Gabriela DOROCIAKOVÁ a, Miroslav GREGER a, Radim KOCICH a a Barbora KUŘETOVÁ a
|
|
- Ivo Beránek
- před 6 lety
- Počet zobrazení:
Transkript
1 ZMĚNA STRUKTURY A VLASTNOSTÍ MĚDI PO PROTLAČOVÁNÍ TECHNOLOGIÍ ECAP THE CHANGE OF STRUCTURE AND PROPERTIES OF COPPER AFTER PRESSING BY THE ECAP TECHNOLOGY Gabriela DOROCIAKOVÁ a, Miroslav GREGER a, Radim KOCICH a a Barbora KUŘETOVÁ a a VŠB - TU Ostrava, Fakulta metalurgie a materiálovégho inženýrství, Katedra Tváření materiálu, 17. listopadu 15, Ostrava-Poruba, Česká Republika, gabriela.dorociakova.fmmi@vsb.cz Abstrakt: Článek je věnován ověření technologie ECAP při protlačování mědi. Technolologie ECAP je efektivním nástrojem pro získání ultrajemného zrna. Při této technologii je materiál deformován prostým smykem. Experiment byl rozdělen na dvě části, přičemž v prvé části experimentu se protlačovala měď 99,9% o rozměrech 8x8 mm a délky 32 mm a v druhé části experimentu se jednalo o 99,9 % měď kruhového průřezu o průměru 12 mm a délky 50 mm. Všechny vzorky byly protlačovány při pokojové teplotě. Před i po protlačení byly stanoveny tvrdosti, byla provedena analýza struktury a stanovena velikost zrna. Z výsledku experimentu je patrné, že tvrdost vzrůstá se zvyšující se kumulovanou energii a velikost zrna se zmenšuje. Abstract: This paper was aimed at verification of the ECAP technology at extrusion of the 99,99 % copper. Equal channel angular pressing is an effective tool for attaining ultrafine grain size. In ECAP technology, the material is put into channel-die and have a simple shear deformation. This experiment was divided in the two parts. In the first part of experiment was pressed copper with cross-section 8x8 mm and their length was 32 mm, in the second part was extruded copper of circular section with diameter 12 mm and length 50 mm. All the samples were extruded at the room temperature. The hardnesses were determined before and after pressing. Analysis of structure was made and the size of grain was determined too. From the results of experiment are visible, that the hardness raises with increasing of accumulated energy and grain size decreases. 1. ÚVOD Nové technologie tváření mezi něž patří i technologie ECAP, jsou zaměřeny na zjemňování zrn intenzivními plastickými deformacemi. Cílem je vyrobit konstrukční kovové materiály s ultrajemným zrnem, s vyššími mechanickými vlastnostmi. Tyto struktury slibují dosažení vyšších mechanických vlastností, ve srovnání s jejich hrubozrnnými ekvivalenty. Vychází se z představy platnosti Hall-Petchova vztahu σ f = σ o + k.d -1/2 až do oblasti zrn nanometrických rozměrů. Byly vyvinuty různé metody přípravy těchto materiálů, přičemž hlavním problémem je vnitřní homogenita polotovarů, velikost polotovaru, deformační chování a stabilita struktury po deformacích. 1
2 Závažným problémem zůstává zvýšení odolnosti jemnozrnných materiálů proti růstu zrna při jeho zpracování za vyšší teploty nebo při ohřevu na vyšší teplotu, což je v mnoha případech nezbytné pro realizaci procesu tváření a pro dosažení požadovaných funkčních vlastností výrobků. Za jemnozrnné materiály se považují ty, jejichž struktura sestává ze složek, které mají alespoň jeden rozměr v rozmezí nm (rovněž se používá název ultrajemnozrnné materiály). Z hlediska pevnostních vlastností těmito složkami mohou být subzrna, zrna, lamely, vrstvy, vlákna atd. Např. lamelární perlit lze považovat za nanokompozit, který je složen z lamel feritu a cementitu o šířce většinou pod 100 nm. Hodnota 100 nm nemá fyzikální význam. Termín ultrajemnozrnný materiál se rovněž používá pro materiály složené s částic pod 1 mikrometr. Výzkum přípravy ultra jemnozrnných materiálů, zkoumání jejich vlastností a možností jejich praktické aplikace je zaměřen na velké množství kovů a jejich slitin. Velký význam má výzkum technologií přípravy a vlastností ocelí s ultra jemnou strukturou. Z hlediska praktické realizace je v současné době věnována největší pozornost slitinám hliníku, hořčíku, mědi a titanu. Problematice deformačního chování a vývoje struktury při protlačování technologii ECAP je věnována pozornost i v přednášce. 