Počítačová grafika RHINOCEROS

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Počítačová grafika RHINOCEROS"

Transkript

1 Počítačová grafika RHINOCEROS Ing. Zuzana Benáková Základní otázkou grafických programů je způsob zobrazení určitého tvaru. Existují dva základní způsoby prezentace 3D modelů v počítači. První využívá polygonové sítě, které většinou nachází uplatnění při rendrování a animaci. I když se zdá, že programy pro polygonové modelování poskytují zcela přesné nástroje pro modelování objektů jako jsou koule, válec atd., nakonec jsou stejně všechny plochy převedeny na polygonové sítě. Ty jsou už od počátku nepřesné, protože polygonová síť je vlastně souborem plochých trojúhelníků, které se snaží ideální plochu aproximovat - i když je ale plocha zakřivená, reprezentuje ji polygonový modelář stále jako síť plošek - nejčastěji trojúhelníků a čtyřúhelníků. To je sice zcela dostačující pro rendrování, animaci a tvorbu herních postav, ne však pro strojírenskou výrobu. Druhou možností reprezentace 3D dat je NURBS geometrie. Většina modelářů pro CAD, CAM, CAE a CAID (včetně Rhina) reprezentuje plochy a tělesa volného tvaru jako NURBS objekty. Pokud modelovací programy implementují NURBS geometrii pečlivě, mohou popisovat obecné tvary s přesností, která je dostatečná pro většinu náročných aplikací. Pokud je však prvotním zaměřením této aplikace strojírenství a ne tvorba obecných ploch, je jasné, že implementace NURBS geometrie bude z hlediska možnosti tvorby složitých ploch volného tvaru slabší. To je typické pro parametrické modeláře střední třídy, které jsou dnes tak populární. Rhinoceros je 3D NURBS modelář pro Windows, který využívá NURBS geometrie. NURBS modely však na polygonové sítě může převést a exportovat je do jiných programů. Umožňuje tvořit křivky, plochy a tělesa volného tvaru. Poskytuje pružné, přesné a rychlé pracovní prostředí. Další výhodou je snadné a rychlé ovládání. A v neposlední řadě je to také dostupná cena při dosažení obdobných vlastností mnohem dražších modelářů. Je stejně přesný či dokonce ještě přesnější, než většina CADů, které jsou v současné době na trhu. Navíc poskytuje možnost uživatelského nastavení přesnosti a jednotek, k dispozici jsou také nástroje pro vyhodnocení a dosažení spojitosti ploch, což jsou nástroje, které ve většině jiných CADů obsaženy nejsou. NURBS (Non-Uniformn Rational B-Splines) neuniformní racionální B-spline křivky jsou dvojím zobecnění B-spline křivek. Termín neuniformní je odvozen od vzdálenosti uzlů (ve smyslu parametru), která nemusí být u těchto křivek konstantní. Racionalita znamená, že body jsou reprezentovány svými homogenními souřadnicemi. Křivka Nurbs je určena :

2 Body řídícího polygonu Pi Váha bodu wi Normalizované B-spline bázové funkcenurbs umožňují generovat klasické geometrické prvky (počínaje jednoduchou čarou, kružnicí, obloukem nebo kvádrem.) za pomoci stejných metod, které umožňují vytvořit křivky a plochy složitých organických tvarů. Díky své pružnosti a přesnosti můžeme použít NURBS modely v jakémkoliv procesu od ilustrace a animace přes design až po sériovou výrobu. Typy geometrie v Rhinu Rhino rozeznává čtyři základní typy geometrie: body (1), křivky (2), NURBS plochy (3) (a tělesa, což je soustava ploch spojených tak, že beze zbytku uzavírají objem) a polygonové sítě (4): Polygonové objekty se používají většinou v programech pro výpočet obrázků a animací, stereolitografii, VRML a metodu konečných prvků. Polygonová síť je aproximací ideální matematické plochy. Rhino umí z NURBS ploch vytvořit polygonové sítě libovolné složitosti a exportovat je do těchto programů.

3 Tvorba ploch v Rhinu Vytvoření plochy z hraničních křivek Vytvoří plochu ze tří nebo čtyř křivek, které definují její hrany. Rotace křivky kolem osy Rotací profilové křivky kolem osy vytvoříme rotační plochu. Výsledkem může být buď otevřená plocha nebo uzavřené těleso, podle toho, zda byla nebo nebyla vstupní křivka uzavřená a o kolik stupňů ji necháme rotovali. Rotace křivky po trase vytvoří plochu, určenou rotací profilu kolem osy, přičemž tento profil navíc sleduje tvar trasy. V podstatě se jedná o obdobu tažení křivky po dvou trasách s tím, že jedna trasa byla zdegenerována do bodu.

