Logické programování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Logické programování"

Transkript

1 30. října 2012

2 Osnova Principy logického programování 1 Principy logického programování 2 3

3 1 Principy logického programování 2 3

4 Paradigmata programování Strukturované programování Procedurální programování Funkcionální programování Objektově orientované programování

5 Paradigmata programování Strukturované programování Procedurální programování Funkcionální programování Objektově orientované programování

6 Co je logické programování? jedno z paradigmat programování založeno na matematické logice program = konečná množina axiomů výpočet = konstruktivní důkaz dotazu zadaného uživatelem Vývoj a využití princip logického programování představen J. A. Robinsonem v 1965 první implementace v 70. letech 20. století na Univerzitě v Marseille (PROLOG) využití při programování expertních systémů jazyky: dialekty LISPu (USA), PROLOG (Evropa) rozšíření PROLOGU: fuzzy PROLOG, DATALOG,...

7 Znalostní báze Znalostní báze (popis přirozeným jazykem) Honza, Jirka a Vilík jsou muži. Monika a Jana jsou ženy. Honza je Jirkovo dítě. Vilík je Moničino dítě. Synové jsou děti mužského pohlaví. Děti jsou naši potomci, děti našich potomků jsou také naši potomci. Přesnější formulace znalostní báze Honza je muž. Jirka je muž. Vilík je muž. Monika je žena. Jana je žena. Honza je Jirkovo dítě. Vilík je Moničino dítě. Osoba X je synem osoby Y pokud je X dítětem Y a pokud je X muž. Osoba X je potomkem osoby Y pokud je X dítětem Y nebo pokud je X dítětem některého potomka Y.

8 Znalostní báze Znalostní báze (popis přirozeným jazykem) Honza, Jirka a Vilík jsou muži. Monika a Jana jsou ženy. Honza je Jirkovo dítě. Vilík je Moničino dítě. Synové jsou děti mužského pohlaví. Děti jsou naši potomci, děti našich potomků jsou také naši potomci. Přesnější formulace znalostní báze Honza je muž. Jirka je muž. Vilík je muž. Monika je žena. Jana je žena. Honza je Jirkovo dítě. Vilík je Moničino dítě. Osoba X je synem osoby Y pokud je X dítětem Y a pokud je X muž. Osoba X je potomkem osoby Y pokud je X dítětem Y nebo pokud je X dítětem některého potomka Y.

9 Ukázka logického programu Honza je muž. Jirka je muž. Vilík je muž. Monika je žena. Jana je žena. Honza je Jirkovo dítě. Vilík je Moničino dítě. Osoba X je synem osoby Y pokud je X dítětem Y a pokud je X muž. Osoba X je potomkem osoby Y pokud je X dítětem Y nebo pokud je X dítětem některého potomka Y. Logický program muz(honza). muz(jirka). muz(vilik). zena(monika). zena(jana). jedite(honza,jirka). jedite(vilik,monika). jesyn(x,y) :- jedite(x,y), muz(x). jepotomek(x,y) :- jedite(x,y). jepotomek(x,y) :- jedite(x,z), jepotomek(z,y).

10 Ukázka logického programu % prirozene cislo natural(0). natural(s(x)) :- natural(x). % scitani prirozenych cisel add(x,0,x). add(x,s(y),s(z)) :- add(x,y,z). % je sude? even(0). even(s(s(x))) :- even(x). % je liche? odd(s(0)). odd(s(s(x))) :- odd(x). % prirozené usporadani X,Y leq(x,x). leq(x,s(y)) :- leq(x,y).

11 1 Principy logického programování 2 3

12 Jazyk logického programu Definice Jazyk logického programu L obsahuje konečnou množinu atomů (konstant) A (např. honza, jirka, monika, 0), spočetnou množinu proměnných V (např. X, Y, Z, Cislo), konečnou neprázdnou množinu predikátů P (např. muz/1, zena/1, jepotomek/2, natural/1, leq/2) a konečnou množinu funktorů F (např. s/1). U každého predikátu a funktoru se obvykle uvádí i jeho arita.