2. VELIKOST ZRNA A MECHANICKÉ VLASTNOSTI ULTRA JEMNOZRNNÝCH MATERIÁLŮ Pevnost (tvrdost) materiálu roste s klesající velikostí zrn v jeho struktuře. Toto bylo známo od začátku padesátých let minulého století, kdy byl zformulován známý Hall-Petchův vztah: Re= d 1/ 2 σ 0 + k (1) kde Re mez kluzu, σ o napětí potřebné pro překonání Peierls-Nabarrova třecího napětí, odporu rozpuštěných cizích atomů, odporu precipitátů z tuhého roztoku a defektů mřížky k konstanta, jejím měřítkem je hodnota smykového napětí potřebného pro uvolnění nahromaděných dislokací d rozměr zrna Z rovnice (1) vyplývá, že mez kluzu materiálu roste se zmenšujícím rozměrem zrn.. Tento jev je hnací silou výzkumu a vývoje konstrukčních materiálů s vysokou pevností, zejména ocelí. Ukazuje se, že zjemnění zrna může vést ke zvýšené tažnosti kovových materiálů. Za předpokladu stejného mechanismu zpevnění, může zmenšení zrn až na úroveň nanometrů znamenat velké zvýšení pevnosti materiálu. Lze vypočítat, že pro velikosti zrn nm se hodnota meze kluzu blíží teoretické pevnosti materiálu. Platnost vztahu (1) je experimentálně prokázána, s výjimkou jeho platnosti pro velká zrna a velmi jemná zrna (asi pod 10 nm). 2.1 Pevnostní vlastnosti Základem každého deformačního chování je kinetika generace defektů, jejich pohyb a anihilace. Zvláště důležité jsou mikromechanismy respektující mřížkové dislokace, dislokace na hranicích zrn a vakance. 2
3 Tyto defekty mohou přispívat k celkové pevnosti a plasticitě nezávisle či kombinovaně. Dominantní mechanismus může být identifikován vyhodnocením pomocí rychlosti deformace, velikosti zrna a teplotní závislosti. K popisu mechanického chování ultrajemnozrnných materiálů lze využít tři základní představy: Hall-Petchova vztah, ve kterém závislost deformačního napětí na velikosti zrna při nízkých teplotách vzniká ze způsobu blokování pohybu dislokací na hranicích zrn. Mechanismu difúzního creepu, který zahrnuje pohyb vakancí při gradientu přiloženého napětí. Mechanismu pokluzů na hranicích zrn, který zahrnuje pohyb všech tří výše uvedených defektů v závislosti na specifických mikromechanismech. V Hall-Petchově vztahu (1) se σ o a k mění s chemickým složením materiálu, strukturou i technologickým zpracováním. Konstanta k je teplotně nezávislá, kdežto σ o s klesající teplotou výrazně roste. Bylo zjištěno. že Hall-Petchův vztah (1) platí pro různé materiály přibližně do rozměru zrna 30 nm, pak se pevnost přestane zvyšovat nebo i klesá. Schematicky je to vyjádřeno na obr. 1. Oblast pod kritickou velikostí zrna d c (oblast 2), přestává působit dislokační mechanismus deformace. Pro vysvětlení tohoto jevu bylo předloženo několik teorií. Obr. 1 - Závislost pevnosti na velikosti zrna v oblasti nanometrů Fig.1. Dependence of strength on grain size in the area of nanometers Pokud shrneme výše uvedené poznatky získané z obr. 1, pak se zmenšující se velikostí zrna materiálu roste jeho pevnost (tvrdost, mez kluzu), a to až do oblasti nanokrystalických materiálů. Průběh křivky v oblasti 1 na obr.1 dostatečně dobře popisuje Hall a Petchův vztah. Tato skutečnost je hnací silou výzkumu technologií výroby masivních nanokrystalických materiálů pro konstrukční účely. V oblasti kritické velikosti zrna d c (pod cca nm) se vytrácí dislokační aktivita a mez kluzu (velmi vysoká) se stává nezávislou na velikosti zrna, případně u některých materiálů i klesá. Mechanismus tohoto jevu není doposud jednoznačně formulován. 3. EXPERIMENTÁLNÍ ČÁST Experiment byl rozdělen na dvě části, přičemž v prvé části experimentu se protlačovala měď 99,9% o rozměrech 8x8 mm a délky 32 mm a v druhé části experimentu se jednalo o 99,9 % měď kruhového průřezu o průměru 12 mm a délky 50 mm. Všechny vzorky byly protlačovány při pokojové teplotě. Po každém průchodu byly vzorky otočeny o 90 o kolem své podélné osy a znovu protlačeny. Před i po protlačení byly stanoveny tvrdosti. 3
