jako jeden z principů objevuje v umělé inteligenci až v druhé polovině 80. let. V roce 1986 uveřejňuje M.

Více

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková

GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS. Roman Biskup, Anna Čermáková GENETICKÉ UČENÍ NEURONOVÝCH SÍTÍ GENETIC LEARNING OF NEURAL NETWORKS Roman Bisup, Anna Čermáová Anotace: Příspěve se zabývá prezentací principů učení jednoho onrétního typu neuronových sítí. Cílem práce

Více

Hospitace ve III. ročníku Waldorfského lycea v Praze u O. Ševčíka

Hospitace ve III. ročníku Waldorfského lycea v Praze u O. Ševčíka Hospitace ve III. ročníku Waldorfského lycea v Praze u O. Ševčíka Poslední epocha biologie III. ročníku vůbec (ve 4. ročníku už ji mít nebudou) Současná epocha je částí bloku zoologie Epoše předcházelo

Více

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/

Genetické algoritmy. Vysoká škola ekonomická Praha. Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Genetické algoritmy Jiří Vomlel Laboratoř inteligentních systémů Vysoká škola ekonomická Praha Tato prezentace je k dispozici na: http://www.utia.cas.cz/vomlel/ Motivace z Darwinovy teorie evoluce Přírodní

Více

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi

Evoluční algoritmy. Podmínka zastavení počet iterací kvalita nejlepšího jedince v populaci změna kvality nejlepšího jedince mezi iteracemi Evoluční algoritmy Použítí evoluční principů, založených na metodách optimalizace funkcí a umělé inteligenci, pro hledání řešení nějaké úlohy. Populace množina jedinců, potenciálních řešení Fitness function

Více

PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA

PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA PROFIL BUDOUCÍHO ABSOLVENTA OBORU INFORMATIKA Cyril Klimeš Ostravská univerzita, katedra informatiky a počítačů, 30. dubna 22, 701 03 Ostrava, ČR, e-mail: cyril.klimes@osu.cz Abstrakt Tento příspěvek si

Více

Komplexita a turbulence

Komplexita a turbulence SA414 - přednáška č. 5 Sociální systémy, systémy lidských aktivit Kybernetika (2. řádu): člověk a znalos(i) Povaha znalosti - mentální modely jako vzory Externalizace znalostí symboly a jazyk Znalosti

Více

EVA VOLNÁ MARTIN KOTYRBA MICHAL JANOŠEK VÁCLAV KOCIAN

EVA VOLNÁ MARTIN KOTYRBA MICHAL JANOŠEK VÁCLAV KOCIAN Doc. RNDr. PaedDr. Eva Volná, PhD. RNDr. Martin Kotyrba, Ph.D. RNDr. Michal Janošek, Ph.D. Mgr. Václav Kocian UMÌLÁ INTELIGENCE Rozpoznávání vzorù v dynamických datech Praha 2014 Anotace: Cílem knihy je

Více

Matematika a ekonomické předměty

Matematika a ekonomické předměty Matematika a ekonomické předměty Bohuslav Sekerka, Soukromá vysoká škola ekonomických studií Praha Postavení matematiky ve výuce Zaměřím se na výuku matematiky, i když jsem si vědom, toho, že by měl být

Více

Tematický plán učiva BIOLOGIE

Tematický plán učiva BIOLOGIE Tematický plán učiva BIOLOGIE Třída: Prima Počet hodin za školní rok: 66 h 1. POZNÁVÁME PŘÍRODU 2. LES 2.1 Rostliny a houby našich lesů 2.2 Lesní patra 2.3 Živočichové v lesích 2.4 Vztahy živočichů a rostlin

Více

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR

SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR EVOLUČNÍ NÁVRH A OPTIMALIZACE APLIKAČNĚ SPECIFICKÝCH MIKROPROGRAMOVÝCH ARCHITEKTUR Miloš Minařík DVI4, 2. ročník, prezenční studium Školitel: Lukáš Sekanina Fakulta informačních technologií, Vysoké učení

Více

Název: Hmoto, jsi živá? I

Název: Hmoto, jsi živá? I Název: Hmoto, jsi živá? I Výukové materiály Téma: Obecné vlastnosti živé hmoty Úroveň: střední škola Tematický celek: Obecné zákonitosti přírodovědných disciplín a principy poznání ve vědě Předmět (obor):

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_02 Škola Střední průmyslová škola Zlín Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Inovace výuky

Více

Název školy: Základní škola a Mateřská škola Žalany

Název školy: Základní škola a Mateřská škola Žalany Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Informatika pro devátý ročník Název DUM: VY_32_INOVACE_5A_19_Paměti_počítače Vyučovací předmět: Informatika

Více

Trocha obrázků na začátek..