13 Termy a formule Definice Term jazyka L definujeme následovně: Každá proměnná v V je term. Každý atom a A je term. Jsou-li t 1,..., t n termy, pak pro libovolný funktor f F je f (t 1,..., t n ) term. Příklady: X, honza, 0, s(s(0)), s(s(s(s(cislo)))) Definice Jsou-li t 1,..., t n termy jazyka L, pak pro libovolný predikát p P je p(t 1,..., t n ) atomická formule. Příklady: muz(honza), zena(jirka), leq(s(0),0)

14 Logický program Definice Faktem nazýváme libovolnou atomickou formuli A 0. Příklady: muz(jirka), jedite(vilik,monika) Definice Pravidlem rozumíme libovolný výraz ve tvaru A 0 A 1, A 2,..., A n, kde A 0,..., A n jsou atomické formule. Příklad: jepotomek(x,y) :- jedite(x,y). Definice Cíl je libovolný výraz ve tvaru A 1, A 2,..., A n, kde A 1,..., A n jsou atomické formule. Příklad: jedite(x,monika), muz(x)

15 Příklad výpočtu Program: muz(honza). muz(jirka). muz(vilik). zena(monika). zena(jana). jedite(honza,jirka). jedite(jana,monika). jedite(vilik,monika). jesyn(x,y) :- jedite(x,y), muz(x). Zadán cíl: jesyn(x, monika). Intuitivní řešení: K tomu, abychom stanovili odpověd na jesyn(x, monika). stačí stanovit odpověd na jedite(x,monika), muz(x), což pro X = vilik dostáváme ihned z databáze faktů. Pro žádnou další hodnotu X to již neplyne.

16 1 Principy logického programování 2 3

17 Substituce Principy logického programování Definice Necht X 1,..., X n jsou proměnné a t 1,..., t n jsou takové termy, že platí 1 X i t i (i = 1,..., n), 2 X i X j (i j). Pak množinu Θ = {X 1 /t 1,..., X n /t n } nazveme substituce. Použití substituce Θ na term (formuli, fakt, pravidlo, cíl) A je term (formule, fakt, pravidlo, cíl) AΘ, který vznikne z A náhradou všech výskytů proměnných X i v A odpovídajícími termy t i. Příklad: Θ = {X/vilik, Y /Z, Z /jana}, A = jedite(x, Y ), muz(z ), muz(vilik), AΘ = jedite(vilik, Z ), muz(jana), muz(vilik).

18 Skládání substitucí Definice Necht Θ a σ jsou substituce ve tvaru Θ = {X 1 /s 1,..., X m /s m } a σ = {Y 1 /t 1,..., Y n /t n }. Pak složená substituce Θσ je ve tvaru {X 1 /(s 1 σ),..., X n /(s m σ), Y 1 /t 1,..., Y n /t n }, ve které navíc vynecháme všechny: 1 prvky X i /(s i σ), pro které X i = s i σ, 2 prvky Y j /t j, pro které Y j {X 1,..., X n }. Příklad: Θ = {X/s(Z ), Y /W } a σ = {X/0, Z /0, W /Y } Vytvoříme {X/s(0), Y /Y, X/0, Z /0, W /Y }, ze které následně odebereme Y /Y a X/0. Θσ = {X/s(0), Z /0, W /Y }.

19 Nejobecnější unifikátor algoritmus Vstup: atomické formule φ a ψ Výstup: substituce Θ, pro kterou φθ = ψθ a Θ je nejobecnější (nejjednodušší) možná, nebo odpověd nelze unifikovat 1 Položme E = { φ, ψ }. 2 Vyber libovolný prvek s, t E. Pokud s = f (s 1,..., s n ) a t = f (t 1,..., t n ), nahrad s, t v E dvojicemi s 1, t 1,..., s n, t n a opakuj bod 2. Pokud s = f (s 1,..., s m ) a t = g(t 1,..., t n ), kde f g, pak ukonči výpočet s výstupem nelze unifikovat. Pokud s = t, vyjmi s, t z E a opakuj bod 2. Pokud t = X a s není proměnná, nahrad s, X v E dvojicí X, s a opakuj bod 2. Pokud s = X, t X a proměnná X má v E více výskytů, pak pokud se X vyskytuje v t, odpověz nelze unifikovat, jinak nahrad ostatní výskyty X v E termem t a opakuj bod 2. Pokud pro žádný s, t E nelze nic provést, pak vrat Θ = {X/t X, t E}.

