SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ
|
|
- Veronika Fišerová
- před 6 lety
- Počet zobrazení:
Transkript
1 SLEDOVÁNÍ VLIVU TEPLOTY A DEFORMACE NA STRUKTURU A VLASTNOSTI UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ STUDY OF INFLUENCE OF TEMPERATURE AND DEFORMATION ON STRUCTURE AND PROPERTIES OF CARBON AND MICROALLOYED STEELS Jakub Horník, Petr Zuna, Vít Janík, Karel Dytrt, František Hnilica ČVUT v Praze, FS, Ústav materiálového inženýrství, Karlovo nám. 13, Praha 2, ČR Abstrakt V příspěvku je hodnocen vliv teploty a deformace na strukturu a vlastnosti dvou taveb ocelí vyrobených kontilitím. Vzorky z uhlíkové oceli a oceli mikrolegované niobem byly po austenitizaci 1200 C/1,5h plasticky deformovány v laboratorních podmínkách.. Deformace probíhala při teplotách 1200 C a 800 C. Byla provedena metalografická analýza vzorků a změřeny tvrdosti a mikrotvrdosti jednotlivých stavů. V závěru je provedeno vzájemné srovnání sledovaných parametrů, dále porovnání zjištěných výsledků s hodnotami dosahovanými v provozních podmínkách a je doporučen režim optimálního zpracování. The collective influence of temperature and deformation on structure and properties on two melts of steel is evaluated in this contribution. The carbon steel and steel with Nb microalloying were monitored. Samples after austenitization at 1200 C/1,5h were deformed in laboratory conditions. Plastics deformation was applied at temperatures 1200 C and 800 C. The metallographic estimation together with hardness and micro hardness measurement was made on all monitored states. The evaluation of monitored parameters and their matching with parameters reached after fabrication is made. Finally the optimal processing conditions are recommended. 1. ÚVOD V příspěvku je hodnocen vliv teploty a velikosti deformace na strukturu a vlastnosti uhlíkové a mikrolegované oceli. V návaznosti na výsledky předchozích prací [1], [2] je sledován vliv mikrolegury niobu na vybrané strukturní a mechanické charakteristiky v průběhu zpracování od kontislitku po válcovaný polotovar u dvou taveb ocelí podobného chemického složení lišících se obsahem mikrolegury. 2. MATERIÁL A POUŽITÉ METODY ZKOUŠEK Sledovaným materiálem jsou dvě tavby oceli typu S355J2G3 (ČSN ) vyrobené v ISPAT Nová Huť a.s. kontilitím rychlostí 2,1 m.min -1 jejichž chemické složení je uvedeno v tabulce 1. Tabulka 1. Chemické složení vzorků (hm. %) Vzorek č. tavby C [%] Mn [%] Si [%] Nb [%] Al celk [%] Al kov [%] A B Table 1. Chemical composition of samples (weight per cent) 1
2 Pro výrobu zkušebních vzorků byly odebrány z přířezů kontislitků hranoly o průřezu 20 x 20 mm v poloviční vzdálenosti mezi osou a povrchem. Pro sledovaní vlivu rychlosti ochlazování byly připraveny vzorky 15 x 15 x 10 mm, pro sledování vlivu deformace pak válečky o průměru 8 mm a výšce 15 mm. Hodnocen byl vliv rychlosti ochlazování na strukturu. Po žíhání na teplotách 1100 a 1200 C po dobu 1,5 h byly vzorky ochlazeny jednak pomalu v peci (1, C.s -1 ) a rychleji v zásypu, kdy rychlost chladnutí byla 0,7 C.s -1. Další série vzorků (válečky ø8 x 15 mm) byla po žíhání 1200 C / 1,5 h podrobena plastické deformaci pěchováním na padacím bucharu s deformační rychlostí 5, s -1. Velikost celkové deformace vzorku byla vymezena dorazem a činila 40 % nebo 60 % původní výšky. Sledován byl rovněž vliv teploty deformace na strukturu a vlastnosti. Deformace 40 % původní výšky probíhala při teplotách 1200 nebo 800 C (po austenitizaci 1200 C / 80 min následovalo ochlazení vzorku na vzduchu na teplotu deformace s následnou vyrovnávací výdrží v peci 5 min). Ochlazení po deformaci probíhalo buď v zásypu korundu nebo ve vodě. Deformace 60 % byla realizována bezprostředně po austenitizaci 1200 C / 1,5h s následným ochlazením opět v zásypu nebo vodě. Struktura a vlastnosti finálních válcovaných polotovarů byly hodnoceny na vzorcích odebraných z kruhové tyče ø 65 mm (O65) a ploché tyče 80 x 20 mm (P80). Metalografické výbrusy byly připraveny ve směru rovnoběžném a kolmém ke směru válcování tak, aby bylo možné sledovat celou oblast mezi povrchem a středem vývalku. Pro hodnocení mikrostruktury bylo využito světelné a elektronové mikroskopie. Z mechanických vlastností byla určována mikrotvrdost a tvrdost metodou dle Vickerse. 3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE 3.1 Teplota austenitizace a rychlost ochlazování Vliv teploty žíhání na strukturu sledovaných vzorků po ochlazení v zásypu dokumentuje obrázek 1. Struktura vzorků je tvořena zčásti proeutektoidním feritem, zčásti oblastmi feritu jehlicovité morfologie obklopenými ostrůvky lamelárního perlitu. [3] Detail jehlic feritu s oblastmi perlitu pro obě varianty oceli zachycuje obr. 2. U oceli A (bez mikrolegury) lze místy pozorovat i ferit 1100 C ocel A 1100 C ocel B 1200 C ocel A 1200 C ocel B Obr. 1. Struktura vzorků po ochlazení v zásypu Fig. 1. Structure after cooling in batch (0,7 C.s -1 ) s náznaky Widmannstättenovy morfologie. S vyšší teplotou austenitizace roste velikost primárního austenitického zrna [1] a roste podíl oblastí s jehlicovitým feritem, který je u této oceli hrubší (obr. 2.). Ocel B (mikrolegovaná) má menší velikost primárního zrna a menší podíl feritu v acikulární podobě. Jehlice feritu této oceli jsou jemnější než u oceli A. Tvrdost HV10 oceli A je 150 a oceli B je 170. Pomalé ochlazování v peci vede k polyedrické feritickoperlitické struktuře doprovázené oblastmi jehlicovitého feritu, jež 2
