Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012
|
|
- Jan Mach
- před 9 lety
- Počet zobrazení:
Transkript
1 Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 3/2012
2 Stanovení teploty předehřevu osnova Teplota předehřevu-definice Trhliny za studena - vliv Tp na teplotní cyklus svařování - vliv Tp strukturu, - vliv Tp na vlastnosti TOO Experimentální stanovení Tp-zkoušky praskavosti Stanovení Tp výpočtem Kontrola teploty předehřevu Vl. Ochodek 3/2012
3 Teplota předehřevu definice, význam ČSN EN ISO T p (teplota předehřevu, preheating temperature) = teplota součásti v oblasti svaru bezprostředně před jakoukoli svařovací operací; vyjadřuje minimum a obvykle se rovná minimu teploty interpass. Tp ovlivňuje (je ovlivňována) : - teplotní cyklus svařování v zejména v ochlazovací větvi (Δ t8/5, Δ t3/1), - strukturu (diagram ARA), - difuzi vodíku, - úroveň a rozložení zbytkových napětí, - vlastnosti svarových spojů (Re,Rm,HV..)
4 Trhliny za studena Příčiny vzniku : přítomnost vodíku ve svarovém spoji, přítomnost struktury citlivé na účinek vodíku, přítomnost tahových zbytkových napětí Typy vodíkového poškození : -koroze pod napětím (SCC) -sulfidová koroze pod napětím, -vodíková křehkost, -vodíkem indukované trhliny, zbrzděné lomy
5 Teplotní cyklus svařování vliv Tp Možnost ovlivnění teplotního cyklu Tp /Q Tp=20 C (Δ t8/5 = 4s, Δ t3/1 = 80s) Tp=150 C (Δ t8/5 = 7s, Δ t3/1 = 1200s)
6 Vliv Tp, Teplotní Δ t8/5 na cyklus strukturu svařování ARA diagram- vliv na strukturu Vliv rychlosti ochlazování na strukturu a podíl strukturních fází
7 Diagram ARA in situ ARA diagram S355J2G3 (0.18% C, 0.89%Mn, 0.30%Si, 0.01%Mo, 0.05%Ni, 0.08%Cr, 0. 03%Al)
8 Vliv Tp, Δ t8/5 na vlastnosti Čas Δ t8/5
9 Teplem ovlivněná oblast vlastnosti uhlíkové, nízko-legované oceli 20mm C-Mn ocel Teplem ovlivněná oblast vlastnosti
10 Vl. Ochodek 3/2012
11 Zkoušky praskavosti Tekken [1]
12 Zkoušky praskavosti U drážka [1]
13 Zkoušky praskavosti Implant (pro ZM) [1]
14 Zkoušky praskavosti CTS test [1]
15 Zkoušky praskavosti (+ ) Výhody : - skutečný základní materiál, svařovací parametry a technologie, přídavný materiál, teplotní režim svařování. Nevýhody : - časová náročnost, omezený rozsah experimentu (chem,složení mat., tloušťka, technologie svařování ), cena.
16 Vl. Ochodek 3/2012
17 Stanovení Tp výpočtem ČSN EN Svařování Doporučení pro svařování kovových materiálů Část 2: Obloukové svařování feritických ocelí Trhliny za studena příčiny vzniku : přítomnost vodíku ve svarovém spoji, přítomnost struktury citlivé na účinek vodíku, přítomnost tahových zbytkových napětí ANSI / AWS (D 1.1) (American National Standart Institute/ American Welding Society) N.Yurioka- NIPPON STEEL Weldability Calculation (CEN metoda)
18 Stanovení Tp výpočtem ČSN EN ČSN EN Svařování Doporučení pro svařování kovových materiálů Část 2: Obloukové svařování feritických ocelí Norma uvádí, že: pro výpočet předehřevu pro svařování konstrukcí z nelegovaných, jemnozrnných a nízkolegovaných ocelí, je možno použít dvě metody A a B. Metoda A je založena na rozsáhlých praktických zkušenostech a informacích, které platí převážně pro uhlíko-manganové typy ocelí (příloha C2). Metoda B se používá spíše pro nízkolegované vysokopevnostní oceli (příloha C3). Pro žárupevné oceli a oceli pro nízké teploty se musí používat metoda popisovaná v C4 Metoda A:
19 Stanovení Tp výpočtem ČSN EN A
20 Stanovení Tp výpočtem ČSN EN A
21 Stanovení Tp výpočtem ČSN EN A
22 Stanovení Tp výpočtem ČSN EN A
23 Stanovení Tp výpočtem ČSN EN B Metoda B: Metoda B se používá spíše pro nízkolegované vysokopevnostní oceli (příloha C3). Algoritmus Uwer-Hohn-Tekken.