20 Nejobecnější unifikátor příklad Příklad Nalezněte nejobecnější unifikátor f (X, g(y )) a f (g(z ), Z ). E = { f (X, g(y )), f (g(z ), Z ) } E = { X, g(z ), g(y ), Z } E = { X, g(z ), Z, g(y ) } E = { X, g(g(y )), Z, g(y ) } Θ = {X/g(g(Y )), Z /g(y )}

21 Deterministický algoritmus Vstup: logický program a cíl Výstup: odpověd No nebo odpověd Yes spolu se substitucí 1 Vyber první podcíl v aktuálním cíli. Pokud je aktuální cíl prázdný pokračuj bodem 3. 2 Procházej od začátku program. Pokud je první podcíl unifikovatelný pomocí Θ s hlavou některého pravidla, přepiš jej v aktuálním cíli tělem tohoto pravidla a na celý aktuální cíl použij Θ. Pokračuj bodem 1. Pokud je první podcíl unifikovatelný pomocí Θ s faktem, odstraň jej z cíle a použij Θ na cíl. Pokračuj bodem 1. Pokud první podcíl není s ničím unifikovatelný, vrátíme se k předchozímu cíli a zkusíme použít jiné pravidlo/fakt. Pokud první podcíl není s ničím unifikovatelný a již se nelze vrátit k předchozímu cíli, končí výpočet odpovědí No. 3 Odpověz Yes a substitucí vzniklou složením použitých substitucí, ze které odstraníme X j /t j, pokud X j není v cíli.

22 Literatura Principy logického programování J. W. Lloyd: Foundations of logic programming. Springer, J. Hynek, P. Mikulecký: a Prolog, Gaudeamus, V. Vychodil: Prezentace k předmětu Paradigmata programování IV, SWI-Prolog, dostupné na adrese Tato prezentace a implementace did-prolog je dostupná na adrese v části Přednášky pro střední školy.

Klauzulární logika. Znalostní báze. Šárka Vavrečková

Klauzulární logika. Znalostní báze. Šárka Vavrečková Klauzulární logika Znalostní báze Šárka Vavrečková Ústav informatiky, Filozoficko-přírodovědecká fakulta Slezské univerzity v Opavě sarka.vavreckova@fpf.slu.cz 26. listopadu 2007 (Znalostní báze) Klauzulární

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

IB013 Logické programování I Hana Rudová. jaro 2011

IB013 Logické programování I Hana Rudová. jaro 2011 IB013 Logické programování I Hana Rudová jaro 2011 Hodnocení předmětu Zápočtový projekt: celkem až 40 bodů Průběžná písemná práce: až 30 bodů (základy programování v Prologu) pro každého jediný termín:

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Řešení: Ano. Řešení: Ne.

Řešení: Ano. Řešení: Ne. 1 ÚLOHY Z PREDIKÁTOVÉ LOGIKY Instance, varianty. UF.1.1. Substituovatelnost. 1. Buď ϕ formule ( z)(x=z)&y < x a dále x, y, z různé proměnné, F unární funkční symbol, c konstantní symbol. Uveďte, zda je

Více

Složitější domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta

Složitější domény. Petr Štěpánek. S využitím materialu Krysztofa R. Apta Složitější domény Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 11 1 V této části se budeme zabývat seznamy a binárními stromy. Naším cílem není tyto datové struktury podrobně

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá

Více

Rezoluce ve výrokové logice

Rezoluce ve výrokové logice Rezoluce ve výrokové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce ve VL 1/13 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. 2 X nesplnitelná iff X = ff. 3 Hledání kritických důsledků X syntakticky.