3 ocel A ocel B Obr.2. Feriticko-perlitická struktura (SEM) Fig.2. Ferite-pearlite structure (SEM) jsou četnější u oceli A. Sekundární zrno mikrolegované oceli B je jemnější. Tvrdost HV10 oceli A je 130, oceli B 135 [1]. Výrazný vliv na tvrdost vlivem teploty nebyl pozorován, vyšší tvrdost mikrolegované oceli je spojena s jemnější strukturou [2]. Nárůst hodnot tvrdostí vzorků ochlazených v zásypu je způsoben větším podílem feritu jehlicovité morfologie ve struktuře u obou typů ocelí Velikost deformace Struktura pěchovaných vzorků byla hodnocena v osových řezech ve středové oblasti cca 3 x 3 mm s homogenní deformací 40 a 60 %. Vzorky deformované při teplotě 1200 C mají strukturu tvořenou jednak feritem v polyedrické podobě jednak feritem s jehlicovitou morfologii. Zbytek struktury je zastoupen lamelárním perlitem (obr. 3). Podíl jehlicového feritu je při 40 % deformaci vyšší u oceli A (0,8 a u oceli B ocel A 1200 C, deformace 40 % ocel B ocel A 1200 C, deformace 60 % ocel B Obr. 3. Feriticko-perlitická struktura, deformovaný stav Fig. 3. Ferite-pearlite structure after deformation pak 0,5). Při vyšším stupni deformace podíl jehlicovitého feritu klesá (u oceli A na 0,48 a u oceli B na 0,3). Současně dochází k většímu zjemnění primárního zrna v porovnání s deformací o velikosti 40% u obou sledovaných variant ocelí. Velikostí austenitického zrna je uvedena v tabulce 2. Strukturám zobrazeným na obr. 3 odpovídají tvrdosti uvedené v tabulce 3. Přestože vyšší stupeň deformace vede Tabulka 2. Velikost austenitického zrna po deformaci o velikosti 40 a 60 % při 1200 C Tabulka 3. Tvrdost sekundární struktury po deformaci 40 a 60 % při 1200 C Velikost austenitického zrna [µm] HV 30 Ocel 40% deformace 60% deformace Ocel 40% deformace 60% deformace A A B B Table 2. Austenite grain size after deformation (40 and 60%), temperature 1200 C Table 3. Vickers hardness after deformation (40 and 60%), temperature 1200 C 3
4 k jemnějšímu sekundárnímu zrnu, vliv stupně deformace se na tvrdosti finálních struktur výrazněji neprojevil. Ocel B vykazuje vyšší hodnoty tvrdosti, které spojujeme především s výrazně menší velikostí sekundárního zrna. V závislosti na velikosti deformace nebyly pozorovány výraznější rozdíly ani na hodnotách mikrotvrdostí obou sledovaných ocelí Deformační teplota Struktura vzorků pěchovaných při teplotě 800 C je dokumentována na obr. 4. Na rozdíl od vyšší teploty deformace (1200 C) je zde vyšší podíl feritu polyedrického charakteru, ferit jehlicovité morfologie se vyskytuje jen ojediněle, a to častěji u oceli A. Sekundární struktura je v porovnání se stavem pěchovaným za vyšší teploty výrazně jemnější. Při stejných podmínkách deformace je i v tomto ocel A Obr. 4. Struktura po deformaci 40 % při teplotě 800 C Fig. 4. Ferite-pearlite structure after 40 % deformation at temperature 800 C Tabulka 4. Tvrdost sekundárního zrna po deformaci o velikosti 40% při 800 C HV 30 Ocel 40% deformace A 147 B 161 Table 4. Vickers hardness after deformation 40% at temperature případě feriticko-perlitické ocel B zrno oceli B jemnější než u oceli A. Hodnoty tvrdostí HV 30 naměřených po deformaci při teplotě 800 C jsou zaneseny v tabulce 4. Ocel B má opět vyšší hodnotu tvrdosti, rozdíl se však v porovnání se stavem deformovaným při vyšší teplotě snížil. Mírné snížení hodnoty tvrdosti u oceli B lze spojit se výrazným úbytkem podílu jehlicovitého feritu ve struktuře. Bodovou metodou byl stanoven podíl perlitu u vzorků deformovaných při 800 C, pro ocel A 0,26 a pro ocel B 0,18. Ve vzorcích ochlazených po deformaci při 800 C do vody nebyla ve shodě s diagramem IRA pozorována přítomnost feritu vyloučeného během prodlevy před deformací. Aby deformace probíhala ve dvoufázové oblasti, kdy ve struktuře očekáváme i přítomnost deformačně zpevněného feritu po tváření v oblasti austenit - ferit, je třeba deformační teplotu snížit [3]. 3.3 Válcovaný stav Struktura stavu válcovaného má feriticko-perlitický charakter s výraznou řádkovitostí perlitu v obou typech ocelí (obr. 5) [5]. Pozorovaná řádkovitost je výraznější u oceli bez O65, ocel A O65, ocel B P80, ocel A P80, ocel B Obr. 5. Struktura válcovaného stavu (rovnoběžně se směrem válcování) Fig. 5. Structure of rolled state (parallel with rolling direction) 4
5 mikrolegury. Ojedinělý výskyt jehlicovitých feritických útvarů v mikrostruktuře je častější u oceli A (bez mikrolegury). Sekundární zrno mikrolegevané oceli B je i v tomto případě u obou typů vývalků jemnější než zrno oceli A, která má i vyšší podíl perlitu ve struktuře. O65, ocel A O65, ocel B P80, ocel A P80, ocel B d m [µm] % perlitu Výstupní teplota po válcování byla pro O C a pro P C, ochlazování probíhalo na vzduchu. HVm 10 ferit perlit HV30 ocel A ocel B O65, ocel A O65, ocel B P80, ocel A P80, ocel B 0 O65 P80 Obr. 6. Fig. 6. Mikrotvrdost válcovaný stav Microhardness rolled state Obr. 7. Fig. 7. Tvrdost válcovaný stav Hardness rolled state Hodnoty mikrotvrdostí změřené u obou typů vývalků jsou patrné z obrázku 6. Mikrotvrdosti vývalků se liší nevýrazně, mírně vyšší hodnoty byly naměřeny u mikrolegovaných ocelí B. Pro oba typy vývalků byly stanoveny také hodnoty tvrdostí (obr. 7). Výraznější závislost tvrdosti na směru válcování u vývalků nebyla prokázána; rozdíly v hodnotách tvrdostí jsou naopak opět patrné v závislosti na složení oceli, ocel B dosahuje především v případě vývalku P80 vyšších tvrdostí. HV 30 Ocel A Ocel B střed pov rch Relativní vzdálenost od středu Obr. 8. Průběh tvrdosti po průřezu vývalku P80 Fig. 8. Hardness values in crosscut of rolled shape P80 5