Trocha obrázků na začátek.. Trocha obrázků na začátek.. Elementární pojmy LCD panel tower myš klávesnice 3 Desktop vs. Tower tower desktop 4 Desktop nebo Tower? 5 Obraz jako obraz? 6 A něco o vývoji.. Předchůdci počítačů Počítadlo

Více

Dynamické kritické jevy

Dynamické kritické jevy Dynamické kritické jevy statické vs. dynamické Ve statické situaci je kritické chování určeno: i. dimenzí parametru uspořádání ii. dimenzí fyzikálního prostoru každý obor začíná nejprve statickými jevy

Více

Umělá inteligence a rozpoznávání

Umělá inteligence a rozpoznávání Václav Matoušek KIV e-mail: matousek@kiv.zcu.cz 0-1 Sylabus předmětu: Datum Náplň přednášky 11. 2. Úvod, historie a vývoj UI, základní problémové oblasti a typy úloh, aplikace UI, příklady inteligentních

Více

Herní engine. Co je Engine Hotové enginy Jemný úvod do game designu

Herní engine. Co je Engine Hotové enginy Jemný úvod do game designu Počítačové hry Herní engine Obsah přednášky Co je Engine Hotové enginy Jemný úvod do game designu Literatura a odkazy http://gpwiki.org/index.php/game Engines http://en.wikipedia.org/wiki/game engine http://www.devmaster.net/engines/

Více

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví

Genetické algoritmy. Informační a komunikační technologie ve zdravotnictví Genetické algoritmy Informační a komunikační technologie ve zdravotnictví Přehled přednášky Úvod Historie Základní pojmy Principy genetických algoritmů Možnosti použití Související metody AI Příklad problém

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Úvod Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií Olomouc, září

Více

VÍTKOVICE ITS a.s. Ruská 60, 706 02 Ostrava - Vítkovice

VÍTKOVICE ITS a.s. Ruská 60, 706 02 Ostrava - Vítkovice VÍTKOVICE ITS a.s. Ruská 60, 706 02 Ostrava - Vítkovice Analýza a optimalizace výrobních procesů metodami umělé inteligence Aplikace teorie umělé inteligence v podnikových informačních systémech RNDr.

Více

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14

UITS / ISY. Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně. ISY: Výzkumná skupina inteligentních systémů 1 / 14 UITS / ISY Výzkumná skupina inteligentních systémů Ústav inteligentních systémů Fakulta informačních technologií VUT v Brně ISY: Výzkumná skupina inteligentních systémů 1 / 14 Obsah Představení skupiny

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška první Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více

Automatizační a měřicí technika (B-AMT)

Automatizační a měřicí technika (B-AMT) Ústav automatizace a měřicí techniky Bakalářský studijní program Automatizační a měřicí technika () Specializace oboru Řídicí technika Měřicí technika Průmyslová automatizace Robotika a umělá inteligence

Více

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla)

Evoluční algoritmy. Rayův umělý život (sebekopírující assembler) Hollandovy klasifikační systémy (pravidla) Evoluční algoritmy Hollandovy genetické algoritmy (binární řetězce) Fogelovo evoluční programování (automaty) Kozovo genetické programování (stromy) Schwefelovy evoluční strategie (parametry funkcí) Rayův

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 9. ročník Danuše Kvasničková, Ekologický přírodopis pro 9. ročník ZŠ a nižší ročníky víceletých gymnázií, nakl. Fortuna Praha 1998

Více

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika

09. seminář logika (úvod, výroková).notebook. November 30, 2011. Logika Logika 1 Logika Slovo logika se v češtině běžně používá ve smyslu myšlenková cesta, která vedla k daným závěrům. Logika je formální věda, zkoumající právě onen způsob vyvozování závěrů. Za zakladatele