24 Stanovení Tp výpočtem ČSN EN B
25 Stanovení Tp výpočtem ČSN EN B
26 Stanovení Tp výpočtem ČSN EN B
27 Stanovení Tp výpočtem ČSN EN B
28 Stanovení Tp výpočtem ČSN EN B
29 Vliv několikavrstvého svařování Teplotní cyklus svařování : T=f (t)
30 Stanovení Tp výpočtem ČSN EN B
31 Stanovení Tp výpočtem ČSN EN B Teplota předehřevu T p v závislosti na tloušťce plechu d
32 Stanovení Tp výpočtem ČSN EN C Pro žárupevné oceli a oceli pro nízké teploty se musí používat metoda popisovaná v C4 Tab Žárupevné oceli - minimální teplota předehřevu a minimální teplota interpass Minimální teplota předehřevu a minimální teplota interpass ( C) Maximální teplota Typ oceli Tloušťka Stupeň obsahu vodíku interpass D 5 (ml/100 g) C 5 až 10 (ml/100 g) A > 15 (ml/100 g) ( C) ,3 Mo > > nepoužitelné 1 Cr 0,5 Mo ,25 Cr 0,5 Mo > nepoužitelné 300 0,5 Cr 0,5 Mo 0,25 V nepoužitelné > nepoužitelné 300 2,25 Cr 1 Mo > nepoužitelné Cr 0,5 Mo 7 Cr 0,5 Mo 9 Cr 1 Mo všechny nepoužitelné nepoužitelné nepoužitelné a 12 Cr Mo V > a nepoužitelné nepoužitelné 450 b 350 b a Martenzitická metoda, při které je teplota předehřevu nižší než teplota počátku martenzitické transformace M (s) a transformace na martenzit nastane před tím, než je použito jakékoliv tepelné zpracování. b Astenitická metoda, při které je teplota předehřevu vyšší než M(s) a spoj musí být ochlazen pod M(s) aby bylo zajištěno, že transformace na martenzit nastane před tím, než je použito jakékoliv tepelné zpracování po svařování.
33 Stanovení Tp výpočtem ČSN EN C Pro žárupevné oceli a oceli pro nízké teploty se musí používat metoda popisovaná v C4 Tab Oceli pro nízké teploty - minimální teplota předehřevu a minimální teplota interpass Minimální teplota předehřevu a minimální teplota interpass ( C) Tloušťka Typ oceli (mm) Stupeň obsahu vodíku D 5 (ml/100 g) 5 až 10 (ml/100 g) Maximální teplota interpass ( C) 3,5 Ni nad a 150 a 5,0 Ni nad b nepoužitelné 250 5,5 Ni nad b nepoužitelné 250 9,0 Ni nad b nepoužitelné 250 a Hodnoty uvedené pro minimální předehřevu jsou typické pro běžnou výrobu při použití přídavných materiálu, jejichž chemického složení odpovídá základnímu materiálu. b Stanovená úroveň předehřevu se vztahuje na ty případy, ve kterých se použijí podobné přídavné materiály nebo svařování bez přídavného materiálu. Oceli s 5 až 9% Ni jsou obvykle svařovány s použitím přídavných svařovacích materiálů na bázi Ni a předehřev není obvykle požadován do tloušťky 50 mm. Tab Příklady maximálních kobinovaných tloušťěk svařitelných bez předehřevu. Maximální kombinovaná tloušťka (mm) Obsah difuzního vodíku CE = 0,49 CE = 0,43 (ml/100 g svarového Tepelný příkon Tepelný příkon kovu) 1,0kJ/mm 2,0kJ/mm 1,0kJ/mm 2,0kJ/mm >
34 Stanovení Tp výpočtem ANSI/AWS dle ANSI / AWS (D 1.1) (American National Standart Institute/ American Welding Society) Výpočtové metody 1.Hardness Method (HM) výpočet optimálního tepelného příkonu svařování k eliminaci studeného praskání. 2.Hydrogen Control Method (HCM) výpočet předehřevu dle chemického složení ZM a obsahu difusního vodíku ve svaru. Mn + Si Cr + Mo + V Ce = C Ni + Cu 15
35 Stanovení Tp výpočtem ANSI/AWS 2 Zona I V této oblasti je vznik studeného praskání nepravděpodobný. Pouze v případě vysokého obsahu difusního vodíku nebo vysoké úrovně zbytkového napětí, se teplota předehřevu stanoví metodou HCM. Zona II Nebezpečí vzniku studených trhlin lze eliminovat stanovením minimálního tepelného příkonu svařování metodou HM. Zona III Pokud je úroveň tepelného příkonu příliš vysoká a hrozí degradace mechanických vlastností TOO, stanoví se předehřev metodou HCM. a technologických Index náchylnosti k vodíkovému praskání Úrove ň obsahu Hd Parametr chemického složení Pcm < 0,18 < 0,23 < 0,28 < 0,33 < 0,38 H1 A B C D E H2 B C D E F H3 C D E F G
36 Stanovení Tp výpočtem ANSI/AWS 2 Tuhost konstrukce Tloušťka desky (mm) Minimum teploty předehřevu a interpass ( C) Index náchylnosti k vodíkovému praskání A B C D E F G <10 <18 <18 <18 < <18 < nízká <18 < > <10 <18 <18 <18 < <18 < střední < > <10 <18 <18 < < vysoká >
37 Stanovení Tp výpočtem ANSI/AWS 1 Metoda výpočtu HM - Hardness Method Stanovení kritické rychlosti ochlazování dle ekvivalentu CE a úrovně tvrdosti, Rychlost ochlazování jako funkce ekvivalentu CE a tvrdosti.
38 Stanovení Tp výpočtem ANSI/AWS 1 Metoda výpočtu HM - Hardness Method Odečet hodnoty tepelného příkonu svařování ze sady grafů, zkonstruovaných pro jednotlivé typy a rozměry svarových ploch, Tepelný příkon, jednovrstvý koutový svar, tloušťka pásnice 0,5 in ( 12,7 mm).