4 Přímé vytažení křivky, tažení křívky po křivce Vytažením vytvoříme z křivky plochu. Pokud byla vstupní křivka rovinná, proběhne vytažení kolmo k rovině, v níž křivka leží. Pokud křivka není rovinná, závisí směr vytažení na aktivní konstrukční rovině. Šablonovaní (dvourozměrné) křivky po jedné (trojrozměrné) trase řezy vytvořené plochy zachovávají původní orientaci profilové křivky (či křivek) vůči trase. Na rozdíl od plochy vytvořené přímým tažením, které zachovává původní orientaci profilu vůči konstrukční rovině. Můžeme zadat libovolný počet řezů (může se jednat i o bod), které má plocha obsahovat. Šablonování křivky po dvou trasách vytvoří hladkou plochu, které prochází jedním nebo více řezy a

5 přitom sleduje dvě trasy. Tyto trasy rovněž ovlivňují celkový tvar plochy, což je vhodné v případě, kdy. chceme přesně určit tvar hran výsledné plochy. Plynulý přechod mezi plochami vytvoří novou plochu mezi plochami - plynulý přechod, který obě tyto plochy hladce spojuje. Potažení křivek plochou vytvoří plochu, která hladce prochází vybranými obrysovými křivkami. Hrany výsledné plochy vznikly proložením koncových bodů profilů hladkou křivkou. Další způsoby tvorby ploch Mezi plochami můžeme vytvářet nejen plynulé přechody, ale i zaoblení nebo zkosení, Booleovské operace (sjednocení, rozdíl, průnik), ofset v zadané vzdálenosti. Je možná i tvorba sítě polygonů: rovina, válec, kužel, koule, konverze z NURBS do polygonů. Editační nástroje: kopírování, přesunování, rotace, zmenšování/zvětšování, zrcadlení, protažení, přizpůsobení, stříhání, rozdělení, rozpojení, spojování, prodloužení, zkosení, zaoblení, ekvidistanta, kroucení, ohyb, zúžení, střih, pole Analýza: plocha, objem, střed, těžiště, momenty, spojitost, křivost (vč. grafu), směry tečen

6 Vytvoření složitějších těles: Nůž použito: přímé tažení křivky, zaoblení hran, odečtení objemu plochy, tažení křivky po dvou trasách, sjednocení ploch Ruka použito: potažení křivek, vytvoření křivky průmětem na plochu, oříznutí plochy křivkou, plynulý přechod ploch

7 Příklady vizualizací profesionálů Kuchyně autor: Greg Truen, modelovano v Rhinu, rendrováno ve Flamingu Sklípek autor: Greg Truen, modelovano v Rhinu, rendrováno ve Flamingu

8 Ložnice autor: Jang Moo Hyun, modelovano v Rhinu, rendrováno ve Flamingu Foyer autor: J. Kroeker, modelovano v Rhinu, rendrováno ve Flamingu

9 Použité zdroje informací Moderní počítačová grafika - J. Žára, B. Beneš, J. Sochor, P. Felker ISBN

9 Prostorová grafika a modelování těles

9 Prostorová grafika a modelování těles 9 Prostorová grafika a modelování těles Studijní cíl Tento blok je věnován základům 3D grafiky. Jedná se především o vysvětlení principů vytváření modelů 3D objektů, jejich reprezentace v paměti počítače.

Více

Obsah. Úvod 9. Orientace v prostředí programu SolidWorks 11. Skica 29. Kapitola 1 11. Kapitola 2 29

Obsah. Úvod 9. Orientace v prostředí programu SolidWorks 11. Skica 29. Kapitola 1 11. Kapitola 2 29 Úvod 9 Kapitola 1 11 Orientace v prostředí programu SolidWorks 11 Pruh nabídky 12 Nabídka Možnosti 14 Nápověda 14 Podokno úloh 15 Zdroje SolidWorks 15 Knihovna návrhů 15 Průzkumník souborů 16 Paleta pohledů