6 Průběh tvrdosti v příčném řezu vzorkem P80 (obr. 8.) ukazuje, že nejvyšší hodnoty jsou v oblasti mezi středem a povrchem vývalku. Hodnoty tvrdostí stavu provozně válcovaného a laboratorně pěchovaného se výrazněji neliší a jsou ve shodě s hodnotami mechanických vlastností vývalků změřených v ISPAT Nová Huť a.s. doplněných hodnotami tvrdostí (Tabulka 5). Tabulka 5. Mechanické vlastnosti vývalků Mechanical properties: Stress Hardness Impact toughness Semiproduct O65 P80 Steel R e [MPa] R m [MPa] HV30 KV -20 C [J] KV 0 C [J] A B A B Table 5. Mechanical properties of semiproducts Mikrolegovaná ocel má u obou typů polotovaru vyšší mez kluzu a výrazně vyšší nárazové práce zjištěné při zkouškách vrubové houževnatosti. Vyšší hodnoty souvisí jednak s jemnějším strukturou mikrolegované oceli jednak s méně výraznou řádkovitostí perlitu. 4. ZÁVĚRY 1. Struktura všech hodnocených stavů je feriticko-perlitická s různým podílem feritu polyedrické a jehlicovité morfologie. Tvorba jehlicovitého feritu souvisí s velikostí primárního austenitického zrna a s rychlostí ochlazování. Hrubší primární zrno a vyšší rychlost ochlazování mají za následek větší podíl feritu jehlicovité morfologie. Ocel A (bez mikrolegury) za stejných podmínek obsahuje vždy větší počet těchto útvarů než ocel B (mikrolegovaná). 2. Vyšší stupeň deformace zjemní primární austenitické zrno a následně také zrno sekundární, toto zjemnění se na výsledné tvrdosti výrazněji neprojeví. Lze předpokládat příznivý vliv větší deformace na finální houževnatost. 6
7 3. Teplota deformace 800 C vede ke zjemnění sekundární struktury oproti vzorkům deformovaným při teplotě 1200 C. 4. Ocel mikrolegovaná vykazuje ve všech stavech mírně vyšší hodnoty tvrdostí i mikrotvrdostí. Vliv mikrolegury se projeví především zjemněním finálního zrna, precipitační zpevnění je nevýrazné. 5. Mikrolegování má pozitivní vliv na hodnoty meze kluzu v obou sledovaných vývalcích, důležitou úlohu přitom hraje velikost sekundárního zrna. Podobný vliv finální struktury je pozorován i na hodnotách vrubové houževnatosti. LITERATURA [1] HORNÍK, Jakub, aj. Studium vlivu následných ohřevů uhlíkových a mikrolegovaných ocelí vyrobených kontilitím na strukturu a vlastnosti kontislitků. In: Metal 2003: 12. mezinárodní konference metalurgie a materiálů Hradec nad Moravicí, Červený zámek, Česká republika [CD-ROM]. Ostrava: Tanger: květen, 2003, p.174. ISBN [2] ZUNA, P. aj. Modification of structure and properties of semioproducts fabricated from continuous casting billets by condition of their processing. Acta Metallurgica Slovaca, 2004, vol. 10, No. 1, p ISSN [4] Thomas, M. H., Michal, G. M. The Influence of Niobium and Nb(C,N) Precipitation on the Formation of Proeutectoid Ferrite in Low Alloy Steels. Solid to Solid Phase Transformations; Pittsburgh; Pa ; Aug p [3] ŽÍDEK, M. Metalurgická tvařitelnost ocelí za tepla a za studena. Praha: ALEKO, s. [5] Chawla, K.K. at all: Detailed Microstructural Characterization of Two Controlled-Rolled Nb-V Microalloyed Steels. In: Welding, Failure Analysis, and Metallography. The American Society for Metals, Ohio pp
3. VÝSLEDKY ZKOUŠEK A JEJICH DISKUSE
SLEDOVÁNÍ STRUKTURNÍCH CHARAKTERISTIK A VLASTNOSTÍ VÁLCOVANÝCH VÝROBKU Z UHLÍKOVÝCH A MIKROLEGOVANÝCH OCELÍ V SOUVISLOSTI S VLASTNOSTMI PRIMÁRNÍCH KONTISLITKU MONITORING THE STRUCTURE CHARACTERISTIC AND
VíceINFLUENCE OF TREATING CONDITIONS ON STRUCTURE OF FORGED PIECES FROM THE STEEL GRADE C35E
OVLIVNĚNÍ STRUKTURY VÝKOVKŮ Z OCELI TYPU C35E PODMÍNKAMI KOVÁŘSKÉHO ZPRACOVÁNÍ INFLUENCE OF TREATING CONDITIONS ON STRUCTURE OF FORGED PIECES FROM THE STEEL GRADE C35E Petr Zuna a, Jana Sobotová a, Jakub
VíceVLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING
VLIV OBSAHU NIKLU NA VLASTNOSTI LKG PO FERITIZAČNÍM ŽÍHÁNÍ EFFECT OF THE CONTENT OF NICKEL ON DI PROPERTIES AFTER FERRITIZATION ANNEALING Hana Tesařová Bohumil Pacal Ondřej Man VUT-FSI-ÚMVI-OKM, Technická
VíceVLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ
Transfer inovácií 2/211 211 VLIV TECHNOLOGIE ŽÁROVÉHO ZINKOVÁNÍ NA VLASTNOSTI ŽÁROVĚ ZINKOVANÝCH OCELÍ Ing. Libor Černý, Ph.D. 1 prof. Ing. Ivo Schindler, CSc. 2 Ing. Petr Strzyž 3 Ing. Radim Pachlopník
VíceINFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING. Josef Bárta, Jiří Pluháček
VLIV POPOUŠTĚNÍ NA VLASTNOSTI LITÉ C-Mn OCELI PO NORMALIZACI A PO INTERKRITICKÉM ŽÍHÁNÍ INFLUENCE OF TEMPERING ON THE PROPERTIES OF CAST C-Mn STEEL AFTER NORMALIZING AND AFTER INTERCRITICAL ANNEALING Josef
VíceASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES
ASTM A694 F60 - TEPELNÉ ZPRACOVÁNÍ A MECHANICKÉ VLASTNOSTI ASTM A694 F60 HEAT TREATMENT AND MECHANICAL PROPERTIES Martin BALCAR, Jaroslav NOVÁK, Libor SOCHOR, Pavel FILA, Ludvík MARTÍNEK ŽĎAS, a.s., Strojírenská
VíceVliv rychlosti ochlazování na vlastnosti mikrolegované oceli
Vliv rychlosti ochlazování na vlastnosti mikrolegované oceli Zdeněk Vašek a, Anna Moráfková a, Vladimír Švinc a, Ivo Schindler b, Jiří Kliber b a NOVÁ HUŤ a.s., Ostrava - Kunčice, ČR, zvasek@novahut.cz,
VíceTváření,tepelné zpracování
tváření, tepelné zpracování Optimalizace řízeného válcování nové konstrukční oceli se zvláštními užitnými vlastnostmi Prof. Ing. Ivo Schindler, CSc., Doc. Dr. Ing. Jaroslav Sojka, VŠB-TU Ostrava, 17. listopadu
VíceVYUŽITÍ MIKROLEGUR PŘI TVÁŘENÍ ZA TEPLA VÁLCOVANÝCH TYČÍ. Zdeněk Vašek a Jiří Kliber b
VYUŽITÍ MIKROLEGUR PŘI TVÁŘENÍ ZA TEPLA VÁLCOVANÝCH TYČÍ Abstrakt Zdeněk Vašek a Jiří Kliber b a NOVÁ HUŤ a.s., Ostrava - Kunčice, ČR, zvasek@novahut.cz b VŠB-TU OSTRAVA, FMMI, katedra tváření materiálu,
VícePetr Kubeš. Vedoucí práce: Prof. Ing. Petr ZUNA, CSc. D. Eng. h.c. Konzultant: Ing. Jakub HORNÍK, Ph.D.