4 S využitím světelného mikroskopu byla provedena analýza struktury a také byla stanovena velikost zrna. V prvé části experimentu byla protlačovaná měď 99,9% o rozměrech 8x8 mm a délky 32 mm. Výchozí vzorky byly zpracovány tvářením za studena a následně žíhány při teplotě 870 o C/3h. Výchozí tvar vzorku a tvary vzorků po jednotlivých etapách protlačení jsou uvedeny na obr. 2. Obr. 2 Vzorky mědi po jednotlivých průchodech technologií ECAP Fig. 2 - Copper samples after individual passes with using of the ECAP technology Vzorky jsou seřazeny zleva doprava podle počtu průchodů. Při protlačování byly měřeny deformační síly, vypočítán tlak potřebný na protlačení a přibližně určena deformační rychlost, která se pohybovala kolem hodnoty s -1. Rozbor struktury byl proveden pomocí světelné mikroskopie. Struktura výchozích vzorků a vzorků po jednotlivých průchodech je demostrována na obr. 3. a) b) c) d) Obr. 3. Vývoj struktury (v podélném směru) při protlačování mědi: a výchozí struktura, b struktura po 1. průchodu, c struktura po 2. průchodu, d) struktura po 4. Průchodu Fig. 3 - Development of structure (in longitudinal direction) at extrusion of copper: a initial structure, b structure after the 1 st extrusion, c structure after the 2 nd extrusion, d) structure after the 4 th extrusion 4
5 Jednotlivá zrna ve struktuře byla protažena hlavní deofrmací v podélném směru. Průměrná velikost zrna v příčném směru byla stanovena kvantitativními metalografickými metodami a pohybovala se kolem 50 µm na počátku protlačování a 15 µm na konci protlačování, tj. po 4. průchodu. Tvrdost HV se měnila v závislosti na počtu průchodu matricí podle obr. 4. Obr. 4 Tvrdost jednotlivých vzorků po protlačení Fig. 4 - Hardness of individual samples after extrusion V druhé části experimentu byla protlačována měď kruhového průřezu o průměru 12 mm a délky 50 mm. Výchozí vzorky byly žíhány při teplotě 700 o C/30 min. Při protlačování tohoto typu vzorku byla použita matrice, jenž byla vyrobena dle výkresu zobrazeného na obr. 5. Obr. 5 Matrice pro druhý experiment Fig. 5 The die of the second experiment 5
6 Výchozí tvar vzorku a tvary vzorků po jednotlivých průchodech jsou zobrazeny na obr. 6. Obr. 6 Vzorky mědi po jednotlivých průchodech technologií ECAP Fig. 6 - Copper samples after individual passes with using of the ECAP technology Průměrná velikost zrna v příčném i v podélném směru byla stanovena kvantitativními metalografickými metodami a pohybovala se kolem 48 µm na počátku protlačování a 15 µm na konci protlačování, tj. po 8 průchodu. Struktura výchozích vzorků a vzorků po jednotlivých průchodech je demostrována na obr. 7. a) b) c) d) e) f) Obr. 7 - Vývoj struktury při protlačování mědi: a výchozí struktura, b struktura po 1. průchodu, c struktura po 3. průchodu, d) struktura po 5. průchodu, e) struktrura po 6. průchodu a f) struktura po 8. Průchodu 6
7 Fig. 7 - Development of structure at extrusion of copper: a initial structure, b structure after the 1 st extrusion, c structure after the 3 th extrusion, d) structure of the 5 th extrusion, e) structure after 6 th extrusion and f) after 8 th extrusion Na tvrdoměru byla stanovena tvrdost HV 20, která vzůstala se zvyšující se kumulovanou energií (Obr. 8). 150 HV = Ln(x) R 2 = HV č. vzorku Obr. 8 Tvrdost jednotlivých vzorků po protlačení Fig. 8 - Hardness of individual samples after extrusion 4. DOSAŽENÉ VÝSLEDKY A JEJICH ROZBOR V obou případech experimentu po jednotlivých průchodech docházelo ke kumulaci deformačního zpevnění, např. u mědi čtvercového průřezu při protlačování s poloměrem zaoblení vnitřních hran (R = 0,5) se protlačovací tlak na počátku pohyboval kolem τ 1 = 658 MPa. Při druhém protlačení vzrostl na τ 2 = 965 MPa, a při třetím protlačení na τ 3 = 1188 MPa. Při konstantních rozměrech vzorků nárůst tlaku odpovídá nárůstu deformačního odporu. Výrazně vyšší hodnoty deformačního odporu a rovněž zpevnění při protlačování souvisí s vysokou absolutní hodnotou oktaedrického napětí. 5. ZÁVĚR Při experimentech prováděných na polykrystalické mědi zn se potvrdilo, že metoda ECAP je efektivním nástrojem pro zjemnění zrna. Tento postup umožnil dosáhnout velikosti zrna v obou případech experimentu kolem 15 µm. Mikrostruktura závisí na experimentálních podmínkách, především na počtu průchodů a na otáčení vzorku mezi jednotlivými průchody. Úhel, mezi horizontální a vertikální části protlačovacího kanálu se pohyboval pro první případ experimentu 90 a pro druhý případ byl 105. Poloměry zaoblení pracovních části protlačovacího kanálu musí odpovídat podmínkám pro laminární tok kovu. 7