39 Stanovení Tp výpočtem Yurioka [4]
40 Stanovení Tp výpočtem Yurioka
41 Stanovení Tp výpočtem Yurioka
42 Stanovení Tp výpočtem Yurioka
43 Stanovení Tp výpočtem porovnání [2]
44 Stanovení Tp výpočtem porovnání [2]
45 Stanovení Tp výpočtem porovnání [2]
46 Stanovení Tp výpočtem porovnání [2]
47 Stanovení Tp výpočtem porovnání [2]
48 Stanovení Tp výpočtem závěr Svařitelnost moderních vysoce odolných ocelí se výrazně zlepšila snížením uhlíku,legující prvků a termomechanickým zpracováním. Problematickou oblastí s ohledem na legování je pak svarový kov, kde není možné použít termomechanický princip. Zvyšování obsahu legur ve svarovém kovu může vést k nárůstu náchylnosti na studenou praskavost. Všechny metody predikce praskavost za studena. reagují podobně na základní faktory ovlivňující Metoda ČSN EN B (CET method) je pro C-Mn oceli. poměrně velmi konzervativní Pro moderní oceli je vhodné použít algoritmy,které reagují na základní faktory ovlivňující studenou praskavost : svařovací příkon, difuzní vodík, chemické složení, tuhost svarového spoje (příp. tloušťku- komb. tloušťku), strukturu (t8/5. t3/1, tm.)
49 Vl. Ochodek 3/2012
50 Teplota předehřevu kontrola Kontrola teploty předehřevu (ČSN EN ISO 13916) : t <= 50 : A= 4x t max. 50mm t > 50 : A=75 mm Měření na opačné straně, než která je ohřívaná. Přístup z ohřívané strany po odstranění topných elementů, čas pro vyrovnání teploty je 2 min. na každých 25 mm tloušťky ZM. Vl. Ochodek 9/2010
51 Termokřídy, termolaky [3] Vl. Ochodek 1/2011
52 Měření teploty termočlánky Kontaktní měření (termočlánky) : Kov A Kov B Sebekovo napětí Vl. Ochodek 9/2010
53 Termočlánkové sondy [3] Vl. Ochodek 1/2011
54 Digitální teploměry [3] Vl. Ochodek 1/2011
55 Kalibrátory [3] Vl. Ochodek 1/2011
56 Teplotní cyklus svařování : Záznam Teplotní teploty v cyklus průběhu svařování svařování Vl. Ochodek 9/2010
57 Bezkontaktní měření teploty [3] Infratermočlánek Rozsah teplot do 2482 C Emisivita k nastavení od 0.1 do 1.00 po kroku 0.01 Vl. Ochodek 1/2011
58 Bezkontaktní měření teploty [3] Model Temperature Range Spectral Response Response Time (95% response) LT G5L G5H MT New! 3M 2ML 2MH 1ML 1MH -40 C to 800 C (-40 F to 1472 F) 250 C to 1650 C (482 F to 3002 F) 450 C to 2250 C (842 F to 4082 F) 250 C to 1100 C (482 F to 2012 F) 100 C to 600 C (212 F to 1112 F) 300 C to 1100 C (572 F to 2012 F) 450 C to 2250 C (842 F to 4082 F) 450 C to 1740 C (842 F to 2732 F 650 C to 3000 C (1202 F to 5432 F) 8-14 µm 120 ms 5 µm 60 ms 5 µm 60 ms 3.9 µm 120 ms 2.3 µm 20 ms 1.6 µm 2 ms 1.6 µm 2 ms 1 µm 2 ms 1 µm 2 ms
59 Bezkontaktní měření teploty
60 Děkuji za pozornost. Dotazy? Odkazy : [1] Boellinghaus, Th. At al. Cold cracking tests revision. IIW-Doc.NoII-A [2] Yurioka,N.Comparison of Preheat Predictive Method. IIW-Doc.IX/ [3] [4] Yurioka,N. Welding Cal. Vl. Ochodek 3/2012
Vliv teplotního. VŠB TU Ostrava Katedra mechanické technologie ústav svařování Vl. Ochodek 1/2011
Vliv teplotního režimu svařování na vlastnosti svarových spojů I Vladislav OCHODEK Vladislav OCHODEK VŠB TU Ostrava Katedra mechanické technologie ústav svařování Obsah Definice teplotního režimu svařování.