Více

Seznam úloh v rámci Interního grantového systému EPI

Seznam úloh v rámci Interního grantového systému EPI Evropský polytechnický institut, s.r.o. Kunovice Seznam úloh v rámci Interního grantového systému I rok/p ořadí Číslo úlohy Název Obor 2008 B1/2008 Vývojové tendence globalizujícího se podnikatelského

Více

Obsah DÍL 2 KAPITOLA 6. 6 Automatická regulace 9. 6.1 Základní terminologie historické souvislosti 12

Obsah DÍL 2 KAPITOLA 6. 6 Automatická regulace 9. 6.1 Základní terminologie historické souvislosti 12 Obsah DÍL 2 KAPITOLA 6 6 Automatická regulace 9 6.1 Základní terminologie historické souvislosti 12 6.2 Dynamický systém, nástroje a metody jeho analýzy 18 6.2.1 Popis dynamického systému 19 6.2.2 Simulace

Více

Umělá inteligence (1. přednáška)

Umělá inteligence (1. přednáška) Umělá inteligence (1. přednáška) Co je to AI (Artificial Intelligence) systém, který myslí jako lidé myslí racionálně se chová jako lidé se chová racionálně Jednat jako lidé systém, který myslí jako lidé

Více

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)

UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.

Více

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky

Neuronové sítě. Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Neuronové sítě Vlasta Radová Západočeská univerzita v Plzni katedra kybernetiky Motivace pro výzkum umělých neuronových sítí lidský mozek pracuje jiným způsobem než běžné číslicové počítače počítače přesně

Více

Mozek a stáří. PhDr. Zuzana Spurná, Ph.D.

Mozek a stáří. PhDr. Zuzana Spurná, Ph.D. Mozek a stáří PhDr. Zuzana Spurná, Ph.D. Mozek Výsledkem exponenciálního růstu vývoje: 550 mil. let vývoje mozku 60 mil. let vývoje mozku primátů 5-7 mil. let vývoje lidského mozku 200-400 tis. let vývoje

Více

Všechno, co jste chtěli vědět o Gridech, ale báli jste se zeptat

Všechno, co jste chtěli vědět o Gridech, ale báli jste se zeptat Seminář LOM, 8. června 2005 Všechno, co jste chtěli vědět o Gridech, ale báli jste se zeptat Jan Kmuníček Ústav výpočetní techniky MU & CESNET Obsah Charakteristika gridovéhoprostředí Typy Gridů Vize výpočetního

Více

Moderní systémy pro získávání znalostí z informací a dat

Moderní systémy pro získávání znalostí z informací a dat Moderní systémy pro získávání znalostí z informací a dat Jan Žižka IBA Institut biostatistiky a analýz PřF & LF, Masarykova universita Kamenice 126/3, 625 00 Brno Email: zizka@iba.muni.cz Bioinformatika:

Více

Řízení SW projektů. Lekce 1 Základní pojmy a jejich vztahy. přednáška pro studenty FJFI ČVUT. zimní semestr 2012

Řízení SW projektů. Lekce 1 Základní pojmy a jejich vztahy. přednáška pro studenty FJFI ČVUT. zimní semestr 2012 Řízení SW projektů Lekce 1 Základní pojmy a jejich vztahy přednáška pro studenty FJFI ČVUT zimní semestr 2012 Ing. Pavel Rozsypal IBM Česká republika Global Business Services Lekce 1 - Základní pojmy a

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 7.1 7.3 12/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 18 0:40 Umělá inteligence Umělá inteligence (UI) vlastně

Více

2. Mechatronický výrobek 17

2. Mechatronický výrobek 17 Předmluva 1 Úvod 3 Ing. Gunnar Künzel 1. Úvod do mechatroniky 5 1.1 Vznik, vývoj a definice mechatroniky 5 1.2 Mechatronická soustava a její komponenty 9 1.3 Mechatronický systém a jeho struktura 11 1.4

Více

Klasifikace počítačů a technologické trendy Modifikace von Neumanova schématu pro PC