8 LITERATURA [1] GREGER, M.,RUSZ S.Posibilities of aluminium extrusion with use of the ECAP method. In IX international conference Aluminium in transport 2003, Fotobit, Krakow 2003, p.165. [2] BEYERLEIN,I.J.,LEBENSOHN,R.A.,TOMÉ,C.N.:Ultrafine Grained Materials II. TMS, Seattle,2002, p [3] GREGER, M., KOCICH, R., KANDER, L.: Equal channel angular pressing of cooper. Transactions of the VŠB-Technical University of Ostrava, Metallurgical Series, 2005, roč. 48,č. 1, s (ISSN ). [4] GREGER, M., KCICH, R.: Vlastnosti mědi po protlačování. In Materiál v inženierskej praxi 2005, Herlany: MF SPU v Nitre, 2005, s ISBN
PŘÍPRAVA ULTRAJEMNNÉ STRUKTURY HLINÍKU INTENZIVNÍ PLASTICKOU DEFORMACÍ A JEJÍ TEPELNÁ STABILITA SVOČ FST 2008
PŘÍPRAVA ULTRAJEMNNÉ STRUKTURY HLINÍKU INTENZIVNÍ PLASTICKOU DEFORMACÍ A JEJÍ TEPELNÁ STABILITA SVOČ FST 2008 Pavel Lešetický Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
VŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic
SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical
Objemové ultrajemnozrnné materiály a jejich příprava. Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů
Objemové ultrajemnozrnné materiály a jejich příprava Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů Definice Definice objemových ultrajemnozrnných (bulk UFG ultrafine grained) materiálů: Malá velikost
VLIV GEOMETRIE NÁSTROJE ECAP NA DOSAŽENÉ ZJEMNĚNÍ ZRNA INFLUENCE OF ECAP DIE GEOMETRY ON ACHIEVED UFG
VLIV GEOMETRIE NÁSTROJE ECAP NA DOSAŽENÉ ZJEMNĚNÍ ZRNA INFLUENCE OF ECAP DIE GEOMETRY ON ACHIEVED UFG Stanislav Rusz a Jan Dutkiewicz b Lubomír Čížek a Jiří Hluchník a a VŠB Technická univerzita Ostrava,
VÝVOJ STRUKTURY SLITINY AlMn1Cu Z HLEDISKA ZMĚNY CESTY DEFORMACE PROCESEM SPD
VÝVOJ STRUKTURY SLITINY AlMn1Cu Z HLEDISKA ZMĚNY CESTY DEFORMACE PROCESEM SPD INFLUENCE OF CHANGES DEFORMATION ON STRUCTURE ALMN1CU ALLOY WITH USE SPD PROCESS Stanislav Tylšar a, Stanislav Rusz a, Jan
Vlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
Objemové ultrajemnozrnné materiály. Miloš Janeček Katedra fyziky materiálů, MFF UK
Objemové ultrajemnozrnné materiály Miloš Janeček Katedra fyziky materiálů, MFF UK Definice Objemové ultrajemnozrnné materiály (bulk UFG ultrafine grained materials) Malá velikost zrn (> 1µm resp. 100 nm)
TEORIE TVÁŘENÍ. Lisování
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND EGINEERING
VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING
VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING Hana Tesařová Bohumil Pacal Ondřej Man VUT-FSI-ÚMVI-OKM, Technická
LETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
Tváření,tepelné zpracování
tváření, tepelné zpracování Optimalizace řízeného válcování nové konstrukční oceli se zvláštními užitnými vlastnostmi Prof. Ing. Ivo Schindler, CSc., Doc. Dr. Ing. Jaroslav Sojka, VŠB-TU Ostrava, 17. listopadu
GRAIN REFINEMENT IN STRIP SHEET PREPARED BY DRECE MACHINERY
GRAIN REFINEMENT IN STRIP SHEET PREPARED BY DRECE MACHINERY Stanislav RUSZ a, Vít MICHENKA b, Jan KEDROŇ a, Stanislav TYLŠAR a, Jan DUTKIEWICZ c a VŠB Technická univerzita Ostrava, 17.listopadu 15, 708
VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ
Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník
materiálové inženýrství
Materiálové inženýrství Hutnické listy č.1/28 materiálové inženýrství Vliv extrémní plastické deformace metodou ECAP na strukturu a vlastnosti oceli P2-4BCh Prof. Ing.Vlastimil Vodárek,CSc. 1, Doc. Ing.