Teplotní režim svařování
Teplotní režim svařování Jednoduchý teplotní cyklus svařování 111- MMAW, s=3 mm, 316L, Jednoduchý teplotní cyklus svařování Svařování třením Složitý teplotní cyklus svařování 142- GTAW, s=20mm, 316L Teplotní
E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb B 2 2*)
E-B 420 SFA/AWS A 5.4: E 347-15 EN 1600: (E Z 19 9 Nb B 2 2*) Pro svařování zařízení ze stabilizovaných ocelí podobného chemického složení do teploty 400 C. Velmi rozšířený druh elektrody používaný i pro
Technologie I. Část svařování. Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře
Část svařování cvičící: Ing. Michal Douša Kontakt : E-mail : michal.vslib@seznam.cz Kancelář : budova E, 2. patro, laboratoře Doporučená studijní literatura Novotný, J a kol.:technologie slévání, tváření
Metalurgie vysokopevn ch ocelí
Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M
OK SFA/AWS A 5.11: (NiTi3)
OK 92.05 SFA/AWS A 5.11: EN ISO 14172: E Ni-1 E Ni2061 (NiTi3) Obalená elektroda, určená ke svařování tvářených i litých dílů z čistého niklu. Lze použít i pro heterogenní svary rozdílných kovů jako niklu
E-B 420. SFA/AWS A 5.4: E EN 1600: (E Z 19 9 Nb 2 2*)
E-B 420 SFA/AWS A 5.4: E 347-15 EN 1600: (E Z 19 9 Nb 2 2*) Pro svařování zařízení ze stabilizovaných ocelí podobného chemického složení do teploty 400 C. Velmi rozšířený druh elektrody používaný i pro
Svařitelnost korozivzdorných ocelí
Svařitelnost korozivzdorných ocelí FAKULTA STROJNÍ, ÚSTAV STROJÍRENSKÉ TECHNOLOGIE L. Kolařík Rozdělení ocelí podle struktury (podle chemického složení) Podle obsahu legujících prvků můžeme dosáhnout různých
Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa
Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa doc. Ing. Jiří Janovec, CSc., Ing. Petr Ducháček ČVUT v Praze, Fakulta strojní, Karlovo náměstí 13, Praha 2 Jiri.Janovec@fs.cvut.cz, Petr.Duchacek@fs.cvut.cz
E-B 321. EN ISO 3580: E Z (CrMoV) B 22
E-B 321 EN ISO 3580: E Z (CrMoV) B 22 Pro svařování částí energetických zařízení především ze žáropevných ocelí typu CrMoV. Mechanické vlastnosti jsou zaručovány po doporučovaném tepelném zpracování. Předehřev:
OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:
OK TUBRODUR 14.70 N 14700: T Z Fe14 Plněná elektroda pro tvrdé návary s velmi vysokou odolností proti opotřebení tvrdými a zrnitými minerály jako pískem, rudou, kamenivem, půdou apod. Otěruvzdornost je
OK SFA/AWS A 5.5: E 8018-G EN ISO 2560-A: E 46 5 Z B 32
OK 73.08 SFA/AWS A 5.5: E 8018-G EN ISO 2560-A: E 46 5 Z B 32 Nízkolegovaná bazická elektroda poskytující svarový kov legovaný Ni a Cu s velmi dobrou korozní odolností proti mořské vodě, kouřovým plynům
OK TUBRODUR Typ náplně: speciální rutilová. Ochranný plyn: s vlastní ochranou. Svařovací proud:
OK TUBRODUR 14.70 EN 14700: T Z Fe14 Plněná elektroda pro tvrdé návary s velmi vysokou odolností proti opotřebení tvrdými a zrnitými minerály jako pískem, rudou, kamenivem, půdou apod. Otěruvzdornost je
E-B 312. EN 1599: E Z (CrMo) B 42
E- 312 EN 1599: E Z (CrMo) 42 Pro svařování energetických a chemických zařízení do nejvyšší teploty stěny 560 C. Mechanické vlastnosti jsou zaručovány po doporučeném tepelném zpracování. Předehřev: 250-300
durostat 400/450 Za tepla válcované tabule plechu Datový list srpen 2013 Odolné proti opotřebení díky přímému kalení
Za tepla válcované tabule plechu durostat 400/450 Datový list srpen 2013 Tabule plechu Odolné proti opotřebení díky přímému kalení durostat 400 a durostat 450 dosahují typických povrchových tvrdostí přibližně
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92 Ing. Petr Mohyla, Ph.D. Úvod Od konce osmdesátých let 20. století probíhá v celosvětovém měřítku intenzivní vývoj
5/2.7.10.3 Austenitické vysokolegované žáruvzdorné oceli
SVAŘOVÁNÍ KOVŮ V PRAXI část 5, díl 2, kap. 7.10.3, str. 1 5/2.7.10.3 Austenitické vysokolegované žáruvzdorné oceli Austenitické vysokolegované chrómniklové oceli obsahují min. 16,5 hm. % Cr s dostatečným
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k
SVAŘITELNOST MATERIÁLU
1 VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ Doc.Ing,Oldřich Ambrož,CSc SVAŘITELNOST MATERIÁLU UČEBNÍ TEXTY KOMBINOVANÉHO BAKALAŘSKÉHO STUDIA 2 U Č E B N Í O S N O V A Předmět: SVAŘITELNOST
Vamberk 2013 Konference Svařování konstrukčních ocelí S355 v jakosti N, +N, M přídavnými materiály ESAB
Vamberk 2013 Konference Svařování konstrukčních ocelí S355 v jakosti N, +N, M přídavnými materiály ESAB Prof. Ing. Václav Pilous, DrSc., SDP-KOVO s.r.o., ZČU FPE KMT Plzeň e-mail: Pilous@sdpkovo.cz V první
DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM
DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM Základní informace o použití drátů pro svařování pod tavidlem... H1 Přehled použitých norem... H1 Seznam svařovacích drátů... H2 Dráty pro svařování pod tavidlem... nelegovaných,
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
HETEROGENNÍ SVAROVÉ SPOJE V ENERGETICE
HETEROGENNÍ SVAROVÉ SPOJE V ENERGETICE prof. Ing. Jaroslav Koukal, CSc. doc. Ing. Drahomír Schwarz, CSc. Ing. Martin Sondel, Ph.D. Český svářečský ústav s.r.o. Areál VŠB-TU Ostrava, 17. listopadu 2172/15,
MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM
MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM Miroslav Liška, Ondřej Žáček MMV s.r.o. Patinující ocele a jejich vývoj Oceli se zvýšenou
B 550B ,10
VŠB Technická univerzita Ostrava Svařování betonářských ocelí (ocelových výztuží) ČSN EN ISO 17660-1 ČSN EN ISO 17660-2 doc. Ing. Ivo Hlavatý, Ph.D. 1 2 Přehled typů ocelí betonářské výztuže Poř. číslo
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_14
Základy úspěšného svařování ocelových konstrukcí z VP ocelí
Základy úspěšného svařování ocelových konstrukcí z VP ocelí V současné době se v průmyslu stále více používají oceli s mezí kluzu větší než 400 MPa, které souhrnně označujeme jako vysokopevné (VP) oceli,
OK AUTROD 347Si (OK AUTROD 16.11)
OK AUTROD 347Si (OK AUTROD 16.11) SFA/AWS A 5.9: ER 347Si EN ISO 14343A: G 19 9 NbSi Drát typu 18Cr8Ni stabilizovaný niobem pro svařování nerezavějících ocelí odpovídajících AISI 347, AISI 321. Svarový
ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
(ocelových výztuží) ČSN EN ISO 17660-2. Technické pravidlo CWS ANB TP C 027/I/07. doc. Ing. Ivo Hlavatý, Ph.D.