Klasifikace počítačů a technologické trendy Modifikace von Neumanova schématu pro PC Přednáší: doc. Ing. Jan Skrbek, Dr. - KIN Přednášky: středa 14 20 15 55 Obsah: Historie počítačů Počítačové generace Spojení: e-mail: jan.skrbek@tul.cz 16 10 17 45 tel.: 48 535 2442 Klasifikace počítačů

Více

Lesk a bída nestandardních výpočetních systémů

Lesk a bída nestandardních výpočetních systémů Lesk a bída nestandardních výpočetních systémů Jiří Wiedermann Ústav informatiky Akademie věd České republiky, v.v.i. Částečně podporováno grantem 1ET100300419 Proč nás zajímají možnosti a meze počítačů

Více

Obsah. Kognitívna ekonómia na báze umelej (komputačnej) inteligencie Ladislav Andrášik...

Obsah. Kognitívna ekonómia na báze umelej (komputačnej) inteligencie Ladislav Andrášik... Obsah Předmluva... III Kognitívna ekonómia na báze umelej (komputačnej) inteligencie Ladislav Andrášik.... Použitie neurónových sietí pri spracovaní obrázkov získaných pomocou ultrazvuku Gabriela Andrejková,

Více

Organizace a zpracování dat I (NDBI007) RNDr. Michal Žemlička, Ph.D.

Organizace a zpracování dat I (NDBI007) RNDr. Michal Žemlička, Ph.D. Úvodní přednáška z Organizace a zpracování dat I (NDBI007) RNDr. Michal Žemlička, Ph.D. Cíl předmětu Obeznámit studenty se základy a specifiky práce se sekundární pamětí. Představit některé specifické

Více

OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST

OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST OBECNÁ CHARAKTERISTIKA ŽIVÝCH ORGANISMŮ - PRACOVNÍ LIST Datum: 26. 8. 2013 Projekt: Registrační číslo: Číslo DUM: Škola: Jméno autora: Název sady: Název práce: Předmět: Ročník: Studijní obor: Časová dotace:

Více

AD4M33AU Automatické uvažování

AD4M33AU Automatické uvažování AD4M33AU Automatické uvažování Úvod, historie Petr Pudlák Organizační informace Tyto slidy jsou pomocný studijní materiál. Na přednášce budou uváděny další informace a příklady, které ve slidech nejsou.

Více

Lineární diskriminační funkce. Perceptronový algoritmus.

Lineární diskriminační funkce. Perceptronový algoritmus. Lineární. Perceptronový algoritmus. Petr Pošík Czech Technical University in Prague Faculty of Electrical Engineering Dept. of Cybernetics P. Pošík c 2012 Artificial Intelligence 1 / 12 Binární klasifikace

Více

Znalostní technologie proč a jak?

Znalostní technologie proč a jak? Znalostní technologie proč a jak? Peter Mikulecký Kamila Olševičová Daniela Ponce Univerzita Hradec Králové Motivace 1993 vznik Fakulty řízení a informační technologie na Vysoké škole pedagogické v Hradci

Více

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc

Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc Neuronové sítě a možnosti jejich využití Fiala P., Karhan P., Ptáček J. Oddělení lékařské fyziky a radiační ochrany Fakultní nemocnice Olomouc 1. Biologický neuron Osnova 2. Neuronové sítě Umělý neuron

Více

PODROBNÝ OBSAH O knize... 8 Úvod... 11 1 BASCOM-8051... 19 1.1 Omezení kompilátoru... 23 1.2 Postup tvorby programu v BASCOM-8051... 25 2 Pohonný subsystém robotu... 27 2.1 Stejnosmìrný motor... 28 2.1.1

Více

Mechatronika. učebn ice. Ladislav Maixner a kolektiv. Computer Press Brno 2006

Mechatronika. učebn ice. Ladislav Maixner a kolektiv. Computer Press Brno 2006 Mechatronika učebn ice Ladislav Maixner a kolektiv Computer Press Brno 2006 Obsah Predmluva l Úvod Úwd 3 Ing Gunnar Kunzel 1 Úvod do mechatroniky 5 obebezbez 11 Vznik,vývoj a definicemechatroniky 5 12

Více

Výukový materiál vytvořen v rámci projektu EU peníze školám "Inovace výuky" registrační číslo CZ.1.07/1.5.00/34.0585