Více

Novinky v Solid Edge ST7

Novinky v Solid Edge ST7 Novinky v Solid Edge ST7 Primitiva Nově lze vytvořit základní geometrii pomocí jednoho příkazu Funkce primitiv je dostupná pouze v synchronním prostředí Těleso vytvoříme ve dvou navazujících krocích, kde

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 20 KŘIVKY]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jiří Haňáček [ÚLOHA 20 KŘIVKY] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jiří Haňáček [ÚLOHA 20 KŘIVKY] 1 CÍL KAPITOLY Cílem tohoto dokumentu je přiblížit uživateli přehledovým způsobem oblast použití křivek v rámci dnes

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ

PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ PARAMETRICKÉ MODELOVÁNÍ A KONSTRUOVÁNÍ ÚVOD DO PARAMETRICKÉHO MODELOVÁNÍ A KONSTRUOVÁNÍ Ing. Zdeněk Hodis, Ph.D. Úvod S rozvojem nových poznatků v oblasti technické grafiky je kladen důraz na jejich začlenění

Více

Modelování součásti pomocí ploch

Modelování součásti pomocí ploch Modelování součásti pomocí ploch Číslo publikace spse01560 Poznámky a omezení vlastnických práv Tento software a související dokumentace je majetkem společnosti Siemens Product Lifecycle Management Software

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více

Konstruování ve strojírenství CAD systémy

Konstruování ve strojírenství CAD systémy Projekt UNIV 2 KRAJE Proměna škol v centra celoživotního učení PROGRAM DALŠÍHO VZDĚLÁVÁNÍ Konstruování ve strojírenství CAD systémy Copyright: Ministerstvo školství, mládeže a tělovýchovy ČR 1 Obsah OBSAH...

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Žák cvičí prostorovou představivost Žák využívá při paměťovém i písemném počítání komutativnost i asociativní sčítání a násobení Žák provádí písemné početní operace v oboru Opakování učiva 3. ročníku Písemné

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Přehled vhodných metod georeferencování starých map

Přehled vhodných metod georeferencování starých map Přehled vhodných metod georeferencování starých map ČVUT v Praze, katedra geomatiky 12. 3. 2015 Praha Georeferencování historická mapa vs. stará mapa georeferencování umístění obrazu mapy do referenčního

Více

Tvorba digitálního modelu terénu a animací v něm. - ročníková práce -

Tvorba digitálního modelu terénu a animací v něm. - ročníková práce - Tvorba digitálního modelu terénu a animací v něm - ročníková práce - Lucie Knížová 3. kartografie a geoinformatika 2002-2003 OBSAH 1. Úvod.. 2. Podklady pro tvorbu DMT. 3. Tvorba DMT. 4. Otázka přesnosti

Více

Univerzita Palackého v Olomouci. Pokročilé kreslení 3D výkresů v AutoCADu 2013

Univerzita Palackého v Olomouci. Pokročilé kreslení 3D výkresů v AutoCADu 2013 CAD - počítačem podporované technické kreslení do škol CZ.1.07/1.1.26/02.0091 Univerzita Palackého v Olomouci Pedagogická fakulta Pokročilé kreslení 3D výkresů v AutoCADu 2013 doc. PhDr. Milan Klement,

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 6. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor porovnává

Více

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU

KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU KAPITOLA 5 MODELOVÁNÍ SOUČÁSTÍ Z PLECHU Modelování součástí z plechu Autodesk Inventor poskytuje uživatelům vedle obecných nástrojů pro parametrické a adaptivní

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE

Příloha č. 6 MATEMATIKA A JEJÍ APLIKACE Spočítá prvky daného konkrétního souboru do 6., Zvládne zápis číselné řady 0 6 Užívá a zapisuje vztah rovnosti a nerovnosti Numerace v oboru 0 6 Manipulace s předměty, třídění předmětů do skupin. Počítání

Více

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb Vyučovací předmět: TECHNICKÉ KRESLENÍ A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Technické kreslení má žákům umožnit zvládnout základy technického

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

Pokud Vám termíny nevyhovují, nebo máte zájem uspořádat specifické firemní školení, prosím obraťte se na Vaši BEKO kontaktní osobu.