Český svářečský ský ústav s.r.o. VŠB Technická univerzita Ostrava Svařov ování betonářských ocelí (ocelových výztuží) ČSN EN ISO 17660-1 ČSN EN ISO 17660-2 Technické pravidlo CWS ANB TP C 027/I/07 doc.
SVÚM a.s. Zkušební laboratoř vlastností materiálů Tovární 2053, Čelákovice
Pracoviště zkušební laboratoře: 1. Pracoviště Čelákovice 2. Pracoviště Praha Areál VÚ, Podnikatelská 565, 190 11 Praha-Běchovice 1. Pracoviště Čelákovice Pracoviště je způsobilé aktualizovat normy identifikující
Stavebnictví Energetika Tlaková zařízení Chemickz průmysl Dopravní prostředky
Stavebnictví Energetika Tlaková zařízení Chemickz průmysl Dopravní prostředky čelní, boční a šikmé stehové (krátké svary pro zabezpečení polohy), těsnící ( u nádrží apod.), nosné (konstrukce), spojovací
Požadavky na kvalifikaci postupu svařování vybraných VPO podle ASME předpisů
Požadavky na kvalifikaci postupu svařování vybraných VPO podle ASME předpisů ASME Sec. II, Sec. VIII Div. 1 a Sec. IX / Ed. 2015, Michal Heinrich AI / ANI 1 Přehled přednášky I. část Výběr schválených
OPRAVA ČESKÉHO OBRANNÉHO STANDARDU
OPRAVA ČESKÉHO OBRANNÉHO STANDARDU 1. 1. Označení a název opravovaného ČOS 343902, 3. vydání SVAŘOVÁNÍ. OBALENÉ ELEKTRODY AUSTENITICKÉHO TYPU PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ OCELOVÝCH PANCÍŘŮ 2. Oprava č.
2. Materiály a jejich charakteristiky Austenitické, duplexní, feritické, martenzitické a precipitačně vytvrzené oceli. Značení, vlastnosti a použití.
2. Materiály a jejich charakteristiky Austenitické, duplexní, feritické, martenzitické a precipitačně vytvrzené oceli. Značení, vlastnosti a použití. Materiál Nerezové (korozivzdorné) oceli patří mezi
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná
Obr. 1. Řezy rovnovážnými fázovými diagramy a) základního materiálu P92, b) přídavného materiálu
POROVNÁNÍ SVAROVÝCH SPOJŮ OCELI P92 PROVEDENÝCH RUČNÍM A ORBITÁLNÍM SVAŘOVÁNÍM Doc. Ing. Jiří Janovec 1, CSc., Ing. Daniela Poláchová 2, Ing. Marie Svobodová 2, Ph.D., Ing. Radko Verner 3 1) ČVUT v Praze,
Západočeská univerzita v Plzni fakulta Strojní
Západočeská univerzita v Plzni fakulta Strojní 23. dny tepelného zpracování s mezinárodní účastí Návrh technologie laserového povrchového kalení oceli C45 Autor: Klufová Pavla, Ing. Kříž Antonín, Doc.
NAVAŘOVACÍ PÁSKY A TAVIDLA
NAVAŘOVACÍ PÁSKY A TAVIDLA (Pro kompletní sortiment navařovacích pásek a tavidel kontaktujte ESAB) Základní informace o navařování páskovou elektrodou pod tavidlem... J1 Použité normy pro navařovací pásky...
Heterogenní spoje v energetice, zejména se zaměřením na svařování martenzitických ocelí s rozdílným obsahem Cr
Heterogenní spoje v energetice, zejména se zaměřením na svařování martenzitických ocelí s rozdílným obsahem Cr Petr Hrachovina, Böhler Uddeholm CZ s.r.o., phrachovina@bohler-uddeholm.cz O svařování heterogenních
STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24
STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24 prof. Ing. Jaroslav Koukal, CSc. 1,2 Ing. Martin Sondel, Ph.D. 1,2 doc. Ing. Drahomír Schwarz, CSc. 1,2 1 VŠB-TU Ostrava 2 Český svářečský ústav
Zkoušky postupu svařování z pohledu výrobce. Ing. Jiří Frýba Excon Steel Hradec Králové
Zkoušky postupu svařování z pohledu výrobce Ing. Jiří Frýba Excon Steel Hradec Králové Zabezpečení kvality při svařování Svařování je zvláštní proces Pouze konečnou kontrolou nelze zjistit, zda svarový
Konstrukční, nástrojové
Rozdělení ocelí podle použití Konstrukční, nástrojové Rozdělení ocelí podle použití Podle použití oceli: konstrukční (uhlíkové, legované), nástrojové (uhlíkové, legované). Konstrukční oceli uplatnění pro
Svafiování elektronov m paprskem
Svafiování elektronov m paprskem Svařování svazkem elektronů je proces tavného svařování, při kterém se kinetická energie rychle letících elektronů mění na tepelnou při dopadu na povrch svařovaného materiálu.
MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ
MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ Petr HANUS, Michal KONEČNÝ, Josef TOMANOVIČ Katedra mechaniky, materiálů a částí strojů, Dopravní fakulta Jana Pernera, Univerzita
SHIELD-BRIGHT 308L OK TUBROD 14.20
SHIELD-BRIGHT 308L OK TUBROD 14.20 SFA/AWS A 5.22: E308LT1-1 E308LT1-4 EN ISO 17633-A: T 19 9 L P C 2 - US T 19 9 L P M 2 - US Rutilovou náplní plněná elektroda pro svařování nerezavějících ocelí typu
DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM
DRÁTY PRO SVAŘOVÁNÍ POD TAVIDLEM Základní informace o použití drátů pro svařování pod tavidlem... H1 Přehled použitých norem... H1 Seznam svařovacích drátů pod tavidlo v nabídce... H2 Dráty pro svařování
COMTES FHT a.s. R&D in metals
COMTES FHT a.s. R&D in metals 2 Komplexnost Idea na bázi základního a aplikovaného výzkumu Produkt nebo technologie s novou přidanou hodnotou Simulace vlastností materiálu a technologického zpracování
Elektrostruskové svařování
Nekonvenční technologie svařování Elektrostruskové svařování doc. Ing. Ivo Hlavatý, Ph.D. ivo.hlavaty@vsb.cz http://fs1.vsb.cz/~hla80 1 Elektroda zasahuje do tavidla, které je v pevném skupenství nevodivé.
Kvalifikace postupu svařování konstrukčních ocelí se zvýšenou mezí kluzu
Kvalifikace postupu svařování konstrukčních ocelí se zvýšenou mezí kluzu Bc. Štěpán Ježek ČVUT v Praze, Fakulta strojní, Ústav strojírenské technologie, Technická 4, 166 07 Praha 6, Česká republika Abstrakt
Technické požadavky normy EN 1090 na výrobu konstrukcí z ocelí s vyšší mezi kluzu
Technické požadavky normy EN 1090 na výrobu konstrukcí z ocelí s vyšší mezi kluzu Ing. Martin Sondel, Ph.D. prof. Ing. Jaroslav Koukal, CSc. doc. Ing. Drahomír Schwarz, CSc. Obsah přednášky 1. Vysokopevné
Rozdělení ocelí podle použití. Konstrukční, nástrojové
Rozdělení ocelí podle použití Konstrukční, nástrojové Rozdělení ocelí podle použití Podle použití oceli: Konstrukční (uhlíkové, legované), nástrojové (uhlíkové, legované). Konstrukční oceli uplatnění pro
Weld G3Si1. SFA/AWS A 5.18: ER 70S-6 EN ISO 14341A: G3Si1
Weld G3Si1 SFA/AWS A 5.18: ER 70S-6 EN ISO 14341A: G3Si1 Weld G3Si1 je poměděný drát z produkce společnosti ESAB určený pro svařování nelegovaných a nízko legovaných uhlík-manganových konstrukčních ocelí
TECHNOLOGIE I. (345303/02)
VŠB Technická univerzita Ostrava Fakulta strojní TECHNOLOGIE I. (345303/02) ČÁST SVAŘOV OVÁNÍ doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Podmínky
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
Metalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč
OK AUTROD 1070 (OK AUTROD 18.01)
OK AUTROD 1070 (OK AUTROD 18.01) EN ISO 18273: S Al 1070 (Al99,7) SFA/AWS (ER1070) OK Autrod 1070 je svařovací drát vysoké čistoty, určený pro svařování trubek malých průměrů a tenkých plechů z čistého
E-B 502. EN 14700: E Fe 1
E-B 502 EN 14700: E Fe 1 Elektroda pro navařování funkčních ploch součástí z nelegovaných a nízkolegovaných ocelí, u nichž je požadavek zvýšené odolnosti vůči opotřebení, např. pro navařování kolejnic,
Tab. 1 Označení pro typ tavidla podle charakteristické chemické složky
Klasifikace tavidel Původní klasifikační norma tavidel pro svařování nelegovaných, nízkolegovaných, vysokolegovaných, korozivzdorných a žáruvzdorných ocelí včetně niklu a slitin na bázi niklu byla zrušena
ZMĚNA ČESKÉHO OBRANNÉHO STANDARDU
ZMĚNA ČESKÉHO OBRANNÉHO STANDARDU Označení a název ČOS 343902, 4. vydání SVAŘOVÁNÍ. OBALENÉ ELEKTRODY AUSTENITICKÉHO TYPU PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ OCELOVÝCH PANCÍŘŮ Změna č. 1 Část č. 1 (velikost
PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
OVÁNÍ AUTOMATEM POD TAVIDLEM (121)
VŠB Technická univerzita Ostrava Fakulta strojní SVAŘOV OVÁNÍ AUTOMATEM POD TAVIDLEM (121) doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Svařov ování
Záznam z průmyslové stáže ve firmě Český svářečský ústav s.r.o.