Kinetika růstu zrna a rekrystalizace při tvářecích režimech pro zpracování oceli SA 508 Kinetics of Grain Growth and Recrystallization during Forming Modes for Processing of Steel SA 508 Petr Kubeš Vedoucí
VíceMECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS
MECHANICKÉ VLASTNOSTI A VELIKOST ZRNA MIKROLEGOVANÝCH LITÝCH OCELÍ MECHANICAL PROPERTIES AND GRAIN SIZE IN MICROALLOYED CAST STEELS Jiří Cejp Karel Macek Ganwarich Pluphrach ČVUT v Praze,Fakulta strojní,ústav
VíceVLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N
VLIV MIKROLEGUJÍCÍCH PRVKŮ A PARAMETRŮ TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI PLECHŮ JAKOSTI P 460N THE EFFECT OF MICROALLOYING ELEMENTS AND HEAT TREATMENT PARAMETERS ON MECHANICAL PROPERTIES OF
VíceMetalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Obsah Protahovací trn Povrchově kalená součást Fréza Karbidické vyřádkování Cementovaná součást Pozinkovaná součást Pivní korunky Klíč
VíceSIMULACE ŘÍZENÉHO VÁLCOVÁNÍ VYBRANÝCH KONSTRUKČNÍCH OCELÍ ZA RŮZNÝCH TEPLOTNÍCH PODMÍNEK
SIMULACE ŘÍZENÉHO VÁLCOVÁNÍ VYBRANÝCH KONSTRUKČNÍCH OCELÍ ZA RŮZNÝCH TEPLOTNÍCH PODMÍNEK SIMULATION OF CONTROLLED ROLLING OF SELECTED CONSTRUCTION STEELS AT DIFFERENT TEMPERATURE CONDITIONS Karel Milan
VíceMetalografie. Praktické příklady z materiálových expertíz. 4. cvičení
Metalografie Praktické příklady z materiálových expertíz 4. cvičení Příprava metalografických výbrusů Odběr vzorků nesmí dojít k změně struktury (deformace, ohřev) světelný mikroskop pro dosažení požadovaných
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI. David Aišman
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI VYSOCEPEVNÉ NÍZKOLEGOVANÉ OCELI David Aišman D.Aisman@seznam.cz ABSTRACT Tato práce se zabývá možnostmi tepelného zpracování pro experimentální ocel 42SiCr. Jedná
Vícetváření, tepelné zpracování
Tváření, tepelné zpracování Hutnické listy č. 2/2008 tváření, tepelné zpracování Vliv doválcovací teploty a chemického složení na vlastnosti ocelí s obsahem uhlíku 0,5 0,8 % Prof. Ing. Ivo Schindler, CSc.,
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY
VLIV TEPELNÉHO ZPRACOVÁNÍ NA VLASTNOSTI JEMNOZRNNÝCH SVAŘITELNÝCH OCELÍ PRO TENKOSTĚNNÉ ODLITKY INFLUENCE OF HEAT TREATMENT ON PROPERTIES OF FINE-GRAINED WELDABLE STEELS FOR THIN-WALLED CASTINGS Jiří Cejp
VíceVÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013
VÝVOJ MIKROSTRUKTURY VÍCEFÁZOVÉ OCELI S TRIP EFEKTEM SVOČ - FST 2013 Bc. Vojtěch Průcha, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT Práce se zabývá rozborem mikrostruktur
VíceMetalurgie vysokopevn ch ocelí
Metalurgie vysokopevn ch ocelí Vysokopevné svařitelné oceli jsou podle konvence označovány oceli s hodnotou meze kluzu vyšší než 460 MPa. Vysokopevné svařitelné oceli uváděné v normách pod označením M
VíceVliv obsahu uhlíku na rekrystalizační chování korozivzdorné oceli X6CrNiTi 18-10
Vliv obsahu uhlíku na rekrystalizační chování korozivzdorné oceli X6CrNiTi 18-10 Petr Celba Vedoucí práce: Ing. Jana Sobotová Ph.D. Abstrakt Práce je zaměřena na studium vlivu obsahu uhlíku na rekrystalizační
VíceVLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE J. Drnek Z. Nový P. Fišer COMTES FHT s.r.o., Borská
VíceSTUDIUM ÚČINKU MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ VLASTNOSTI ZA STUDENA VÁLCOVANÝCH A ŽÍHANÝCH PÁSŮ Z HSLA OCELI
STUDIUM ÚČINKU MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ VLASTNOSTI ZA STUDENA VÁLCOVANÝCH A ŽÍHANÝCH PÁSŮ Z HSLA OCELI STUDY OF EFFECTS OF MICROSTRUCTURAL CHANGES ON MECHANICAL PROPERTIES OF COLD ROLLED AND
VíceOPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg
OPTIMALIZACE REŽIMU TEPELNÉHO ZPRACOVÁNÍ PRO ZVÝŠENÍ MECHANICKÝCH VLASTNOSTÍ SLITINY ALSI9Cu2Mg OPTIMIZATION OF HEAT TREATMENT CONDITIONS TO IMPROVE OF MECHANICAL PROPETIES OF AlSi9Cu2Mg ALLOY Jan Šerák,
VíceA B C D. Time 850 C 950 C 1050 C 1150 C 1200 C. teplota [ C]
Hutnické listy č.2/2010, roč. LXIII ISSN 0018-8069 Materiálové inženýrství Material Engineering Vliv částic AlN a podmínek zpracování na finální strukturu hmotných výkovků Influence of AlN Particles and
VíceMOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ. Tomáš Schellong Kamil Pětroš Václav Foldyna. JINPO PLUS a.s., Křišťanova 2, 702 00 Ostrava, ČR
MOŽNOSTI VYUŽITÍ MIKROLEGOVANÝCH OCELÍ Tomáš Schellong Kamil Pětroš Václav Foldyna JINPO PLUS a.s., Křišťanova 2, 702 00 Ostrava, ČR Abstract The proof stress and tensile strength in carbon steel can be
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ
VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ INFLUENCE OF HEAT TREATMENT AND MICROALLOYING ON MICROSTRUCTURE AND PROPERTIES OF CAST MANGANESSE STEELS
VícePRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL. Radim Pachlopník Pavel Vavroš
PRVNÍ POZNATKY Z VÁLCOVÁNÍ MIKROLEGOVANÝCH PÁSŮ S MEZÍ KLUZU NAD 460 MPa NA TRATI STECKEL Radim Pachlopník Pavel Vavroš Nová Huť, a.s., Vratimovská 689, 707 02 Ostrava Kunčice, ČR, rpachlopnik@novahut.cz,
VícePOSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN ) ON OTHER STEELS
MOŽNOST ZOBECNĚNÍ POKLESU MECHANICKÝCH VLASTNOSTÍ OCELI 12 022 NA DALŠÍ MATERIÁLY POSSIBLE GENERALISATION OF DECREASE IN MECHANICAL PROPERTIES OF CARBON STEEL (ČSN 12 022) ON OTHER STEELS Josef ČMAKAL,
VíceSTATISTICKÉ PARAMETRY OCELÍ POUŽÍVANÝCH NA STAVBU OCELOVÝCH KONSTRUKCÍ
STATISTICKÉ PARAMETRY OCELÍ POUŽÍVANÝCH NA STAVBU OCELOVÝCH KONSTRUKCÍ Lubomír ROZLÍVKA, Ing., CSc., IOK s.r.o., Frýdek-Místek, tel./fax: 555 557 529, mail: rozlivka@iok.cz Miroslav FAJKUS, Ing., IOK s.r.o.,
VíceMECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM
MECHANICKÉ A NĚKTERÉ DALŠÍ CHARAKTERISTIKY PLECHŮ Z OCELI ATMOFIX B (15127, S355W) VE STAVU NORMALIZAČNĚ VÁLCOVANÉM Miroslav Liška, Ondřej Žáček MMV s.r.o. Patinující ocele a jejich vývoj Oceli se zvýšenou
VíceVÁLCOVÁNÍ PÁSU Z MIKROLEGOVANÉ OCELI NA DVOUSTOLICOVÉ TRATI TYPU STECKEL ZA TEPLA
VÁLCOVÁNÍ PÁSU Z MIKROLEGOVANÉ OCELI NA DVOUSTOLICOVÉ TRATI TYPU STECKEL ZA TEPLA ROLLING OF MICROALLOYED STEEL AT A TWO-STAND HOT STRIP MILL OF STECKEL TYPE Stanislav Rusz a Ivo Schindler a Lubomír Cížek
VícePLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI
PLASTICKÉ VLASTNOSTI VYSOKOPEVNOSTNÍCH MATERIÁLŮ DĚLENÝCH NESTANDARDNÍMI TECHNOLOGIEMI PLASTIC PROPERTIES OF HIGH STRENGHT STEELS CUTTING BY SPECIAL TECHNOLOGIES Pavel Doubek a Pavel Solfronk a Michaela
VíceŽíhání druhého druhu. Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007
Žíhání druhého druhu Teorie tepelného zpracování Katedra materiálu Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2007 Rozdělení Žíhání 2. druhu oceli litiny Neželezné kovy austenitizace Rozpad
VíceVLIV INTERKRITICKÉHO ŽÍHÁNÍ NA MIKROSTRUKTURU A MECHANICKÉ VLASTNOSTI LITÝCH MIKROLEGOVANÝCH OCELÍ
VLIV INTERKRITICKÉHO ŽÍHÁNÍ NA MIKROSTRUKTURU A MECHANICKÉ VLASTNOSTI LITÝCH MIKROLEGOVANÝCH OCELÍ INFLUENCE OF INTERCRITICAL ANNEALING ON MICROSTRUCTURE AND MECHANICAL PROPERTIES OF CAST MICROALLOYED
VíceSTŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU
STŘEDNÍ PŘIROZENÉ DEFORMAČNÍ ODPORY PŘI TVÁŘENÍ OCELÍ ZA TEPLA - VLIV CHEMICKÉHO A STRUKTURNÍHO STAVU MEAN EQUIVALENT STRESS VALUES DURING HOT FORMING OF STEELS - INFLUENCE OF CHEMICAL AND STRUCTURE STATE
VíceLABORATORNÍ SIMULACE VLIVU TERMOMECHANICKÝCH PODMÍNEK TVÁŘENÍ NA MECHNICKÉ VLASTNOSTI KOLEJNICOVÝCH OCELÍ (NA TLAKOVÉM DILATOMETRU DIL 805A/D)
LABORATORNÍ SIMULACE VLIVU TERMOMECHANICKÝCH PODMÍNEK TVÁŘENÍ NA MECHNICKÉ VLASTNOSTI KOLEJNICOVÝCH OCELÍ (NA TLAKOVÉM DILATOMETRU DIL 805A/D) Richard Fabík a Bartosz Koczurkiewicz b Jiří Kliber c a MORAVSKOSLEZSKÉ
VíceMĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ
MĚŘENÍ ELASTICITRY OVLIVNĚNÝCH PÁSEM SVAROVÝCH SPOJŮ VYSOKOPEVNOSTNÍCH OCELÍ Petr HANUS, Michal KONEČNÝ, Josef TOMANOVIČ Katedra mechaniky, materiálů a částí strojů, Dopravní fakulta Jana Pernera, Univerzita
VíceTECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,
Více, Ostrava, Czech Republic
KOVÁNÍ MIKROLEGOVANÝCH OCELÍ S VANADEM Miroslav Greger VŠB Technická univerzita Ostrava, Fakulta metalurgie a materiálového inženýrství, 7. listopadu 5, 708 33 Ostrava Poruba, ČR E-Mail : miroslav.greger@vsb.cz
VíceMetodika hodnocení strukturních změn v ocelích při tepelném zpracování
Metodika hodnocení strukturních změn v ocelích při tepelném zpracování Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Abstrakt Předložená práce se zabývá volbou metodiky hodnocení strukturních změn ve vysokolegovaných
Více1. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger
1. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Základní návrhové předpisy: - ČSN 73 1401/98 Navrhování ocelových
VíceSTUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA. Libor Černý a, Ivo Schindler b
STUDIUM DEFORMAČNÍHO CHOVÁNÍ NÍZKOUHLÍKOVÉ OCELI PŘI FINÁLNÍM DVOUPRŮCHODU NA PÁSOVÉ TRATI STECKEL ZA TEPLA Libor Černý a, Ivo Schindler b a NOVÁ HUŤ, a.s., oddělení Technický rozvoj a ekologie, Vratimovská
VíceHODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY
HODNOCENÍ MIKROSTRUKTURY A VLASTNOSTÍ ODLITKŮ ZE SLITINY AZ91HP EVALUATION OF MICROSTRUCTURE AND PROPERTIES OF SAND CAST AZ91HP MAGNESIUM ALLOY Vít Janík a,b, Eva Kalabisová b, Petr Zuna a, Jakub Horník
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ
VLIV TEPELNÉHO ZPRACOVÁNÍ NA HOUŽEVNATOST LITÝCH MIKROLEGOVANÝCH NÍZKOUHLÍKOVÝCH OCELÍ EFFECT OF HEAT TREATMENT ON TOUGHNESS OF CAST MICROALLOYED LOW-CARBON STEELS Jiří Cejp Karel Macek ČVUT v Praze, Fakulta
VíceVÁLCOVÁNÍ ZA STUDENA TRIP OCELI PO TERMOMECHANICKÉM ZPRACOVÁNÍ THE COLD ROLLING OF TRIP STEEL AFTER THERMOMECHANICAL TREATMENT
VÁLCOVÁNÍ ZA STUDENA TRIP OCELI PO TERMOMECHANICKÉM ZPRACOVÁNÍ THE COLD ROLLING OF TRIP STEEL AFTER THERMOMECHANICAL TREATMENT Tomáš Gajdzica a, Jiří Kliber a, Ondřej Žáček b, Ilija Mamuzić c a VŠB - TU
VíceDEGRADACE STRUTURY A MECHANICKÝCH VLASTNOSTÍ SLITINY LVN13 DLOUHODOBÝM ÚČINKEM TEPLOTY