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5.9 10/14

ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2014 5.9 10/14 ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2014 5.9 10/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 31 0:40 Programovací jazyky Programovací jazyky jsou jazyky

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu.

2.1 Formule predikátové logiky. větám. Použijte k tomu predikátových symbolu uvedených v textu. 6 Kapitola 2 Příklady z predikátové logiky 2.1 Formule predikátové logiky 2.1.1 Příklad. Napište formule predikátové logiky odpovídající následujícím větám. Použijte k tomu predikátových symbolu uvedených

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Programy na PODMÍNĚNÝ příkaz IF a CASE

Programy na PODMÍNĚNÝ příkaz IF a CASE Vstupy a výstupy budou vždy upraveny tak, aby bylo zřejmé, co zadáváme a co se zobrazuje. Není-li určeno, zadáváme přirozená čísla. Je-li to možné, používej generátor náhodných čísel vysvětli, co a jak

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

Program a životní cyklus programu

Program a životní cyklus programu Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy

Více

š Á š š ů š ý š Č Š Č ň ý ž ů ý ž ů Č ý ž ú Ň Š Í š ý ú ý š š š ý š š š š ý š š š Ů š š š š ý ů ů š ý ň š š š ž ů ň š ž ž ň ý ž š ý ý š ý š ý ú ů ž ý š ž š ú ú š ý ň ň š ý š š š Ú ú š ý ů š š š š š š š

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

ý ť Č š Ů ý š ý ý ý š š š Č š ú ý ý ú ú ý ý ú ú ú ú š ú ú ú ú ú ý š ú š ó š š ý ýš ý ú ú ú ď ý ý š ú ú ň ý šť š š šš Š ý ú ú ú š ý ý ý ň ň ú š ú š ú š ý š ý ú ú š š ť ú ý ý ý ý ó š ň ť ť š ú šš š š ý š

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

É Á š ť Č Č ď š Ě ů ď š š ď Ó ď ď Ú ď Ů š ú š ť š Á ň ú Ě š š Ý š š š š š š Á Ý š š š š š š š š ú ť Á Á š Ď ď ď Á ď ď ď ď š ú Ď ď ú Ů ň ú ů š š ď š Řď ď š Ú šš š š š Ý ď ď š Ř š Řď Ř š ť Ú Ř š Ď Ď Ř š

Více

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy Formální systémy (výrokové) logiky postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy cíl: získat formální teorii jako souhrn dokazatelných

Více

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace

Kapitola 3: Relační model. Základní struktura. Relační schéma. Instance relace - 3.1 - Struktura relačních databází Relační algebra n-ticový relační kalkul Doménový relační kalkul Rozšířené operace relační algebry Modifikace databáze Pohledy Kapitola 3: Relační model Základní struktura

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Využití OOP v praxi -- Knihovna PHP -- Interval.cz

Využití OOP v praxi -- Knihovna PHP -- Interval.cz Page 1 of 6 Knihovna PHP Využití OOP v praxi Po dlouhé teorii přichází na řadu praxe. V následujícím textu si vysvětlíme možnosti přístupu k databázi pomocí různých vzorů objektově orientovaného programování

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz

Automatická segmentace slov s pomocí nástroje Affisix. Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Automatická segmentace slov s pomocí nástroje Affisix Michal Hrušecký, Jaroslava Hlaváčová Michal@Hrusecky.net, Hlavacova@ufal.mff.cuni.cz Motivace Při zpracování přirozeného jazyka nikdy nemůžeme mít

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo.

Numerace. Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace Numerace je nauka, jejímž cílem je osvojení pojmu přirozené číslo. Numerace má tyto dílčí úkoly: 1) Naučit žáky číst číslice a správně vyslovovat názvy čísel. 2) Naučit žáky zapisovat čísla v

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

J. Zendulka: Databázové systémy 4 Relační model dat 1

J. Zendulka: Databázové systémy 4 Relační model dat 1 4. Relační model dat 4.1. Relační struktura dat... 3 4.2. Integritní pravidla v relačním modelu... 9 4.2.1. Primární klíč... 9 4.2.2. Cizí klíč... 11 4.2.3. Relační schéma databáze... 13 4.3. Relační algebra...