CREEPOVÉ CHOVÁNÍ ULTRAJEMNOZRNNÉHO HLINÍKU
CREEPOVÉ CHOVÁNÍ ULTRAJEMNOZRNNÉHO HLINÍKU Jiří Dvořák a, Václav Sklenička a, Milan Svoboda a a Ú fyziky materiálů, Akademie věd České republiky, Žižkova 22, 616 62 Brno, ČR, dvorak@ipm.cz Abstrakt Extrémně
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE J. Drnek Z. Nový P. Fišer COMTES FHT s.r.o., Borská
Tváření. produktivní metody výroby polotovarů a hotových výrobků, které se dají dobře mechanizovat i automatizovat (velká výkonnost, minimální odpad)
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková
CREEPOVÉ CHOVÁNÍ HLINÍKOVÉ SLITINY Al-3Mg-0,2Sc PŘIPRAVENÉ METODOU ECAP. CREEP BEHAVIOUR OF Al-3Mg-0,2Sc ALLOY PROCESSED BY ECAP METHOD
CREEPOVÉ CHOVÁNÍ HLINÍKOVÉ SLITINY PŘIPRAVENÉ METODOU ECAP CREEP BEHAVIOUR OF ALLOY PROCESSED BY ECAP METHOD Jiří Dvořák a, Petr Král a, Václav Sklenička a a Ústav fyziky materiálů, Akademie věd České
ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES
ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES Martin BALCAR, Jaroslav NOVÁK, Libor SOCHOR, Pavel FILA, Ludvík MARTÍNEK ŽĎAS, a.s., Strojírenská
VÝVOJ NANOSTRUKTURNÍCH MATERIÁLU S VYUŽITÍM TECHNOLOGIE ECAP INVESTIGATION OF NANOSTRUCTURE MATERIALS WITH USE OF ECAP TECHNOLOGY
VÝVOJ NANOSTRUKTURNÍCH MATERIÁLU S VYUŽITÍM TECHNOLOGIE ECAP INVESTIGATION OF NANOSTRUCTURE MATERIALS WITH USE OF ECAP TECHNOLOGY Stanislav Rusz a Miroslav Greger a Martin Kubícek a Martin Pastrnák a Juliusz
HLINÍK A JEHO SLITINY
HLINÍK A JEHO SLITINY Označování hliníku a jeho slitin dle ČSN EN a) Označování hliníku a slitin hliníku pro tváření dle ČSN EN 573-1 až 3 Tyto normy platí pro tvářené výrobky a ingoty určené ke tváření
VZTAH MEZI MIKROSTRUKTUROU A VLASTNOSTMI ULTRAJEMNOZRNNÉHO HLINÍKU PRIPRAVENÉHO TECHNIKOU ECAP
VZTAH MEZI MIKROSTRUKTUROU A VLASTNOSTMI ULTRAJEMNOZRNNÉHO HLINÍKU PRIPRAVENÉHO TECHNIKOU ECAP Petr Král 1), Jirí Dvorák 1), Milan Svoboda 1), Václav Sklenicka 1) 1) Ústav fyziky materiálu,akademie ved
Vlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů
Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které
SMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ
SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1
Plastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92. Ing. Petr Mohyla, Ph.D.
VÝZKUM MECHANICKÝCH VLASTNOSTÍ SVAROVÝCH SPOJŮ MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ T24 A P92 Ing. Petr Mohyla, Ph.D. Úvod Od konce osmdesátých let 20. století probíhá v celosvětovém měřítku intenzivní vývoj
HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115
HODNOCENÍ VLASTNOSTÍ VÝKOVKŮ ROTORŮ Z OCELI 26NiCrMoV115 Martin BALCAR a), Václav TURECKÝ a), Libor Sochor a), Pavel FILA a), Ludvík MARTÍNEK a), Jiří BAŽAN b), Stanislav NĚMEČEK c), Dušan KEŠNER c) a)
4 (K4) 3 (K3) 2 (K2) 1 (K1)
STRUKTURA A MECHANICKÉ VLASTNOSTI HOŘČÍKOVÝCH SLITIN PO SPD DEFORMACÍCH STRUCTURE AND PROPERTIES OF Mg ALLOYS AT INTENSIVE PLASTIC DEFORMATION Miroslav Greger a, Radim Kocich a, Ladislav Kander b,lubomír
ŽÍHÁNÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
ZEFEKTIVNĚNÍ PROCESU VÍCENÁSOBNÉ PLASTICKÉ DEFORMACE INCREASING THE EFFECTIVENESS OF SEVERE PLASTIC DEFORMATION PROCESS
ZEFEKTIVNĚNÍ PROCESU VÍCENÁSOBNÉ PLASTICKÉ DEFORMACE INCREASING THE EFFECTIVENESS OF SEVERE PLASTIC DEFORMATION PROCESS Stanislav Rusz a Karel Malaník b Josef Bořuta c a VŠB Technická univerzita Ostrava,
OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg
OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg OPTIMIZATION OF HEAT TREATMENT CONDITIONS TO IMPROVE OF MECHANICAL PROPETIES OF AlSi9Cu2Mg ALLOY Jan Šerák,
Požadavky na technické materiály
Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky
VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA7075 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP
VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA707 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP EFFECT OF HEAT TREATMENT ON THE STRUCTURE OF THE ALUMINIUM ALLOY AA707 SUBJECTED TO INTENSIVE
Minule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
Slitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
Nauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů
Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ
PROBLEMATICKÉ SVAROVÉ SPOJE MODIFIKOVANÝCH ŽÁROPEVNÝCH OCELÍ doc. Ing. Petr Mohyla, Ph.D. Fakulta strojní, VŠB TU Ostrava 1. Úvod Snižování spotřeby fosilních paliv a snižování škodlivých emisí vede k
- zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin
2. Metalografie - zabývá se pozorováním a zkoumáním vnitřní stavby neboli struktury (slohu) kovů a slitin Vnitřní stavba kovů a slitin ATOM protony, neutrony v jádře elektrony v obalu atomu ve vrstvách
BULKY FORMING OF MAGNESIUM ALLOYS. Barbora Kuřetová a Miroslav Greger a
OBJEMOVÉ TVÁŘENÍ HOŘČÍKOVÝCH SLITIN BULKY FORMING OF MAGNESIUM ALLOYS Barbora Kuřetová a Miroslav Greger a a VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, ČR, barbora.kuretova.fmmi@vsb.cz
NAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91.
Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Hubáčková Jiřina a), Čížek Lubomír a), Konečná Radomila b) a) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERSITA OSTRAVA, Fakulta
Přetváření a porušování materiálů
Přetváření a porušování materiálů Přetváření a porušování materiálů 1. Viskoelasticita 2. Plasticita 3. Lomová mechanika 4. Mechanika poškození Přetváření a porušování materiálů 2. Plasticita 2.1 Konstitutivní
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008. Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
TEPELNÉ ZPRACOVÁNÍ KONSTRUKČNÍCH OCELÍ SVOČ - 2008 Jana Martínková, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce obsahuje charakteristiku konstrukčních ocelí
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTIC PROPERTIES OF HIGH STRENGHT STEELS CUTTING BY SPECIAL TECHNOLOGIES Pavel Doubek a Pavel Solfronk a Michaela
Nauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICAL PROPERTIES AND STRUCTURAL STABILITY OF CAST NICKEL ALLOYS AFTER LONG-TERM INFLUENCE OF TEMPERATURE
CREEP INTERMETALICKÉ SLITINY TiAl PRI VELMI MALÝCH RYCHLOSTECH DEFORMACE. CREEP OF INTERMETALLIC ALLOY TiAl AT VERY LOW STRAIN RATES
CREEP INTERMETALICKÉ SLITINY TiAl PRI VELMI MALÝCH RYCHLOSTECH DEFORMACE CREEP OF INTERMETALLIC ALLOY TiAl AT VERY LOW STRAIN RATES Petr Marecek a Luboš Kloc b Jaroslav Fiala a a Faculty of Chemistry,
Polotovary vyráběné tvářením za studena
Polotovary vyráběné tvářením za studena Úvodem základní pojmy z nauky o materiálu Krystalová mřížka Krystalová mřížka je myšlená konstrukce, která vznikne, když krystalem proložíme tři vhodně orientované
VLIV MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ CHOVÁNÍ HLINÍKU PO EXTRÉMNÍ PLASTICKÉ DEFORMACI (ECAP)
VLIV MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ CHOVÁNÍ HLINÍKU PO EXTRÉMNÍ PLASTICKÉ DEFORMACI (ECAP) EFFECT OF MICROSTRUCTURE CHANGES ON THE MECHANICAL BEHAVIOUR OF ALUMINUM AFTER SEVERE PLASTIC DEFORMATION
KONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
Antonín Kříž a) Miloslav Chlan b)
OVLIVNĚNÍ KVALITY GALVANICKÉ VRSTVY AUTOMOBILOVÉHO KLÍČE VÝCHOZÍ STRUKTUROU MATERIÁLU INFLUENCE OF INITIAL MICROSTRUCTURE OF A CAR KEY MATERIAL ON THE ELECTROPLATED LAYER QUALITY Antonín Kříž a) Miloslav
VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM
VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM INFLUENCE OF ALUMINIUM CONTENT ON BEHAVIOUR OF MAGNESIUM CAST ALLOYS IN BENTONITE AND FURAN SAND MOULD
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN
5.0 ZJIŠŤOVÁNÍ FÁZOVÝCH PŘEMĚN Metody zkoumání fázových přeměn v kovech a slitinách jsou založeny na využití změn převážně fyzikálních vlastností, které fázovou přeměnu a s ní spojenou změnu struktury
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER Kamil Krybus a Jaromír Drápala b a OSRAM Bruntál, spol. s r.
Progresivní technologie tváření
VŠB - TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ Katedra tváření materiálu Progresivní technologie tváření 633-0807 Autor: Miroslav Greger Ostrava 2017 1 Obsah s. 1. Zpevnění
POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS
MOŽNOST ZOBECNĚNÍ POKLESU MECHANICKÝCH VLASTNOSTÍ OCELI 12 022 NA DALŠÍ MATERIÁLY POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN 12 022) ON OTHER STEELS Josef ČMAKAL,
1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových
Struktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
NOVÉ POZNATKY Z VÝVOJE A ZKUŠEBNÍHO PROVOZU PROTOTYPOVÉHO ZAŘÍZENÍ DRECE NEW FINDING FROM DEVELOPMENT AND TEST WORKING OF MODEL MACHINERY DRECE
NOVÉ POZNATKY Z VÝVOJE A ZKUŠEBNÍHO PROVOZU PROTOTYPOVÉHO ZAŘÍZENÍ DRECE NEW FINDING FROM DEVELOPMENT AND TEST WORKING OF MODEL MACHINERY DRECE Stanislav RUSZ a, Karel MALANÍK b, Jan KEDROŇ a, Irena SKOTNICOVÁ
VÝZKUM MECHANICKÝCH VLASTNOSTÍ A STRUKTURNÍ STABILITY SUPERSLITINY NA BÁZI NIKLU DAMERON. Karel Hrbáček a
VÝZKUM MECHANICKÝCH VLASTNOSTÍ A STRUKTURNÍ STABILITY SUPERSLITINY NA BÁZI NIKLU DAMERON. Karel Hrbáček a Božena Podhorná b Vítězslav Musil a Antonín Joch a a První brněnská strojírna Velká Bíteš, a.s.,
a UJP PRAHA a.s., Nad Kamínkou 1345, Praha Zbraslav, b PBS Velká Bíteš a.s. Vlkovská 279, Velká Bíteš,
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA NIKLOVÉ SLITINY IN 792 5A MECHANICAL PROPERTIES AND STRUCTURE STABILITY OF PROMISING NIKCKEL ALLOY IN 792 5A Božena Podhorná a Jiří Kudrman a Karel Hrbáček
ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
METALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