Pokud Vám termíny nevyhovují, nebo máte zájem uspořádat specifické firemní školení, prosím obraťte se na Vaši BEKO kontaktní osobu. Vážení zákazníci, rostoucí zájem o podporu a školení systémů CATIA, ENOVIA, DELMIA, 3DVIA, nás přivedl na myšlenku, poskytovat nejenom specificky zaměřené firemní kurzy těchto systémů, ale také nabízet

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika, II. stupeň 1/Charakteristika vyučovacího předmětu a) obsahové vymezení Předmět je rozdělen na základě OVO v RVP ZV na čtyři

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

Univerzita Palackého v Olomouci. Základy kreslení 2D výkresů v AutoCADu 2013

Univerzita Palackého v Olomouci. Základy kreslení 2D výkresů v AutoCADu 2013 CAD - počítačem podporované technické kreslení do škol CZ.1.07/1.1.26/02.0091 Univerzita Palackého v Olomouci Pedagogická fakulta Základy kreslení 2D výkresů v AutoCADu 2013 doc. PhDr. Milan Klement, Ph.D.

Více

l: I. l Tento projekt je spolufinancován Evropskou unií a státním rozpočtem České republiky.

l: I. l Tento projekt je spolufinancován Evropskou unií a státním rozpočtem České republiky. Vysoké učení technické v Brně Fakulta strojního inženýrství Ústav strojírenské technologie Odbor technologie obrábění Téma: 1. cvičení - Základní veličiny obrábění Inovace studijních programů bakalářských,

Více

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení

Gymnázium Christiana Dopplera, Zborovská 45, Praha 5. Technické Osvětlení Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 ROČNÍKOVÁ PRÁCE Technické Osvětlení Vypracoval: Zbyšek Sedláček Třída: 8.M Školní rok: 2013/2014 Seminář: Deskriptivní geometrie Prohlašuji, že jsem

Více

Lineární pole Rotační pole

Lineární pole Rotační pole Lineární pole Rotační pole Projekt SIPVZ 2006 3D Modelování v SolidWorks Autor: ing. Laďka Krejčí 2 Obsah úlohy Vytvoření základu těla Vytvoření skici (přímka) Zakótování skici Zaoblení skici Vytvoření

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel

Konkretizovaný výstup Konkretizované učivo Očekávané výstupy RVP. Zápis čísla v desítkové soustavě - porovnávání čísel - čtení a psaní čísel Ročník: I. - vytváří si názoru představu o čísle 5, 10, 20 - naučí se vidět počty prvků do 5 bez počítání po jedné - rozpozná a čte čísla 0 5 - pozná a čte čísla 0 10 - určí a čte čísla 0 20 Číselná řada

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

Animace a geoprostor. První etapa: Animace 2. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně

Animace a geoprostor. První etapa: Animace 2. přednáško-cvičení. Jaromír Landa. jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Animace a geoprostor První etapa: Animace 2. přednáško-cvičení Jaromír Landa jaromir.landa@mendelu.cz Ústav informatiky PEF MENDELU v Brně Náplň přednáško-cvičení - Flamingo Prostředí Nekonečná rovina

Více

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI

ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI ZOBRAZOVÁNÍ A NORMALIZACE V TECHNICKÉ DOKUMENTACI Pravoúhlé rovnoběžné promítání na několik vzájemně kolmých průměten Použití pomocné průmětny Čistě ploché předměty Souměrné součásti Čistě rotační součásti

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů

Úterý 8. ledna. Cabri program na rýsování. Základní rozmístění sad nástrojů na panelu nástrojů Úterý 8. ledna Cabri program na rýsování program umožňuje rýsování základních geometrických útvarů, měření délky úsečky, velikosti úhlu, výpočet obvodů a obsahů. Je vhodný pro rýsování geometrických míst

Více

Laserové skenování (1)

Laserové skenování (1) (1) Prohloubení nabídky dalšího vzdělávání v oblasti zeměměřictví a katastru nemovitostí ve Středočeském kraji CZ.1.07/3.2.11/03.0115 Projekt je finančně podpořen Evropským sociálním fondem astátním rozpočtem

Více

SketchUp. Obsah 1. Nastavení prostředí 3. Menu: Pohled -> Panely nástrojů 3 Menu: Dialogová okna 3. Nastavení šablony 3

SketchUp. Obsah 1. Nastavení prostředí 3. Menu: Pohled -> Panely nástrojů 3 Menu: Dialogová okna 3. Nastavení šablony 3 SketchUp Obsah 1 Nastavení prostředí 3 Menu: Pohled -> Panely nástrojů 3 Menu: Dialogová okna 3 Nastavení šablony 3 Menu: Dialogová okna -> Informace o modelu: 3 Animace 3 Jedn 3 Komponenty 4 Kótování