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

1. Průběh funkce. 1. Nejjednodušší řešení

1. Průběh funkce. 1. Nejjednodušší řešení 1. Průběh funkce K zobrazení průběhu analytické funkce jedné proměnné potřebujeme sloupec dat nezávisle proměnné x (argumentu) a sloupec dat s funkcí argumentu y = f(x) vytvořený obvykle pomocí vzorce.

Více

Ohodnocené orientované grafy

Ohodnocené orientované grafy Ohodnocené orientované grafy Definice Buď G graf Funkce w : H( G) (, ) se nazývá (hranové) ohodnocení grafu G; graf se zadaným ohodnocením se nazývá ohodnocený graf Definice Nechť G je orientovaný graf

Více

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka

Metody tvorby ontologií a sémantický web. Martin Malčík, Rostislav Miarka Metody tvorby ontologií a sémantický web Martin Malčík, Rostislav Miarka Obsah Reprezentace znalostí Ontologie a sémantický web Tvorba ontologií Hierarchie znalostí (D.R.Tobin) Data jakékoliv znakové řetězce

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy.

Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Problém obchodního cestujícího(tsp) Vstup: Množina n měst a vzdálenosti mezi nimi. Výstup: Nejkratší okružní cesta procházející všemi městy. Poznámka:Slovem okružní myslíme,žecestakončívestejném městě,

Více

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech

7 Formátovaný výstup, třídy, objekty, pole, chyby v programech 7 Formátovaný výstup, třídy, objekty, pole, chyby v programech Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost formátovanému výstupu,

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Systémy pro podporu rozhodování. Modelování a analýza

Systémy pro podporu rozhodování. Modelování a analýza Systémy pro podporu rozhodování Modelování a analýza 1 Připomenutí obsahu minulé přednášky Datové sklady, přístup, analýza a vizualizace Povaha a zdroje dat (data, informace, znalosti a interní, externí,

Více

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky.

Týden 11. Přednáška. Teoretická informatika průběh výuky v semestru 1. Nejprve jsme dokončili témata zapsaná u minulé přednášky. Teoretická informatika průběh výuky v semestru 1 Týden 11 Přednáška Nejprve jsme dokončili témata zapsaná u minulé přednášky. PSPACE, NPSPACE, PSPACE-úplnost Uvědomilijsmesi,ženapř.prozjištěnítoho,zdaBílýmánějakoustrategiivehřeŠACHY,

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

NP-úplnost problému SAT

NP-úplnost problému SAT Problém SAT je definován následovně: SAT(splnitelnost booleovských formulí) Vstup: Booleovská formule ϕ. Otázka: Je ϕ splnitelná? Příklad: Formule ϕ 1 =x 1 ( x 2 x 3 )jesplnitelná: např.přiohodnocení ν,kde[x

Více

Ý š é š ó š ž š žé ó Š é ď Ý é é ž é ž š ž Ť é š é é Ř š é ď é ž é ž é é ž Ť é ď é šš é ž é ž é ž ů ž ž é Ť Ť Ř š é ž ž ď Ú š é ž š š ž š é ž š é é š ž é ž é ž ů é ž é ž é Č é é ž š š é é Ř š ž Ž š é é

Více

ď ď ď š Ý š š É Ý šš š š š šš š š š š Ě š Ó ď šš š šš ď Ě šš š šš Ě š Ě Ě Ú š š š Ě š š ď Ě š š Ž š Ě š Č š Ý ď š š ď š Ý Ť š š š š š Ý š ď ď š š Á Á É š š š Ž šš ď ř ň ř ř š Ý ď š š š š š š Ť Ě š Ť š

Více

š Ý š š Ú ž ž š ž š š ž š Í š š ž š Ú ž ž ž šš ž ž ž šš ž ž š ž ž š š ž ž ž šš ž ň Č ž ž ž ž šš ž ž ž š š š ó š š ž š ž š ž Ú ž š ž š š Ú ň š š ó š ž š ž š Ž ň š š š š š š š ž š š ž š š š š š š š š š š