DEGRADACE STRUTURY A MECHANICKÝCH VLASTNOSTÍ SLITINY LVN13 DLOUHODOBÝM ÚČINKEM TEPLOTY LONG-TERM DEGRADATION OF STRUCTURE AND MECHANICAL PROPERTIES OF LVN13 ALLOY INDUCED BY TEMPERATURE Božena Podhorná
VíceZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC
Sborník str. 392-400 ZKOUŠKY MIKROLEGOVANÝCH OCELÍ DOMEX 700MC Antonín Kříž Výzkumné centrum kolejových vozidel, ZČU v Plzni,Univerzitní 22, 306 14, Česká republika, kriz@kmm.zcu.cz Požadavky kladené dnešními
VíceKinetika austenitizace nízkouhlíkové Mn oceli při interkritickém tepelném zpracování
Kinetika austenitizace nízkouhlíkové Mn oceli při interkritickém tepelném zpracování Libor Kraus, Josef Kasl, Stanislav Němeček ŠKODA VÝZKUM s.r.o., ylova 57, 316, Plzeň Abstract his work deal with the
VícePHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS. Petr Unucka a Aleš Bořuta a Josef Bořuta a
FYZIKÁLNÍ SIMULACE TVÁŘENÍ VYSOKOLEGOVANÝCH OCELÍ PHYSICAL SIMULATION OF FORMING OF HIGH-ALLOYED STEELS Petr Unucka a Aleš Bořuta a Josef Bořuta a a MATALURGICKÝ A MATERIÁLOVÝ VÝZKUM s.r.o., Pohraniční
VíceVLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM
VLIV OBSAHU HLINÍKU NA VLASTNOSTI HOŘČÍKOVÝCH SLITIN PŘI ODLÉVÁNÍ DO BENTONITOVÝCH A FURANOVÝCH FOREM INFLUENCE OF ALUMINIUM CONTENT ON BEHAVIOUR OF MAGNESIUM CAST ALLOYS IN BENTONITE AND FURAN SAND MOULD
VíceVLIV MIKROSTRUKTURY NA ODOLNOST DUPLEXNÍ OCELI 22/05 VŮČI SSC. Petr Jonšta a Jaroslav Sojka a Petra Váňová a Marie Sozańska b
VLIV MIKROSTRUKTURY NA ODOLNOST DUPLEXNÍ OCELI 22/05 VŮČI SSC Petr Jonšta a Jaroslav Sojka a Petra Váňová a Marie Sozańska b b a VŠB-TUO, 17. listopadu 15, 708 33 Ostrava - Poruba, ČR, www.vsb.cz Silesian
VíceŽÍHÁNÍ 1. ŽÍHÁNÍ OCELÍ
1 ŽÍHÁNÍ Žíhání je způsob tepelného zpracování, kterým chceme u součásti dosáhnout stavu blízkého stavu rovnovážnému. Podstatou je rovnoměrný ohřev součásti na teplotu žíhání, setrvání na této teplotě
VíceMožnosti Impact testu při posuzování správnosti tepelného zpracování ocelí. Ing. Petr Beneš
Možnosti Impact testu při posuzování správnosti tepelného zpracování ocelí Vedoucí: Konzultanti: Vypracoval: Doc. Dr. Ing. Antonín Kříž Ing. Jiří Hájek Ph.D Ing. Petr Beneš Martin Vadlejch Impact test
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A
METAL 27 VLIV TEPELNÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI A VYSOKOTEPLOTNÍ STABILITU NIKLOVÉ SLITINY IN 792 5A INFLUENCE OF HEAT TREATMENT ON MECHANICA PROPERTIES AND HIGN-TEMPERATURE STRUCTURAL STABILITY
VíceHodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN
Hodnocení růstu zrna uhlíkových a nízkolegovaných nástrojových ocelí v závislosti na přítomnosti AlN Bc. Jaroslav Víšek, Bc. Ladislav Nikel Vedoucí práce prof. Ing. Petr Zuna, CSc., D.Eng.h.c. Abstrakt
VíceMECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA LITÝCH NIKLOVÝCH SLITIN PO DLOUHODOBÉM ÚČINKU TEPLOTY MECHANICAL PROPERTIES AND STRUCTURAL STABILITY OF CAST NICKEL ALLOYS AFTER LONG-TERM INFLUENCE OF TEMPERATURE
VícePRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž
Vakuové tepelné zpracování a tepelné zpracování nástrojů 22. - 23.11. 2011 - Jihlava PRASKÁNÍ VRTÁKŮ PO TEPELNÉM ZPRACOVÁNÍ Antonín Kříž Západočeská univerzita v Plzni Fakulta strojní Katedra materiálu
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ
VLIV TEPELNÉHO ZPRACOVÁNÍ A MIKROLEGOVÁNÍ NA MIKROSTRUKTURU A VLASTNOSTI LITÝCH MANGANOVÝCH OCELÍ INFLUENCE OF HEAT TREATMENT AND MICROALLOYING ON MICROSTRUCTURE AND PROPERTIES OF ČÁST MANGANESSE STEELS
VíceSvařitelnost vysokopevné oceli s mezí kluzu 1100 MPa
Svařitelnost vysokopevné oceli s mezí kluzu 1100 MPa doc. Ing. Jiří Janovec, CSc., Ing. Petr Ducháček ČVUT v Praze, Fakulta strojní, Karlovo náměstí 13, Praha 2 Jiri.Janovec@fs.cvut.cz, Petr.Duchacek@fs.cvut.cz
VíceMODELOVÁNÍ VÁLCOVÁNÍ TEPLÉHO OCELOVÉHO PÁSU KONSTRUKČNÍCH JAKOSTÍ NA LABORATORNÍ VÁLCOVACÍ TRATI TANDEM
MODELOVÁNÍ VÁLCOVÁNÍ TEPLÉHO OCELOVÉHO PÁSU KONSTRUKČNÍCH JAKOSTÍ NA LABORATORNÍ VÁLCOVACÍ TRATI TANDEM Libor Černý a Ivo Schindler b a) Výzkumný a zkušební ústav, NOVÁ HUŤ, a. s. Ostrava, ČR b) Ústav
VíceVŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic
SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical
VíceMOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER
MOŽNOSTI TVÁŘENÍ MONOKRYSTALŮ VYSOKOTAVITELNÝCH KOVŮ V OCHRANNÉM OBALU FORMING OF SINGLE CRYSTALS REFRACTORY METALS IN THE PROTECTIVE COVER Kamil Krybus a Jaromír Drápala b a OSRAM Bruntál, spol. s r.
VíceMiloš Marek a, Ivo Schindler a
STŘEDNÍ DEFORMAČNÍ ODPORY ZA TEPLA A STRUKTUROTVORNÉ PROCESY SLEDOVANÉ VÁLCOVÁNÍM OCELOVÝCH VZORKŮ S ODSTUPŇOVANOU TLOUŠŤKOU Miloš Marek a, Ivo Schindler a a VŠB Technická univerzita Ostrava, Ústav modelování
VíceSTUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI
STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI EVALUATION OF MECHANICAL PROPERTIES AND BEHAVIOUR AROUND MACROINDENTS ON SYSTEMS WITH THIN FILMS Denisa Netušilová,
VícePOPIS PRECIPITAČNÍCH DĚJŮ PŘI SEKUNDÁRNÍM VYTVRZENÍ PM NÁSTROJOVÉ OCELI SE ZVÝŠENÝM OBSAHEM NIOBU. P. Novák, M. Pavlíčková, D. Vojtěch, J.