Zkouška rázem v ohybu. Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer. Jméno: St. skupina: Datum cvičení:
BUM - 6 Zkouška rázem v ohybu Autor cvičení: prof. RNDr. B. Vlach, CSc; Ing. Petr Langer Jméno: St. skupina: Datum cvičení: Úvodní přednáška: 1) Vysvětlete pojem houževnatost. 2) Popište princip zkoušky
PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
Metalurgie vysokopevn ch ocelí
Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M
CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON
METAL 9 9... 9, Hradec nad Moravicí CREEP AUSTENITICKÉ LITINY S KULIČKOVÝM GRAFITEM CREEP OF AUSTENITIC DUCTILE CAST IRON Vlasák, T., Hakl, J., Čech, J., Sochor, J. SVUM a.s., Podnikatelská, 9 Praha 9,
SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ
SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ STUDY OF INFLUENCE OF TEMPERATURE AND DEFORMATION ON STRUCTURE AND PROPERTIES OF CARBON AND MICROALLOYED
VÝZKUM VLASTNOSTÍ SMĚSI TEKBLEND Z HLEDISKA JEJÍHO POUŽITÍ PRO STAVBU ŽEBRA
Vladimír Petroš, VŠB Technická univerzita Ostrava, 17. listopadu 15/2172, 708 33 Ostrava, Poruba, tel.: +420 597325287, vladimir.petros@vsb.cz; Jindřich Šancer, VŠB Technická univerzita Ostrava, 17. listopadu
INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček
VLIV POPOUŠTĚNÍ NA VLASTNOSTI LITÉ C-Mn OCELI PO NORMALIZACI A PO INTERKRITICKÉM ŽÍHÁNÍ INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING Josef
Neželezné kovy Hutnické listy č. 4/2009. Mikrostruktura ultra-jemnozrnných kovových materiálů připravovaných ECAP
neželezné kovy Microstructure of Ultrafine-grained Metals after ECAP Mikrostruktura ultra-jemnozrnných kovových materiálů připravovaných ECAP Doc. Ing. Miroslav Greger, CSc., Vysoká škola báňská - Technická
Využítí niklových superslitin příklady výzkumu a výroby v ČR
Konference JuveMatter 2011 Využítí niklových superslitin příklady výzkumu a výroby v ČR Klepnutím lze upravit styl předlohy podnadpisů. Jiří ZÝKA UJP PRAHA, a. s. Úvod Niklové superslitiny zvláštní třída
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ
VLIV PARAMETRŮ LASEROVÉHO POVRCHOVÉHO ZPRACOVÁNÍ NA MIKROSTRUKTURU OCELÍ JIŘÍ HÁJEK, PAVLA KLUFOVÁ, ANTONÍN KŘÍŽ, ONDŘEJ SOUKUP ZÁPADOČESKÁ UNIVERZITA V PLZNI 1 Obsah příspěvku ÚVOD EXPERIMENTÁLNÍ ZAŘÍZENÍ
LASEROVÉ KALENÍ FOREM A NÁSTROJŮ LASER HARDENING OF MOULDS AND TOOLS
LASEROVÉ KALENÍ FOREM A NÁSTROJŮ LASER HARDENING OF MOULDS AND TOOLS Stanislav NĚMEČEK, Michal MÍŠEK MATEX PM s.r.o., Morseova 5, 301 00 Plzeň, Česká Republika, nemecek@matexpm.com Abstrakt Příspěvek se
ŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
18MTY 1. Ing. Jaroslav Valach, Ph.D.
18MTY 1. Ing. Jaroslav Valach, Ph.D. valach@fd.cvut.cz Informace o předmětu http://mech.fd.cvut.cz/education/bachelor/18mty Popis předmětu Témata přednášek Pokyny k provádění cvičení Informace ke zkoušce
LOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
VYSOKOTEPLOTNÍ CREEPOVÉ VLASTNOSTI SLITINY Fe31Al3Cr S PŘÍSADOU Zr. HIGH TEMPERATURE CREEP PROPERTIES Fe31Al3Cr ALLOY WITH Zr ADITIVE
VYSOKOTEPLOTNÍ CREEPOVÉ VLASTNOSTI SLITINY Fe31Al3Cr S PŘÍSADOU Zr HIGH TEMPERATURE CREEP PROPERTIES Fe31Al3Cr ALLOY WITH Zr ADITIVE Pavel Hanus Petr Kratochvíl Technická univerzita v Liberci, Katedra
PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš
PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL Radim Pachlopník Pavel Vavroš Nová Huť, a.s., Vratimovská 689, 707 02 Ostrava Kunčice, ČR, rpachlopnik@novahut.cz,
Precipitace. Změna rozpustnosti je základním předpokladem pro precipitační proces
Precipitace Čisté kovy s ohledem na své mechanické parametry nemají většinou pro praktická použití vhodné užitné vlastnosti. Je proto snaha využít všech možností ke zlepší těchto parametrů, zejména pak
Lisování nerozebíratelných spojů rámových konstrukcí
Abstract Lisování nerozebíratelných spojů rámových konstrukcí Zbyšek Nový 1, Miroslav Urbánek 1 1 Comtes FTH Lobezská E981, 326 00 Plzeň, Česká republika, znovy@comtesfht.cz, murbanek@comtesfht.cz The
Zkoušky rázem. Vliv deformační rychlosti
Zkoušky rázem V provozu působí často na strojní součásti síla, která se cyklicky mění, popř. Její působení je dynamického charakteru. Rázové působení síly je velmi nebezpečné, neboť to může iniciovat náhlou
12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ
VYUŽITÍ DYNAMICKÝCH MODELŮ OCELÍ V SIMULAČNÍM SOFTWARE PRO TVÁŘENÍ APPLICATION OF DYNAMIC MODELS OF STEELS IN SIMULATION SOFTWARE FOR MATAL FORMING Milan Forejt a, Zbyněk Pernica b, Dalibor Krásny c Brno
Houževnatost. i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii.