Více

CVIČEBNICE PRO SYSTÉM INVENTOR TVORBA DÍLŮ V PROSTŘEDÍ NORMA.IPT

CVIČEBNICE PRO SYSTÉM INVENTOR TVORBA DÍLŮ V PROSTŘEDÍ NORMA.IPT CVIČEBNICE PRO SYSTÉM INVENTOR TVORBA DÍLŮ V PROSTŘEDÍ NORMA.IPT Elektronická cvičebnice Ing. Vlastimil Hořák Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic

Více

Matematika - 4. ročník Vzdělávací obsah

Matematika - 4. ročník Vzdělávací obsah Matematika - 4. ročník Čas.plán Téma Učivo Ročníkové výstupy žák podle svých schopností: Poznámka Září Opakování učiva 3. ročníku Počítaní do 20 Sčítání a odčítání do 20 Násobení a dělení číslem 2 Počítání

Více

Terestrické 3D skenování

Terestrické 3D skenování Jan Říha, SPŠ zeměměřická www.leica-geosystems.us Laserové skenování Technologie, která zprostředkovává nové možnosti v pořizování geodetických dat a výrazně rozšiřuje jejich využitelnost. Metoda bezkontaktního

Více

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE

Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE Stanovení forem, termínů a témat profilové části maturitní zkoušky oboru vzdělání 23-41-M/01 Strojírenství STROJÍRENSKÁ TECHNOLOGIE 1. Mechanické vlastnosti materiálů, zkouška pevnosti v tahu 2. Mechanické

Více

Matematika a její aplikace Matematika 1. období 3. ročník

Matematika a její aplikace Matematika 1. období 3. ročník Vzdělávací oblast : Vyučovací předmět : Období ročník : Matematika a její aplikace Matematika 1. období 3. ročník Počet hodin : 165 Učební texty : H. Staudková : Matematika č. 7 (Alter) R. Blažková : Matematika

Více

SolidWorks STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství a stavebnictví

SolidWorks STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství a stavebnictví SolidWorks Metodika Tento materiál vznikl v rámci projektu: STROJTECH Inovace a zefektivnění vzdělávání podle ŠVP 3D modelování ve strojírenství a stavebnictví CZ.1.07/1.1.16/01.0054 Tento projekt je spolufinancován

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ

5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ 5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ

DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ DATOVÉ FORMÁTY GRAFIKY, JEJICH SPECIFIKA A MOŽNOSTI VYUŽITÍ UMT Tomáš Zajíc, David Svoboda Typy počítačové grafiky Rastrová Vektorová Rastrová grafika Pixely Rozlišení Barevná hloubka Monitor 72 PPI Tiskárna

Více

1. Úvod do Systémů CAD

1. Úvod do Systémů CAD 1. Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován CA technologiím. Po úvodním seznámení se soustředíme především na oblast počítačové podpory konstruování, tedy CAD. Doba nutná k nastudování

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 3. ročník Zpracovala: Mgr. Jiřina Hrdinová Číslo a početní operace čte, zapisuje a porovnává přirozená čísla do 1000, užívá a zapisuje vztah rovnosti a

Více

Standardy ČJ - 2.stupeň - přehled

Standardy ČJ - 2.stupeň - přehled Standardy ČJ - 2.stupeň - přehled ČJL-9-1-01 Žák odlišuje ve čteném nebo slyšeném textu fakta od názorů a hodnocení, ověřuje fakta pomocí otázek nebo porovnáváním s dostupnými informačními zdroji - 9.r.

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP

POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP POČÍTAČOVÁ GRAFIKA 3D MODELOVÁNÍ ZÁKLADY PROGRAMU SKETCHUP SKETCHUP SketchUp je program pro tvorbu trojrozměrných modelů. Je to jednoduchý, intuitivní a silný nástroj pro modelování. Není žádný problém

Více

4) Vztah mezi ČSN, EN a ISO

4) Vztah mezi ČSN, EN a ISO Obsah: VÝZNAM TEK A NORMALIZACE 1. Co je to technické kreslení? 2. Cíle výuky TEK. 3. Druhy platných norem v ČR 4. Vztah mezi ČSN, EN a ISO 5. Druhy technických výkresů 6. Formáty výkresů 7. Povinná výbava

Více

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ

GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ GEOMETRICKÉ MODELOVÁNÍ PETRA SURYNKOVÁ, RADKA MATĚKOVÁ, JANA VLACHOVÁ V příspěvku pojednáváme o použití počítačového modelování ve výuce geometrie. Naším cílem je zvýšit zájem o studium geometrie na všech

Více

Software pro strojírenství, grafika a prezentace.