POPIS PRECIPITAČNÍCH DĚJŮ PŘI SEKUNDÁRNÍM VYTVRZENÍ PM NÁSTROJOVÉ OCELI SE ZVÝŠENÝM OBSAHEM NIOBU P. Novák, M. Pavlíčková, D. Vojtěch, J. Šerák Ústav kovových materiálů a korozního inženýrství, Vysoká
VíceVLIV DEFORMACE NA ROZPAD AUSTENITU OCELI 0,5 C-1 CR-0,8 MN-0,3 SI INFLUENCE OF DEFORMATION ON AUSTENITE DECOMPOSITION OF STEEL 0.5C-1CR-0.8MN-0.
VLIV DEFORMACE NA ROZPAD AUSTENITU OCELI 0,5 C-1 CR-0,8 MN-0,3 SI INFLUENCE OF DEFORMATION ON AUSTENITE DECOMPOSITION OF STEEL 0.5C-1CR-0.8MN-0.3SI Dagmar Jandová, Lenka Vadovicová Západoceská univerzita
VíceSTRUKTURA A VLASTNOSTI LISOVANÝCH TYČÍ ZE SLITINY CuAl10Ni5Fe4 STRUCTURE AND PROPERTIES OF PRESSED RODS FROM CuAl10Ni5Fe4 ALLOY
STRUKTURA A VLASTNOSTI LISOVANÝCH TYČÍ ZE SLITINY CuAl10Ni5Fe4 STRUCTURE AND PROPERTIES OF PRESSED RODS FROM CuAl10Ni5Fe4 ALLOY Peter SLÁMA a, Pavel PODANÝ a, Kateřina MACHÁČKOVÁ b, Miroslava SVĚTLÁ b,
VíceTVÁŘENÍ NOVÝCH TYPŮ OCELÍ. Ondřej Žáček Jiří Kliber
TVÁŘENÍ NOVÝCH TYPŮ OCELÍ Ondřej Žáček Jiří Kliber VŠB TECHNICKÁ UNIVERZITA OSTRAVA, Fakulta metalurgie a materiálového inženýrství, katedra tváření materiálu, 17. Listopadu 15, 708 33 Ostrava-Poruba,
VíceŘÍZENÉ VÁLCOVÁNÍ A OCHLAZOVÁNÍ PÁSŮ Z PERLITICKÝCH OCELÍ. Čestmír Lang a Ladislav Jílek b
ŘÍZENÉ VÁLCOVÁNÍ A OCHLAZOVÁNÍ PÁSŮ Z PERLITICKÝCH OCELÍ Čestmír Lang a Ladislav Jílek b a Braunschweiger Str. 24, D-47 169 Duisburg, SRN, E-mail cestmir.lang@freenet.de b VÍTKOVICE Výzkum a vývoj, spol.
Vícea UJP PRAHA a.s., Nad Kamínkou 1345, Praha Zbraslav, b PBS Velká Bíteš a.s. Vlkovská 279, Velká Bíteš,
MECHANICKÉ VLASTNOSTI A STRUKTURNÍ STABILITA NIKLOVÉ SLITINY IN 792 5A MECHANICAL PROPERTIES AND STRUCTURE STABILITY OF PROMISING NIKCKEL ALLOY IN 792 5A Božena Podhorná a Jiří Kudrman a Karel Hrbáček
VíceTVAŘITELNOST A TRHLINY NA KONTINUÁLNĚ LITÝCH BRAMÁCH. Pavel Szturc a Petr Kozelský b Zdeněk Šáňa c
TVAŘITELNOST A TRHLINY NA KONTINUÁLNĚ LITÝCH BRAMÁCH. Pavel Szturc a Petr Kozelský b Zdeněk Šáňa c a VÍTKOVICE Výzkum a vývoj,spol.s r.o.,pohraniční 31, 706 02 Ostrava - Vítkovice, ČR b VŠB - TU, 17.listopadu
VíceŽÍHÁNÍ. Tepelné zpracování kovových materiálů
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 vnávaznosti na platnost norem. Zákaz šířěnía modifikace těchto materiálů. Děkuji Ing. D. Kavková
VíceVZTAH MIKROSTRUKTURY A MECHANICKÝCH VLASTNOSTÍ KONSTRUKCNÍ OCELI 15NiCuMoNb5 PRO PLÁŠTE KOTLU A TLAKOVÉ NÁDOBY
VZTAH MIKROSTRUKTURY A MECHANICKÝCH VLASTNOSTÍ KONSTRUKCNÍ OCELI 15NiCuMoNb5 PRO PLÁŠTE KOTLU A TLAKOVÉ NÁDOBY MICROSTRUCTURE PROPERTY RELATIONSHIP IN A 15NiCuMoNb5 STRUCTURAL STEEL FOR BOILER DRUMS AND
VíceDUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL
DUPLEXNÍ POVLAKOVÁNÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM DUPLEX COATING OF THE NIOBIUM-ALLOYED PM TOOL STEEL Pavel Novák Dalibor Vojtěch Jan Šerák Michal Novák Vítězslav Knotek Ústav kovových materiálů
VíceProjekt: 1.5, Registrační číslo: CZ.1.07/1.5.00/ Tepelné zpracování
Druhy tepelného zpracování: Tepelné zpracování 1. Žíhání (ochlazení je tak pomalé, že nevzniká zákalná struktura) 2. Kalení (ohřev nad překrystalizační teplotu a ochlazení je tak prudké, aby vznikla zákalná
VíceVLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM
VLASTNOSTI RYCHLE ZTUHLÝCH PRÁŠKŮ NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM Markéta Pavlíčková, Dalibor Vojtěch a Pavel Stolař, Peter Jurči b a) Ústav kovových materiálů a korozního inženýrství, VŠCHT Praha, Technická
VíceVysoce pevné mikrolegované oceli. High Strength Low Alloy Steels HSLA. Zpracováno s využitím materiálu ASM International
Vysoce pevné mikrolegované oceli High Strength Low Alloy Steels HSLA Zpracováno s využitím materiálu ASM International HSLA oceli Vysokopevné nízkolegované oceli (nebo mikrolegované) oceli pro: - lepší
VíceVLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI. Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a
METAL 23 2.-22.5.23, Hradec nad Moravicí VLIV TEPELNĚ-MECHANICKÉHO ZPRACOVÁNÍ NA VLASTNOSTI DRÁTU Z MIKROLEGOVANÉ OCELI Stanislav Rusz a Miroslav Greger a Otakar Drápal b Radim Lukáš a a VŠB Technická
VíceVysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice
10.ZÁKLADY TEPELNÉHO ZPRACOVÁNÍ Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace
VíceKvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace
Kvantifikace strukturních změn v chrom-vanadové ledeburitické oceli v závislosti na teplotě austenitizace Bc. Pavel Bílek Ing. Jana Sobotová, Ph.D Absrakt Vzorky z Cr-V ledeburitické nástrojové oceli vyráběné
VíceACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION
AKUSTICKÁ EMISE VYUŽÍVANÁ PŘI HODNOCENÍ PORUŠENÍ Z VRYPOVÉ INDENTACE ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION Petr Jiřík, Ivo Štěpánek Západočeská univerzita v
VíceTváření, tepelné zpracování
Hutnické listy č.1/28 tváření, tepelné zpracování Vliv tepelného zpracování na mikrostrukturu a mechanické vlastnosti za studena válcovaných pásů z mikrolegované oceli Ing. Marcel Janošec Prof. Ing. Ivo
VíceVLIV DOKOVACÍ TEPLOTY NA STRUKTURU A VLASTNOSTI MIKROLEGOVANÝCH OCELÍ
VLIV DOKOVACÍ TEPLOTY NA STRUKTURU A VLASTNOSTI MIKROLEGOVANÝCH OCELÍ Miroslav Greger a, Salem Batiha a) VŠB TU Ostrava, katedra tváření materiálu, 17. listopadu 15, 708 33 Ostrava Poruba, ČR, E-mail:
VíceIng. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.