Více

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda

3. Je defenzivní programování technikou skrývání implementace? Vyberte jednu z nabízených možností: Pravda Nepravda 1. Lze vždy z tzv. instanční třídy vytvořit objekt? 2. Co je nejčastější příčinou vzniku chyb? A. Specifikace B. Testování C. Návrh D. Analýza E. Kódování 3. Je defenzivní programování technikou skrývání

Více

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování

Systémy pro podporu. rozhodování. 2. Úvod do problematiky systémů pro podporu. rozhodování 1 Systémy pro podporu rozhodování 2. Úvod do problematiky systémů pro podporu rozhodování 2 Připomenutí obsahu minulé přednášky Rozhodování a jeho počítačová podpora Manažeři a rozhodování K čemu počítačová

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Ý Ř É Á ý ď Ř Á É Á Á ě Ř É Á ě ě ó ý ř ě Ů ě ř ý ě ě š ř ů Á É Ř ý ř ý ů ž ž ý ěř ř ě ž ý š ě ř ě ř ý ý ě ě ď ř ó ů ď Ú ú ř ě ě ě ř ě ě ř ý ž ě ě ř ě ý ě ě Ř Ě Ř É ř ě ř ě ď Ž ř ď ý ď ř ý ě ř š ě ě š

Více

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13

Postův korespondenční problém. Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Meze rozhodnutelnosti 2 p.1/13 Postův korespondenční problém Definice 10.1 Postův systém nad abecedou Σ je dán neprázdným seznamem S dvojic neprázdných řetězců nadσ, S = (α

Více

Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování. Předmět: Programování

Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování. Předmět: Programování Vzdělávací oblast: Informatika a informační a komunikační technologie Vzdělávací obor: Programování Vzdělávací oblast Informatika a informační a komunikační technologie pro vzdělávací obor Programování

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Závislost náhodných veličin Úvod Předchozí přednášky: - statistické charakteristiky jednoho výběrového nebo základního souboru - vztahy mezi výběrovým a základním souborem - vztahy statistických charakteristik

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

POSTUP PRO VYTVOŘENÍ STRUKTUR PRO UKLÁDÁNÍ RDF DAT V ORACLE

POSTUP PRO VYTVOŘENÍ STRUKTUR PRO UKLÁDÁNÍ RDF DAT V ORACLE POSTUP PRO VYTVOŘENÍ STRUKTUR PRO UKLÁDÁNÍ RDF DAT V ORACLE Upozornění: Pro práci s RDF Oracle daty je třeba mít nainstalován Oracle Spatial Resource Description Framework (RDF). 1. Vytvoření tabulkového

Více

Č š ž ý ČŠ ý š šš é é ďě š ý ě ě š ů ě ě š ů é ě ě ě ě ý ů ě ě š ů Č ď š Í ě Í ě Č é ě ž ů ý ý š š ý Ť Ť ý ý š šš é é ě š ý ě ú é é š ý š é š ě ě ú ž ů ě ý š ě ýš ě ů š é ú ě ť ú ů š š ý š š š ý Ť š ě

Více

ý Š Á Á Ž Ě Ý Ě Á Á Ř Ú ř ý Ě š ř ř ř š ř ú ž š ř š ú ž é ř é ý úř ř ž é Ú ř é é ý ř ý ý ř é ý é ř ž é ž ř é ý š ú ř ř ž ů š š é ý ý ý Á Š Á Ž Ě Ý Ěú Á ť ď š š ý ý ý šť ý š ú ý ý ž é ú ž ů é ž ý ř ž ň

Více

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP

Kódy pro odstranění redundance, pro zabezpečení proti chybám. Demonstrační cvičení 5 INP Kódy pro odstranění redundance, pro zabezpečení proti chybám Demonstrační cvičení 5 INP Princip kódování, pojmy Tady potřebujeme informaci zabezpečit, utajit apod. zpráva 000 111 000 0 1 0... kodér dekodér