Výukový materiál vytvořen v rámci projektu EU peníze školám Inovace výuky registrační číslo CZ.1.07/1.5.00/34.0585 Výukový materiál vytvořen v rámci projektu EU peníze školám "Inovace výuky" registrační číslo CZ.1.07/1.5.00/34.0585 Škola: Adresa: Autor: Gymnázium, Jablonec nad Nisou, U Balvanu 16, příspěvková organizace

Více

ANALYTICKÉ PROGRAMOVÁNÍ

ANALYTICKÉ PROGRAMOVÁNÍ ZVYŠOVÁNÍODBORNÝCH KOMPETENCÍAKADEMICKÝCH PRACOVNÍKŮ OSTRAVSKÉUNIVERZITY V OSTRAVĚ A SLEZSKÉ UNIVERZITY V OPAVĚ ANALYTICKÉ PROGRAMOVÁNÍ Eva Volná Zuzana Komínková Oplatková Roman Šenkeřík OBSAH PRESENTACE

Více

Pedagogická psychologie. PhDr. Kristýna Krejčová, PhD. kris.krejcova@gmail.com

Pedagogická psychologie. PhDr. Kristýna Krejčová, PhD. kris.krejcova@gmail.com Pedagogická psychologie PhDr. Kristýna Krejčová, PhD. kris.krejcova@gmail.com Pedagogická psychologie - psychologické aspekty výchovy a vyučování - Školní psychologie výchovné a vzdělávací problémy ve

Více

Architektura počítače

Architektura počítače Architektura počítače Výpočetní systém HIERARCHICKÁ STRUKTURA Úroveň aplikačních programů Úroveň obecných funkčních programů Úroveň vyšších programovacích jazyků a prostředí Úroveň základních programovacích

Více

Rosenblattův perceptron

Rosenblattův perceptron Perceptron Přenosové funkce Rosenblattův perceptron Rosenblatt r. 1958. Inspirace lidským okem Podle fyziologického vzoru je třívrstvá: Vstupní vrstva rozvětvovací jejím úkolem je mapování dvourozměrného

Více

AIBO CleanMate 365 ACECAD Enterprises DigiMemo

AIBO CleanMate 365 ACECAD Enterprises DigiMemo ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií www.sony.cz CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který za Vás doma perfektně vysaje a zamete. První

Více

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně

CleanMate 365. ACECAD Enterprises DigiMemo A502. individua vědomě orientovat vlastní. globální schopnost individua účelně ELECTROLUX ESI 6221 K Myčka v novém Alpha 1 designu s Fuzzy logic technologií www.sony.cz Umělá inteligence = = umělá + inteligence CleanMate 365 CleanMate 365 je inteligentní robotický vysavač, který

Více

Obsah. Zelinka: UI v problémech globální optimalizace BEN technická literatura 3

Obsah. Zelinka: UI v problémech globální optimalizace BEN technická literatura 3 UMÌLÁ INTELIGENCE V PROBLÉMECH GLOBÁLNÍ OPTIMALIZACE Ivan Zelinka Praha 2002 Tato publikace vznikla za podpory grantù MŠM 26500014, GAÈR 102/00/0526 a GAÈR 102/02/0204 Kniha seznamuje ètenáøe se dvìma

Více

Maturitní témata. Informační a komunikační technologie. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou.

Maturitní témata. Informační a komunikační technologie. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou. Gymnázium, Střední odborná škola a Vyšší odborná škola Ledeč nad Sázavou Maturitní témata předmět Informační a komunikační technologie Dominik Janák 2015 třída 4I Dominik Janák Maturitní otázky Výpočetní

Více

Přehled kurzů, seminářů, školení

Přehled kurzů, seminářů, školení SPŠ, Hronov, Hostovského 910 NABÍDKA KURZŮ, SEMINÁŘŮ, ŠKOLENÍ: Kontakt: Sedláčková Věra tel. 491485048 e mail: sedlackova@spshronov.cz Přehled kurzů, seminářů, školení 1. ECDL Evropský průkaz počítačové