Záznam z průmyslové stáže ve firmě Český svářečský ústav s.r.o. Student: Bc. Lukáš Szkandera 2014 Společnost Český svářečský ústav s.r.o. Český svářečský ústav je výzkumná, vývojová, inspekční, certifikační
ELEKTRODY PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ
ELEKTRODY PRO RUČNÍ OBLOUKOVÉ SVAŘOVÁNÍ Základní pravidla pro výběr vhodné elektrody, typy obalů... B1 Přehled platných norem pro obalené elektrody... B3 Celkový přehled všech obalených elektrod... B4
1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ
1 PŘÍDAVNÝ MATERIÁL PRO PLAMENNÉ SVAŘOVÁNÍ 1.1 SVAŘOVACÍ DRÁTY Jako přídavný materiál se při plamenovém svařování používá drát. Svařovací drát podstatně ovlivňuje jakost svaru. Drát se volí vždy podobného
Nikolaj Ganev, Stanislav Němeček, Ivo Černý
Nikolaj Ganev, Stanislav Němeček, Ivo Černý nemecek@raptech.cz Příjemce: SVÚM a.s. (1949) Další účastníci projektu: České vysoké učení technické v Praze, MATEX PM s.r.o. Projekt se zaměřil na uplatnění
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV STROJÍRENSKÉ TECHNOLOGIE FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MANUFACTURING TECHNOLOGY VLIV VELIKOSTI
Materiálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, 430 01 Chomutov
Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní přístup k rozsahu akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci
E-B 502. EN 14700: E Fe 1
E-B 502 EN 14700: E Fe 1 Elektroda pro navařování funkčních ploch součástí z nelegovaných a nízkolegovaných ocelí, u nichž je požadavek zvýšené odolnosti vůči opotřebení, např. pro navařování kolejnic,
OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL
SLEDOVÁNÍ KINETIKY STRUKTURNÍCH ZMĚN BĚHEM DLOUHODOBÉHO ŽÍHÁNÍ PŘECHODOVÝCH SVARŮ OCELÍ P91 OBSERVATION OF KINETICS OF STRUCTURAL CHANGES DURING LONG-TERM ANNEALING OF TRANSITIONAL WELDS ON P91 STEEL Daniela
OPTIMALIZACE SVAŘOVACÍCH PARAMETRŮ PŘI ODPOROVÉM BODOVÉM SVAŘOVÁNÍ KOMBINOVANÝCH MATERIÁLŮ
OPTIMALIZACE SVAŘOVACÍCH PARAMETRŮ PŘI ODPOROVÉM BODOVÉM SVAŘOVÁNÍ KOMBINOVANÝCH MATERIÁLŮ Marie KOLAŘÍKOVÁ, Ladislav KOLAŘÍK ČVUT v Praze, FS, Technická 4, Praha 6, 166 07, tel: +420 224 352 628, email:
I.) Nedestruktivní zkoušení materiálu = návštěva laboratoří nedestruktivního zkoušení a seznámení se se základními principy jednotlivých metodik.
2017/18 VÝROBNÍ TECHNOLOGIE Jméno: st. skupina: I.) Nedestruktivní zkoušení materiálu II.) Praxe tepelného zpracování III.) Jominiho zkouška prokalitelnosti I.) Nedestruktivní zkoušení materiálu = návštěva
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Pracovní list č.6 k prezentaci Kalení
Číslo projektu CZ.1.07/1.5.00/34.0514 Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast Strojírenská technologie, vy_32_inovace_ma_22_13 Autor
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
durostat 400/450/500 Tabule plechu válcované za tepla Datový list květen 2017 Otěruvzdorné plechy z ocelového pásu válcovaného za tepla
Tabule plechu válcované za tepla durostat 400/450/500 Datový list květen 2017 TABULE PLECHU Otěruvzdorné plechy z ocelového pásu válcovaného za tepla Plechy durostat 400, durostat 450 a durostat 500 dosahují
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2. Obor CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Strojírenská technologie, vy_32_inovace_ma_22_17
Materiálové laboratoře Chomutov s.r.o. Zkušební laboratoř MTL Luční 4624, Chomutov
Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř uplatňuje flexibilní přístup k rozsahu akreditace upřesněný v dodatku. Aktuální seznam činností prováděných v rámci
TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry
TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace
Ověření materiálových vlastností přídavných svařovacích materiálů při svařování ocelových konstrukcí
Ověření materiálových vlastností přídavných svařovacích materiálů při svařování ocelových konstrukcí Lukáš Petričko, Ing. SvarExpert s.r.o., Kištofova 1443/27, 716 00 Ostrava Radvanice E-mail: petricko@svarexpert.cz.
Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací podmínky pro nelegované konstrukční oceli
VÁ LC E P R O VÁ LC OV N Y S T R OJ Í R E N S K É V Ý R O BKY H U T N Í M AT E R I Á L U Š L E C H T I L É O CE LI ČSN EN 100252 Výrobky válcované za tepla z konstrukčních ocelí Část 2: Technické dodací
Strana 5, kap. 10, zařazen nový článek (navazující bude přečíslován)
OPRAVA ČESKÉHO OBRANNÉHO STANDARDU 1. Označení a název opravovaného ČOS 343906, 1. vydání Svařování. Obalené elektrody pro ruční obloukové svařování vysokopevnostních ocelí 2. Oprava č. 1 Část č. 1 Původní
Svařitelnost některých technických materiálů a volba přídavných materiálů
Svařitelnost je jednou z důležitých technologických vlastností některých kovových materiálů a je to schopnost vytvořit kvalitní svarový spoj. Obvykle je chápána jako metalurgická, tzn. závislá především
CSM 21 je označení ROBERT ZAPP WERKSTOFFTECHNIK GmbH 0,02 % 15,00 % 4,75 % 3,50 %
CSM 21 Vysoce pevná, martenziticky vytvrditelná korozivzdorná ocel. CSM 21 je označení ROBERT ZAPP WERKSTOFFTECHNIK GmbH SMĚRNÉ CHEMICKÉ SLOŽENÍ C Cr Ni Cu 0,02 % 15,00 % 4,75 % 3,50 % CSM 21 je precipitačně
Svařování duplexních nerezavějících ocelí
Svařování duplexních nerezavějících ocelí KOMPLETNÍ SORTIMENT SVAŘOVACÍCH MATERIÁLŮ STRENGTH THROUGH COOPERATION Duplexní svařovací materiály a technická podpora nejvyšší kvality Aplikace duplexních ocelí
Přehled způsobů svařování a základní dělení metod 2/2016 PŘEHLED ZPŮSOBŮ SVAŘOVÁNÍ A ZÁKLADNÍ DĚLENÍ METOD DLE EN ISO 4063
PŘEHLED ZPŮSOBŮ SVAŘOVÁNÍ A ZÁKLADNÍ DĚLENÍ METOD DLE EN ISO 4063 1. Základní rozdělení svařování Svařování je proces nerozebíratelného spojování materiálů. Používané způsoby lze rozdělit podle rozhodujícího
Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
10.ZÁKLADY TEPELNÉHO ZPRACOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
OK AUTROD SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb)
OK AUTROD 19.82 SFA/AWS A 5.14: ERNiCrMo-3 EN ISO 18274: S Ni 6625 (NiCr22Mo9Nb) Drát pro svařování žáropevných a korozivzdorných ocelí, 9%-Ni ocelí a ocelí s podobným chemickým složením. Např. typů NiCr22Mo,
OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA. Jiří Stanislav
OPTIMÁLNÍ POSTUPY TEPELNÉHO ZPRACOVÁNÍ MATERIÁLŮ PRO PRÁCI ZA TEPLA Jiří Stanislav Bodycote HT, CZ 1. Úvod Tepelné zpracování nástrojových ocelí pro práci za tepla patří k nejnáročnějším disciplinám oboru.
NAUKA O MATERIÁLU OZNAČOVÁNÍ OCELI DLE ČSN EN. Ing. Iveta Mičíková
NAUKA O MATERIÁLU OZNAČOVÁNÍ OCELI DLE ČSN EN Ing. Iveta Mičíková Střední škola, Havířov-Šumbark, Sýkorova 1/613, příspěvková organizace Tento výukový materiál byl zpracován v rámci akce EU peníze středním
Svařování v ochranných atmosférách Přehled typů ochranných plynů
Svařování v ochranných atmosférách Přehled typů ochranných plynů Svařování v ochranných atmosférách Přehled typů dodávaných plynů Jako na dlani Tento přehledný souhrn jednotlivých typů svařovacích plynů
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ
OPRAVA ČESKÉHO OBRANNÉHO STANDARDU
OPRAVA ČESKÉHO OBRANNÉHO STANDARDU 1. Označení a název opravovaného ČOS 343905, 1. vydání Oprava 1 SVAŘOVÁNÍ. OBLOUKOVÉ SVAŘOVÁNÍ VYSOKOPEVNOSTNÍCH OCELÍ VE VÝROBĚ KONSTRUKCÍ VOJENSKÉ TECHNIKY 2. Oprava
TECHNOLOGIE I. (345303/02)
VŠB Technická univerzita Ostrava Fakulta strojní TECHNOLOGIE I. (345303/02) ČÁST SVAŘOV OVÁNÍ doc. Ing. Ivo Hlavatý, Ph.D. místnost A405 ivo.hlavaty hlavaty@vsb.cz http://fs1.vsb vsb.cz/~hla80 Podmínky
2. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
2. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger SPOJE Základní klasifikace: 1) Klasifikace podle tuhosti:
Aweld E71T-1. Aweld 5356 (AlMg5) Hořáky
Pod značkou Aweld nacházejí naši zákazníci již celou řadu let velice kvalitní přídavné svařovací materiály, jako jsou svařovací dráty pro CO 2, hořáky, příslušenství a doplňky. Klademe velký důraz na vysokou
ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
Nikl a jeho slitiny. Ing. David Hrstka, Ph.D. -IWE
Nikl a jeho slitiny Ing. David Hrstka, Ph.D. -IWE NIKL A JEHO SLITINY Nikl je drahý feromagnetický kov s velmi dobrou korozní odolností. Podle pevnosti by patřil spíš do skupiny střední (400 450 MPa),
Zvýšení produktivity přirozenou cestou
Zvýšení produktivity přirozenou cestou Zvýšení produktivity přirozenou cestou HS Puls je speciální funkce MIG/MAG Puls sváření, které je charakteristické velmi krátkým a intenzivním obloukem. Svářeč dokáže
Nové evropské normy o c e l i v konstrukční dokumentaci
Nové evropské normy o c e l i v konstrukční dokumentaci Rozdělení ocelí ke tváření podle Rozdělení ocelí podle ČSN 42 0002 : 78 ČSN EN 10020 : 01 (42 0002) (rozdělení národní) (rozdělení podle evropské