Software pro strojírenství, grafika a prezentace. PROJEKT SENIOR 4 VZDĚLÁVÁCÍ PROGRAM DALŠÍHO VZDĚLÁVÁNÍ Software pro strojírenství, grafika a prezentace. Software pro strojírenství, grafika a prezentace. Autorský tým: Ing. Martin Baričák Ing. Miroslav

Více

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE

MATEMATIKA. MATEMATIKA průřez.téma + MP vazby. vzdělávací oblast: vzdělávací obor: MATEMATIKA A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE A JEJÍ APLIKACE ČÍSLO A POČETNÍ OPERACE + MP vazby 1. Obor přirozených čísel - používá čísla v oboru 0-20 k modelování reálných situací.- práce s manipulativy - počítá předměty v oboru 0-20, vytváří soubory

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Co je nového v ZW3D 2015 CAD. ZWCAD Software Co., Ltd.

Co je nového v ZW3D 2015 CAD. ZWCAD Software Co., Ltd. Co je nového v ZW3D 2015 CAD ZWCAD Software Co., Ltd. 1 Obsah Základní prvky.6 Správa souborů... 6 Nová podpora automatické zálohy sekce 8 Nový formulář "Uložit opravené dokumenty".8 Uživatelské prostředí...

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

5.2.2 Matematika - 2. stupeň

5.2.2 Matematika - 2. stupeň 5.2.2 Matematika - 2. stupeň Charakteristika předmětu Obsahové, časové a organizační vymezení předmětu: Vyučovací předmět Matematika na 2. stupni školy navazuje svým vzdělávacím obsahem na předmět Matematika

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

SolidWorks. SW je parametrický 3D modelář a umožňuje. Postup práce v SW: Prostředí a ovládání

SolidWorks. SW je parametrický 3D modelář a umožňuje. Postup práce v SW: Prostředí a ovládání SolidWorks Prostředí a ovládání SW je parametrický 3D modelář a umožňuje objemové a plošné modelování práci s rozsáhlými sestavami automatické generování výrobních výkresu spojení mezi modelováním dílu,

Více

5.2.1. Matematika pro 2. stupeň

5.2.1. Matematika pro 2. stupeň 5.2.1. Matematika pro 2. stupeň Charakteristika vyučovacího předmětu 2. stupeň Obsahové, časové a organizační vymezení Předmět matematika se vyučuje jako samostatný předmět v 6., 8. a 9. ročníku 4 hodiny

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

Použití splinů pro popis tvarové křivky kmene

Použití splinů pro popis tvarové křivky kmene NAZV QI102A079: Výzkum biomasy listnatých dřevin Česká zemědělská univerzita v Praze Fakulta lesnická a dřevařská 9. února 2011 Cíl práce Cíl projektu: Vytvořit a ověřit metodiku pro sestavení lokálního

Více

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl

M - 2. stupeň. Matematika a její aplikace Školní výstupy Žák by měl 6. ročník číst, zapisovat, porovnávat, zaokrouhlovat, rozkládat přirozená čísla do 10 000 provádět odhady výpočtů celá čísla - obor přirozených čísel do 10 000 numerace do 10 000 čtení, zápis, porovnávání,

Více

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák:

Matematika prima. Vazby a přesahy v RVP Mezipředmětové vztahy Průřezová témata. Očekávané výstupy z RVP Školní výstupy Učivo (U) Žák: Matematika prima Očekávané výstupy z RVP Školní výstupy Učivo (U) využívá při paměťovém počítání komutativnost a asociativnost sčítání a násobení provádí písemné početní operace v oboru přirozených zaokrouhluje,

Více

5.2.1 Matematika povinný předmět

5.2.1 Matematika povinný předmět 5.2.1 Matematika povinný předmět Učební plán předmětu 1. ročník 2. ročník 3. ročník 6. ročník 7. ročník 8. ročník 9. ročník 4 4+1 4+1 4+1 4+1 4 4 3+1 4+1 Vzdělávací oblast Matematika a její aplikace v