Více

1. HDR. 2. Test Práce ve Windows. 3. Tilt-shift efekt. 4. Excel tisk a tvorba grafů. Informatika Ditta Kukaňová

1. HDR. 2. Test Práce ve Windows. 3. Tilt-shift efekt. 4. Excel tisk a tvorba grafů. Informatika Ditta Kukaňová 1. HDR ANOTACE: Výuka tématu grafika, rastrová grafika, práce s programem Zoner Photo Studio KLÍČOVÁ SLOVA: HDR, Zoner Photo Studio, efekty, ořez, rastrová grafika 2. Test Práce ve Windows ANOTACE: Test

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Investice do rozvoje vzdělávání Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Investice do rozvoje vzdělávání

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana Kubcová Název

Více

PRINCIPY POČÍTAČŮ Metodický list číslo 1

PRINCIPY POČÍTAČŮ Metodický list číslo 1 Metodický list číslo 1 Téma č.1: Historie, vývoj počítačů, architektura počítače. historický přehled, předpoklady pro vývin a rozvoj počítačů nejvýznamnější osoby, vynálezy a stroje von Neumannova architektura

Více

Neuronové sítě (11. přednáška)

Neuronové sítě (11. přednáška) Neuronové sítě (11. přednáška) Machine Learning Naučit stroje se učit O co jde? Máme model výpočtu (t.j. výpočetní postup jednoznačně daný vstupy a nějakými parametry), chceme najít vhodné nastavení parametrů,

Více

okolo 500 let př.n.l. poč. 21.stol

okolo 500 let př.n.l. poč. 21.stol Logo Mezinárodního roku udržitelné energie pro všechny Rok 2012 vyhlásilo Valné shromáždění Organizace Spojených Národů za Mezinárodní rok udržitelné energie pro všechny. Důvodem bylo upozornit na význam

Více

Zřízení studijního oboru HPC (High performance computing)

Zřízení studijního oboru HPC (High performance computing) Zřízení studijního oboru HPC (High performance computing) Návrh oboru je koncipován tak, aby byl zajímavý pro široký okruh zájemců, kteří pak mohou později pracovat při využití HPC v projekčních a výzkumných

Více

Obecná charakteristika živých soustav

Obecná charakteristika živých soustav Obecná charakteristika živých soustav Vypracoval: RNDr. Milan Zimpl, Ph.D. TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Kategorie živých soustav Existují

Více

5.5 Evoluční algoritmy

5.5 Evoluční algoritmy 5.5 Evoluční algoritmy Jinou skupinou metod strojového učení, které vycházejí z biologických principů, jsou evoluční algoritmy. Zdrojem inspirace se tentokrát stal mechanismus evoluce, chápaný jako Darwinův

Více

BIOLOGIE. Gymnázium Nový PORG

BIOLOGIE. Gymnázium Nový PORG BIOLOGIE Gymnázium Nový PORG Biologii vyučujeme na gymnáziu Nový PORG jako samostatný předmět od primy do tercie a v kvintě a sextě. Biologii vyučujeme v češtině a rozvíjíme v ní a doplňujeme témata probíraná

Více

HW počítače co se nalézá uvnitř počítačové skříně

HW počítače co se nalézá uvnitř počítačové skříně ZVT HW počítače co se nalézá uvnitř počítačové skříně HW vybavení PC Hardware Vnitřní (uvnitř počítačové skříně) Vnější ( ) Základní HW základní jednotka + zobrazovací zařízení + klávesnice + (myš) Vnější

Více

Studijní plány: 2015/2016. Univerzita Pardubice Fakulta elektrotechniky a informatiky

Studijní plány: 2015/2016. Univerzita Pardubice Fakulta elektrotechniky a informatiky Studijní plány: 2015/2016 Univerzita Pardubice Fakulta elektrotechniky a informatiky Bakalářské studium Forma prezenční Informační technologie Studijní plány Studijní program: Kreditní limit: 180 Typ:

Více

MBA Řízení IT týmů Exkluzivně zajištěné e-lerningové on-line studium pro specialisty IT

MBA Řízení IT týmů Exkluzivně zajištěné e-lerningové on-line studium pro specialisty IT MBA Řízení IT týmů Exkluzivně zajištěné e-lerningové on-line studium pro specialisty IT Garant: Ing. J. Petrucha, PhD, ředitel Komu určeno: Studium je určeno všem podnikatelům, manažerům, jednatelům, a

Více

ON YOUR MARK, GET SET, GO!