Henry Kaiser, Hoover Dam 1 Henry Kaiser, 2 Houževnatost i. Základní pojmy (tranzitní lomové chování ocelí, teplotní závislost pevnostních vlastností, fraktografie) ii. (Empirické) zkoušky houževnatosti
ZKOUŠKY MECHANICKÝCH. Mechanické zkoušky statické a dynamické
ZKOUŠKY MECHANICKÝCH VLASTNOSTÍ MATERIÁLŮ Mechanické zkoušky statické a dynamické Úvod Vlastnosti materiálu, lze rozdělit na: fyzikální a fyzikálně-chemické; mechanické; technologické. I. Mechanické vlastnosti
VÝZKUM VLIVU EXTRÉMNÍCH PODMÍNEK DEFORMACE NA SUBMIKROSTRUKTURU KOVŮ A ZKUŠEBNÍCH METOD PRO DIAGNOSTIKU JEJICH TECHNOLOGICKÝCH VLASTNOSTÍ
VÝZKUM VLIVU EXTRÉMNÍCH PODMÍNEK DEFORMACE NA SUBMIKROSTRUKTURU KOVŮ A ZKUŠEBNÍCH METOD PRO DIAGNOSTIKU JEJICH TECHNOLOGICKÝCH VLASTNOSTÍ RESEARCH OF INFLUENCE OF EXTREME DEFORMATION CONDITIONS ON METAL
TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS. Božena Podhorná a Jiří Kudrman a Karel Hrbáček b
TEPELNÉ ZPRACOVÁNÍ NIKLOVÝCH SUPERSLITIN HEAT TREATMENT OF HIGH-TEMPERATURE NICKEL ALLOYS Božena Podhorná a Jiří Kudrman a Karel Hrbáček b a UJP PRAHA a.s., Nad Kamínkou 1345, 156 10 Praha Zbraslav, E-mail:
STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24
STRUKTURNÍ STABILITA A VLASTNOSTI SVAROVÝCH SPOJŮ OCELI T24 prof. Ing. Jaroslav Koukal, CSc. 1,2 Ing. Martin Sondel, Ph.D. 1,2 doc. Ing. Drahomír Schwarz, CSc. 1,2 1 VŠB-TU Ostrava 2 Český svářečský ústav
Nauka o materiálu. Přednáška č.14 Kompozity
Nauka o materiálu Úvod Technické materiály, které jsou určeny k dalšímu technologickému zpracování zahrnují širokou škálu možného chemického složení, různou vnitřní stavbu a různé vlastnosti. Je nutno
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
Poruchy krystalové struktury
Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch
NÁVRHÁŘ. charakteristika materiálu. Numerický experiment Integrovaný model Dynamický materiálový model. kontrolovatelné parametry
Metody technologického designu Doc. Ing. Jiří Hrubý, CSc. Inaugurační přednáška NÁVRHÁŘ charakteristika materiálu kontrolovatelné parametry nekontrolovatelné parametry Termomechanická analýza (MKP) SOS
DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS
DETERMINATION OF MECHANICAL AND ELASTO-PLASTIC PROPERTIES OF MATERIALS BY NANOINDENTATION METHODS HODNOCENÍ MECHANICKÝCH A ELASTO-PLASTICKÝCH VLASTNOSTÍ MATERIÁLŮ VYUŽITÍM NANOINDENTACE Martin Vizina a
VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A
METAL 27 VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A INFLUENCE OF HEAT TREATMENT ON MECHANICA PROPERTIES AND HIGN-TEMPERATURE STRUCTURAL STABILITY
Nanotým VŠB TU Ostrava CZ.1.07/2.3.00/20.0038
Nanotým POZVÁNKA 3. ODBORNÉ DISKUZNÍ FÓRUM 17. 18. října 2013 Hotel Petr Bezruč***, Malenovice, Česká republika V rámci projektu: Registrační číslo: Lysá hora Tvorba mezinárodního vědeckého týmu a zapojování