Více

Základní pojmy teorie grafů [Graph theory]

Základní pojmy teorie grafů [Graph theory] Část I Základní pojmy teorie grafů [Graph theory] V matematice grafem obvykle rozumíme grafické znázornění funkční závislosti. Pro tento předmět je však podstatnější pohled jiný. V teorii grafů rozumíme

Více

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12

Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı BI-MLO, ZS 2011/12 Logika XI. RNDr. Kateřina Trlifajová PhD. Katedra teoretické informatiky Fakulta informačních technologíı České vysoké učení technické v Praze c Kateřina Trlifajová, 2010 BI-MLO, ZS 2011/12 Evropský sociální

Více

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů.

Modely datové. Další úrovní je logická úroveň Databázové modely Relační, Síťový, Hierarchický. Na fyzické úrovni se jedná o množinu souborů. Modely datové Existují různé úrovně pohledu na data. Nejvyšší úroveň je úroveň, která zachycuje pouze vztahy a struktury dat samotných. Konceptuální model - E-R model. Další úrovní je logická úroveň Databázové

Více

Č Ú Í Á Ú Í Ú Ú Í Á Ě Č Ě Á Á Í Á Í Í Á Í Ý Í Í Á Í ž Í š š ž ť ž ž Í š š š ž š š Ý Č Í Á ú ý ó Č Č ž Í ř ř ž ž ř ř Č ř ý ž ř ž ř ž ý Í ú ů ý ř ř ú ř š š š š ř ž ž ř ý ý ř ý Č ý ž ý š Í ý ý ř Ú š š ž ť

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Í ý Á ó Í Ě Á Á č č č ž š Ž č é é ř é ý ř ř ň č ř ř č ý úč č ú č Ú ý úč ř š č š é š é Ř š ř š Ž ů ú ů ř š č Á Ě Ě É ř ř é č é š č Ž š ý ý Ú ů č ř č šú ř é ř ýš ó ó é ň é ý é č é ř č ýš ý ř ů č é é ň é

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Vstupní požadavky, doporučení a metodické pokyny

Vstupní požadavky, doporučení a metodické pokyny Název modulu: Základy PHP Označení: C9 Stručná charakteristika modulu Modul je orientován na tvorbu dynamických stánek aktualizovaných podle kontextu volání. Jazyk PHP umožňuje velmi jednoduchým způsobem

Více

Kopie z www.dschuchlik.cz

Kopie z www.dschuchlik.cz ó š ó Ň Ť ú š ú š š š ř Ú ó ú ň ú š řš ř řš ř ú ú ú ú ř ú ň ů ů š ň ú š řš ú ř ó š Ý Á ů ú úř š ň š ú š š š š ťť ř ň ů ř ř ř š ů ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ú ří š š ř ů ú Ú ř ú ÚČ ú ú ú š ů

Více

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení.

Definice barevnosti grafu, základní vlastnosti. Varinaty problému barvení. 7 Barevnost a další těžké problémy Pro motivaci této lekce se podíváme hlouběji do historie počátků grafů v matematice. Kromě slavného problému sedmi mostů v Královci (dnešním Kaliningradě) je za další

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Í ť úí ň š ň Š ú š ý ž ž ý š ů š ž ú ž ž ú ž ž ž ý Ž ý ů ý š ž ž ž Ž ž ú ž ů ý ž ž ý ž ý ů ý š ý ý ý ú ž ž ú ž š ž ž ý š Ž ž ž ů ů ž ž ý ů ž ů ú ý ž ý ý ý ž ý ů ý ů ý ú š ž ž ž ů ý ů Ž ž ž ž ú ýš ýš š

Více

ý ý ě ý ý ě ý ž š Ž ý ý š ě Ž ý ů ž ý Ž ý ý š ě ý š ž ů ý ě ě ý ž ž Ý ú ů ž š ý ž Ý ýš ž ů Ž ý ý š ě Ž š ů ě ě ý ž ě ý ě ý ž ý ž Í š ý ý ě ů ý ě ý Ž ě Ž ý ýš ý ý ý ů ě Í Ý ž ž ě ě ě ž ú ě ě ě ú ě ě ň ě