Ing. Michal Lattner (lattner@fvtm.ujep.cz) Fakulta výrobních technologií a managementu Věda pro život, život pro vědu CZ.1.07/2.3.00/45.0029 Statické zkoušky (pevnost, tvrdost) Dynamické zkoušky (cyklické,
VícePOVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING
POVRCHOVÉ VYTVRZENÍ PM NÁSTROJOVÉ OCELI LEGOVANÉ NIOBEM PLAZMOVOU NITRIDACÍ SURFACE HARDENING OF NIOBIUM-CONTAINING PM TOOL STEEL BY PLASMA NITRIDING P. Novák, D. Vojtech, J. Šerák Ústav kovových materiálu
VíceCYKLICKÁ MAKROINDENTAČNÍ HODNOCENÍ NAMÁHÁNÍ SYSTÉMŮ TENKÁ VRSTVA SUBSTRÁT A STUDIUM ZMÉN V OVLIVNĚNÝCH OBLASTECH
CYKLICKÁ MAKROINDENTAČNÍ HODNOCENÍ NAMÁHÁNÍ SYSTÉMŮ TENKÁ VRSTVA SUBSTRÁT A STUDIUM ZMÉN V OVLIVNĚNÝCH OBLASTECH CYCLIC MACROINDENTATION TESTS FOR EVALUATION STRESS OF SYSTEMS THIN FILM SUBSTRATE AND STUDY
VíceVÝVOJ NOVÝCH NÁSTROJOVÝCH OCELÍ PRO KOVACÍ ZÁPUSTKY
VÝVOJ NOVÝCH NÁSTROJOVÝCH OCELÍ PRO KOVACÍ ZÁPUSTKY Ing. Pavel ŠUCHMANN a, Ing. Jiří KREJČÍK, CSc. b, Ing. Pavel FILA c, Ing. Ladislav JELEN, CSc. d, Ing. Eduard PSÍK e a COMTES FHT a. s., Průmyslová 995,
Více2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí.
2. Struktura a vlastnosti oceli, druhy ocelí Rovnovážné a nerovnovážné struktury oceli, mechanické vlastnosti oceli, druhy konstrukčních ocelí. Struktura oceli Železo (Fe), uhlík (C), "nečistoty". nevyhnutelné
VícePOCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING
POCÍTACOVÁ SIMULACE ZRYCHLENÉHO OCHLAZOVÁNÍ PLOCHÝCH TYCÍ PO VÁLCOVÁNÍ PC SIMULATION OF FLAT BARS ACCELERATED COOLING AFTER ROLLING Ondrej Žácek a Jirí Kliber a Zdenek Vašek b a VŠB TECHNICKÁ UNIVERZITA
VíceObsah jednotlivých prvků v hm.% ocel C Mn Si Al P S TRIP 1 0,23 1,35 1,85 0,025 0,015 0,006
VLIV PARAMETRŮ TERMOMECHANICKÉHO ZPRACOVÁNÍ NA MECHANICKÉ VLASTNOSTI TRIP OCELI THERMOMECHANICAL TREATMENT PARAMETERS INFLUENCE ON TRIP STEEL MECHANICAL PROPERTIES Ondřej Žáček a Jiří Kliber b Ivo Schindler
VíceJominiho zkouška prokalitelnosti
Jominiho zkouška prokalitelnosti Zakalitelnost je schopnost materiálu při ochlazování nad kritickou rychlost přejít a setrvat v metastabilním stavu, tj. u ocelí získat martenzitickou strukturu. Protože
VíceMETALOGRAFIE II. Oceli a litiny
METALOGRAFIE II Oceli a litiny Slitiny železa, uhlíku a popřípadě dalších prvků se nazývají oceli a litiny. Oceli jsou slitiny železa obsahující do 2,14 hm. % uhlíku, litiny s obsahem uhlíku nad 2,14 hm.
VíceVLIV VODÍKU NA MATERIÁLOVÉ A STRUKTURNÍ VLASTNOSTI OCELI CM 5 (ČSN )
VLIV VODÍKU NA MATERIÁLOVÉ A STRUKTURNÍ VLASTNOSTI OCELI CM 5 (ČSN 415 142 ) Michal Valdecký, Petr Mutafov, Jaroslav Víšek, Pavel Bílek Vedoucí práce : Ing. Jana Pechmanová Poděkování podniku Poldi-Hütte
Více24.-26.5.2005, Hradec nad Moravicí POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM
POLYKOMPONENTNÍ SLITINY HOŘČÍKU MODIFIKOVANÉ SODÍKEM EFFECT OF SODIUM MODIFICATION ON THE STRUCTURE AND PROPERTIES OF POLYCOMPONENT Mg ALLOYS Luděk Ptáček, Ladislav Zemčík VUT v Brně, Fakulta strojního
VíceNTI/USM Úvod do studia materiálů Ocel a slitiny železa
NTI/USM Úvod do studia materiálů Ocel a slitiny železa Petr Šidlof Připraveno s využitím skript Úvod do studia materiálů, Prof. RNDr. Bohumil Kratochvíl, DSc., Prof. Ing. Václav Švorčík, DrSc., Doc. Dr.
VícePŘÍSPĚVEK K POVRCHOVÉ ÚPRAVĚ SKLOVITÝM SMALTOVÝM POVLAKEM CONTRIBUTION TO SURFACE ARRANGEMENT WITH VITREOUS ENAMEL COAT
PŘÍSPĚVEK K POVRCHOVÉ ÚPRAVĚ SKLOVITÝM SMALTOVÝM POVLAKEM CONTRIBUTION TO SURFACE ARRANGEMENT WITH VITREOUS ENAMEL COAT Jitka Podjuklová a Kamila Hrabovská b Marcela Filipová c Michaela Slabáková d René
VíceHODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE
HODNOCENÍ HLOUBKOVÝCH PROFILŮ MECHANICKÉHO CHOVÁNÍ POLYMERNÍCH MATERIÁLŮ POMOCÍ NANOINDENTACE EVALUATION OF DEPTH PROFILE OF MECHANICAL BEHAVIOUR OF POLYMER MATERIALS BY NANOINDENTATION Marek Tengler,
VíceSMA 2. přednáška. Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ
SMA 2. přednáška Nauka o materiálu NÁVRHY NA OPAKOVÁNÍ Millerovy indexy rovin (h k l) nesoudělné převrácené hodnoty úseků, které vytíná rovina na osách x, y, z Millerovy indexy této roviny jsou : (1 1
VíceStrukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91.
Strukturní charakteristiky hořčíkové slitiny AZ91. Structure of Magnesium Alloy AZ91. Hubáčková Jiřina a), Čížek Lubomír a), Konečná Radomila b) a) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERSITA OSTRAVA, Fakulta
Více