ON YOUR MARK, GET SET, GO! Autor: Mgr. Jakub Vilánek Škola: ZŠ a MŠ Vacov ON YOUR MARK, GET SET, GO! Mezipředmětové vztahy: TV, AJ Časová dotace: 45 min Ročník: 6. - 7. Cíle: IKT: hlavním cílem hodiny je zopakovat nízký start z

Více

2. RBF neuronové sítě

2. RBF neuronové sítě 2. RBF neuronové sítě Kapitola pojednává o neuronových sítích typu RBF. V kapitole je popsána základní struktura tohoto typu neuronové sítě. Poté následuje definice a charakteristika jednotlivých radiálně

Více

SOUČASNÁ ŠKOLA OPÍRAJÍCÍ SE O KOMENSKÉHO VIZE

SOUČASNÁ ŠKOLA OPÍRAJÍCÍ SE O KOMENSKÉHO VIZE Inovace výstupů, obsahu a metod bakalářských programů vysokých škol neuniverzitního typu. CZ.1.07/2.2.00/28.0115 SOUČASNÁ ŠKOLA OPÍRAJÍCÍ SE O KOMENSKÉHO VIZE Mgr. Lenka Hrušková, Ph.D. Prorektor pro studium

Více

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1

METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 METODY DOLOVÁNÍ V DATECH DATOVÉ SKLADY TEREZA HYNČICOVÁ H2IGE1 DOLOVÁNÍ V DATECH (DATA MINING) OBJEVUJE SE JIŽ OD 60. LET 20. ST. S ROZVOJEM POČÍTAČOVÉ TECHNIKY DEFINICE PROCES VÝBĚRU, PROHLEDÁVÁNÍ A MODELOVÁNÍ

Více

Projekt Talnet kurzů exkurzí soustředění, týdenní expedice Ročník 2015-2016

Projekt Talnet kurzů exkurzí soustředění, týdenní expedice Ročník 2015-2016 Projekt Talnet Talnet nabízí půlroční až celoroční, většinou nesoutěžní, systematické aktivity pro děti a mládež se zájmem o přírodní vědy v oborech fyzika, chemie, biologie, geografie, matematika, astronomie,

Více

OBSAH. Funkcionáři UP... 1. Katedry a pracoviště... 9 Informace o kreditovém systému studia... 45

OBSAH. Funkcionáři UP... 1. Katedry a pracoviště... 9 Informace o kreditovém systému studia... 45 OBSAH Funkcionáři UP................................................. 1 Funkcionáři PřF, děkanát........................................... 3 Katedry a pracoviště..............................................

Více

Genetické programování

Genetické programování Genetické programování Vyvinuto v USA v 90. letech J. Kozou Typické problémy: Predikce, klasifikace, aproximace, tvorba programů Vlastnosti Soupeří s neuronovými sítěmi apod. Potřebuje značně velké populace

Více

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení.

Architektura - struktura sítě výkonných prvků, jejich vzájemné propojení. Základní pojmy z oblasti neuronových sítí Zde je uveden přehled některých základních pojmů z oblasti neuronových sítí. Tento přehled usnadní studium a pochopení předmětu. ADALINE - klasická umělá neuronová

Více

a co je operační systém?

a co je operační systém? a co je operační systém? Funkce vylepšení HW sjednocení různosti zařízení ulehčení programování (např. časové závislosti) přiblížení k potřebám aplikací o soubory namísto diskových bloků o více procesorů

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. D. Kvasničková a kol.: Ekologický přírodopis pro 7. ročník ZŠ a nižší ročníky víceletých gymnázií, 1. a 2.

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM. D. Kvasničková a kol.: Ekologický přírodopis pro 7. ročník ZŠ a nižší ročníky víceletých gymnázií, 1. a 2. Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 7. ročník D. Kvasničková a kol.: Ekologický přírodopis pro 7. ročník ZŠ a nižší ročníky víceletých gymnázií, 1. a 2. část Očekávané

Více

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk

NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Jana

Více