Více

Ž Ý Á Č ě é Š É Á ž Ž Í ý Á ď Č ď ň ě é š ě š é Ž é Ž ě ě ě Í š Č ý Č ý š ě Í š é é š ě é Í Š ýš š ě Á ý ě é Ž Č š Í Í š é ň ů ý Ú ň ě é Š ě ý ýš Š ý Š ý Š ý šť Í ÉČ Ř É É ě é š š Í Ú é ú é Í ě Ž ý ě Ž

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

Kopie z www.dslogistic.cz

Kopie z www.dslogistic.cz Ý ú š ú š š š ř ů ň ú š řš ř řš ř ú ú ú ú ř ř ú ů ů š ň ř úó ú ú š řš ú ř Éň ú š ú ú š ú š š š ď ť ř ů ř ř ř š ů ů řš ř ú ú ř ň ř ů ř ř ú ř ř ú ú ř ř ř ú ř š š ř Ů ú ř ú ú ú ú ú š Ů úó ú Č ř ř ú ČÍ ř ú

Více

Fibonacciho čísla na střední škole

Fibonacciho čísla na střední škole Fibonacciho čísla na střední škole Martina Jarošová Abstract In this contribution we introduce some interesting facts about Fibonacci nunbers We will prove some identities using different proof methods

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

Ý ř ý ě ě š ř ů š Č ý ř Č Í Ř ř ú ý ú ě š Č ý ř é é ů Ž Ú ř ú ě é š ě Č ý ř é ú ě š ů ř ě ý é é ě š ř ř ý ů é Ú é é ě ě ř ř ú Ú Ř Ě Ě ý ř ý ř Š ě Ý ě é ř ř ě ý ě ý é ř Ř Ě Ě ř ě ě ř é ř ů ýš ř ř é ř ú

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Automatizované řešení úloh s omezeními

Automatizované řešení úloh s omezeními Automatizované řešení úloh s omezeními Martin Kot Katedra informatiky, FEI, Vysoká škola báňská Technická universita Ostrava 17. listopadu 15, Ostrava-Poruba 708 33 Česká republika 25. října 2012 M. Kot

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27

Bezkontextové jazyky 3/3. Bezkontextové jazyky 3 p.1/27 Bezkontextové jazyky 3/3 Bezkontextové jazyky 3 p.1/27 Vlastnosti bezkontextových jazyků Bezkontextové jazyky 3 p.2/27 Pumping teorém pro BJ Věta 6.1 Necht L je bezkontextový jazyk. Pak existuje konstanta

Více

DEDUKTIVNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA)

DEDUKTIVNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA) UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta DEDUKTIVNÍ DATABÁZE (DISTANČNÍ VÝUKOVÁ OPORA) Zdeňka Telnarová 2003 Ostravská univerzita 1 Úvod... 4 2 Teoretická východiska deduktivních databází...

Více

1. Programování proti rozhraní

1. Programování proti rozhraní 1. Programování proti rozhraní Cíl látky Cílem tohoto bloku je seznámení se s jednou z nejdůležitější programátorskou technikou v objektově orientovaném programování. Tou technikou je využívaní rozhraní

Více

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno

Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno 12 Délka výpočtu algoritmu Mimo samotné správnosti výsledku vypočteného zapsaným algoritmem je ještě jedno neméně důležité hledisko k posouzení vhodnosti algoritmu k řešení zadané úlohy. Jedná se o čas,

Více

Á Š Ř ý ů ý Ž ů ý ů ý Č ý Ž ý ě ě Š ů ě ý ý ů ý ů ě ě Š ů ý ý ů ýš ý ů ý ň ý ň Ž ě ý É ý ý ž ý ň Ý Ý ů ě ě ý ě ě ý ě Ž ě ů Ý Š ě Š Ž ě ě Š ě ě Š ů ě ě ě ů ý ý ž ý ě ě Š ů ě ě ě Š ů ý ý ý ů ě ě Š ů ě ě

Více