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ KRESLENÍ SOUČÁSTÍ A SPOJŮ 3 PŘEVODY

Více

Obr.1 Zařazení CAD do oblasti CA technologií

Obr.1 Zařazení CAD do oblasti CA technologií Systémy CAD CAD systémy (Computer Aided Design) jsou programové nástroje určené pro použití v úvodních etapách výrobního procesu, ve vývoji, konstrukci a technologické přípravě výroby. Oblast CAD je jen

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Evidence a správa kanalizace v GIS Kompas 3.2

Evidence a správa kanalizace v GIS Kompas 3.2 IČ: 25472593 MK Consult, v.o.s. Drážďanská 493/40, 40007 Ústí nad Labem tel.,fax 47550500408, e-mail info@mkconsult.cz Evidence a správa kanalizace v GIS Kompas 3.2 Základní popis programu Kompas 3.2 Systém

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Tvorba základních prvků

Tvorba základních prvků Tvorba základních prvků Číslo publikace spse01515 Tvorba základních prvků Číslo publikace spse01515 Poznámky a omezení vlastnických práv Tento software a související dokumentace je majetkem společnosti

Více

Dodatek k ŠVP ZV č. 1

Dodatek k ŠVP ZV č. 1 Dodatek k ŠVP ZV č. 1 Název školního vzdělávacího programu: Škola dobré pohody Školní vzdělávací program pro základní vzdělávání Ředitelka školy: Mgr. Dagmar Bičová Koordinátor ŠVP ZV: Mgr. Magdalena Krausová

Více

1. Blok 1 Úvod do Systémů CAD

1. Blok 1 Úvod do Systémů CAD 1. Blok 1 Úvod do Systémů CAD Studijní cíl Tento blok kurzu je věnován problematice tvorby technické dokumentace pomocí počítačové podpory. Doba nutná k nastudování 2 3 hodiny Průvodce studiem Pro studium

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace

Triangulace. Význam triangulace. trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy. příklad triangulace Význam triangulace trojúhelník je základní grafický element aproximace ploch předzpracování pro jiné algoritmy příklad triangulace Definice Triangulace nad množinou bodů v rovině představuje takové planární

Více

HŘÍČKY PRO ROZVOJ PROSTOROVÉ ORIENTACE

HŘÍČKY PRO ROZVOJ PROSTOROVÉ ORIENTACE HŘÍČKY PRO ROZVOJ PROSTOROVÉ ORIENTACE 1 Šárka Gergelitsová, 2 Tomáš Holan 1 Gymnázium Benešov email: sarka@gbn.cz 2 KSVI MFF UK Praha, email: Tomas.Holan@mff.cuni.cz Abstrakt. Při rozvoji prostorové představivosti

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

-Zobrazí čísla a nulu na číselné ose

-Zobrazí čísla a nulu na číselné ose Dodatek k ŠVP č. 38 Výstupy matematika 6. ročník doplnění standardů RVP 6. ročník ŠVP 6.ročník Učivo Matematika Doplnění podle standardů Žák provádí početní operace v oboru celých a racionálních čísel

Více

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - -

100 1500 1200 1000 875 750 675 600 550 500 - - 775 650 550 500 450 400 350 325 - - Prostý kružnicový oblouk Prostý kružnicový oblouk se používá buď jako samostatné řešení změny směru osy nebo nám slouží jako součást směrové změny v kombinaci s přechodnicemi nebo složenými oblouky. Nejmenší

Více

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů

- 1 - 1. - osobnostní rozvoj cvičení pozornosti,vnímaní a soustředění při řešení příkladů,, řešení problémů - 1 - Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika 6.ročník Výstup Učivo Průřezová témata - čte, zapisuje a porovnává přirozená čísla s přirozenými čísly - zpaměti a písemně

Více

Matematika a její aplikace Matematika

Matematika a její aplikace Matematika Vzdělávací oblast : Vyučovací předmět : Období ročník : Počet hodin : 165 Matematika a její aplikace Matematika 2. období 5. ročník Učební texty : J. Justová: Alter-Matematika, Matematika 5.r.I.díl, 5.r.

Více

Práce s předlohami. Jako předměty modelování

Práce s předlohami. Jako předměty modelování Práce s předlohami Se všemi důležitými nástroji a správci jste se už setkali, a proto se budete moci pustit do vytváření komplexnějších objektů. Při modelování se předpokládá znalost použitých nástrojů

Více