Objemové ultrajemnozrnné materiály a jejich příprava. Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů
|
|
- Aleš Vítek
- před 5 lety
- Počet zobrazení:
Transkript
1 Objemové ultrajemnozrnné materiály a jejich příprava Doc. RNDr. Miloš Janeček CSc. Katedra fyziky materiálů
2 Definice Definice objemových ultrajemnozrnných (bulk UFG ultrafine grained) materiálů: Malá velikost zrn (~100 nm) Homogenní a rovnoosá mikrostruktura Velký podíl vysokoúhlových hranic zrn Vyšší pevnost materiálu Izotropní vlastnosti Potenciálně superplastický materiál
3 Závislost deformačního napětí na velikosti zrna polykrystalu Lze odvodit vztah pro závislost σ d Předpoklady: U polykrystalů se plastická deformace uskutečňuje pohybem dislokací Hranice zrn tvoří překážku pro pohyb dislokací Pohybem dislokací dojde k jejich nakupení před překážkou Jednotlivá zrna polykrystalu se deformují do tvaru určovaného deformací okolních zrn Von Mises kritérium: Je třeba 5 nezávislých skluzových systémů
4 Odvození Hall-Petchova vztahu Napětí na D.Z.2 od čela nakupení v zrně 1: τ 2 = d L Z 1 2 τ τ = τ K τ m t působící napětí K nakupení dislokací dojde za působení napětí: D.Z dislokační zdroj L Z..vzdálenost D.Z. od hranice zrna L Z d t m napětí nutné k pohybu dislokací ve skluzové rovině
5 Odvození Hall-Petchova vztahu Aby D.Z.2 mohl být činný, musí působit napětí: τ D = τ K + τ K τ m d L Z 1 2 τ K = τ m + τ D L Z d 1 2 Převedeme na deformační napětí: D.Z dislokační zdroj L Z..vzdálenost D.Z. od hranice zrna L Z d σ K = σ m + σ D L Z d 1 2
6 Hall-Petchův vztah σ = σ 0 + kd 1 2 kde konstanta k je rovna: k = σ D L Z 1 2 D.Z dislokační zdroj L Z..vzdálenost D.Z. od hranice zrna L Z d Začátek plastické deformace Plastická deformace se šíří od zrna k zrnu
7 Jak připravit bulk UFG materiály? Metody intenzivní plastické deformace (SPD Severe Plastic Deformation): ECAP Equal-channel angular pressing HPT High-pressure torsion ARB Accumulative roll-bonding Twist extrusion atd.
8 ECAP Equal-channel angular pressing Metoda vynalezena v býv. Sovětském svazu v 70. letech, od té doby rozšířena po celém světě Princip:
9 ECAP Ekvivalentní vložené napětí: N N 3 2cot 2 2 cos ec 2 2
10 ECAP Výhody: Stejný průřez vzorku před a po protlačení proces lze opakovat uložení větší deformace větší pevnost materiálu Poměrně jednoduchý proces a jednoduchá konstrukce matrice (pro relativně měkké materiály Al, Mg, Cu a pod.) Nevýhody: Omezená velikost vzorků ( průřez ~10 10mm, délka ~120 mm)
11 ECAP různé cesty Různé otočení vzorku mezi jednotlivými průchody aktivace různých skluzových pásů
12 ECAP další parametry Rychlost protlačování malou rychlostí docílíme rovnovážné mikrostruktury, při velké rychlosti je vzorek vystaven vyšší teplotě kratší dobu a nedojde k rekrystalizaci
13 ECAP další parametry Teplota protlačování s rostoucí teplotou roste velikost zrna, při nízkých teplotách vznikají trhliny Zpětný tlak redukuje vznik trhlin, zlepšuje mikrostrukturu materiálu
14 Conform ECAP Kontinuální proces Neomezená délka vzorku Použití v průmyslu
15 Vlastnosti materiálu po ECAP EBSD (Electron Backscatter Diffraction) Slitina Mg-3Al-1Zn - Výchozí stav po extruzi:
16 Vlastnosti materiálu po ECAP EBSD (Electron Backscatter Diffraction) Slitina Mg-3Al-1Zn:
17 Vlastnosti materiálu po ECAP EBSD (Electron Backscatter Diffraction) Slitina Mg-3Al-1Zn:
18 Vlastnosti materiálu po ECAP EBSD (Electron Backscatter Diffraction) Slitina Mg-3Al-1Zn:
19 Vlastnosti materiálu po ECAP EBSD (Electron Backscatter Diffraction) Slitina Mg-3Al-1Zn:
20 HPT High-pressure torsion Metoda vynalezena v 80. letech Princip: Různá geometrická uspořádání:
21 HPT Ekvivalentní vložené napětí: N 2 Nrh ln h 2 0
22 HPT Výhody: Lze připravit materiál s ještě menší velikostí zrn než metodou ECAP Nevýhody: Malá velikost vzorků (průměr 10 až 20 mm, tloušťka ~ 1 mm) Nehomogenní deformace (v závislosti na vzdálenosti od osy otáčení) nehomogenní vlastnosti (lze vyřešit jinou geometrií - prstencovými vzorky)
23 HPT další parametry Závislost na aplikovaném tlaku:
24 Vlastnosti materiálu po HPT Mikrotvrdost měřená metodou Vickers (100 g, 10s) Slitina Mg-8Al-0,5Zn, HPT při 2,5 GPa: N = 0:
25 N = 1/2: Vlastnosti materiálu po HPT Mikrotvrdost měřená metodou Vickers (100 g, 10s) Slitina Mg-8Al-0,5Zn, HPT při 2,5 GPa:
26 Vlastnosti materiálu po HPT Mikrotvrdost měřená metodou Vickers (100 g, 10s) Slitina Mg-8Al-0,5Zn, HPT při 2,5 GPa: N = 3:
27 Vlastnosti materiálu po HPT Odlišné chování materiálů s různou velikostí vrstevné chyby různou rychlostí zotavení:
28 ARB Accumulative roll-bonding Metoda vynalezena v Japonsku v 90. letech Princip:
29 ARB Ekvivalentní vložené napětí: 2 N ln 2 N 0, 8N 3
30 ARB Výhody: Poměrně snadná výroba Materiál ve formě plechů má široké využití v průmyslu Nevýhody: Materiál obsahuje protáhlá zrna V okrajových částech plechů se tvoří trhliny Jednotlivé vrstvy se nemusí vždy kvalitně spojit
31 Twist Extrusion
Objemové ultrajemnozrnné materiály. Miloš Janeček Katedra fyziky materiálů, MFF UK
Objemové ultrajemnozrnné materiály Miloš Janeček Katedra fyziky materiálů, MFF UK Definice Objemové ultrajemnozrnné materiály (bulk UFG ultrafine grained materials) Malá velikost zrn (> 1µm resp. 100 nm)
VícePŘÍPRAVA ULTRAJEMNNÉ STRUKTURY HLINÍKU INTENZIVNÍ PLASTICKOU DEFORMACÍ A JEJÍ TEPELNÁ STABILITA SVOČ FST 2008
PŘÍPRAVA ULTRAJEMNNÉ STRUKTURY HLINÍKU INTENZIVNÍ PLASTICKOU DEFORMACÍ A JEJÍ TEPELNÁ STABILITA SVOČ FST 2008 Pavel Lešetický Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika
VíceSlitiny titanu pro použití (nejen) v medicíně
Slitiny titanu pro použití (nejen) v medicíně Josef Stráský a spol. Katedra fyziky materiálů MFF UK Obsah Vývoj slitin Ti pro použití v ortopedii Spolupráce: Beznoska s.r.o., Kladno Ultrajemnozrnné slitiny
VíceGabriela DOROCIAKOVÁ a, Miroslav GREGER a, Radim KOCICH a a Barbora KUŘETOVÁ a
ZMĚNA STRUKTURY A VLASTNOSTÍ MĚDI PO PROTLAČOVÁNÍ TECHNOLOGIÍ ECAP THE CHANGE OF STRUCTURE AND PROPERTIES OF COPPER AFTER PRESSING BY THE ECAP TECHNOLOGY Gabriela DOROCIAKOVÁ a, Miroslav GREGER a, Radim
VíceProgresivní technologie tváření
VŠB - TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ Katedra tváření materiálu Progresivní technologie tváření 633-0807 Autor: Miroslav Greger Ostrava 2017 1 Obsah s. 1. Zpevnění
VíceVlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti
Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze
VíceVLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA7075 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP
VLIV TEPELNÉHO ZPRACOVÁNÍ NA STRUKTURU SLITINY HLINÍKU AA707 PO INTENZIVNÍ PLASTICKÉ DEFORMACI METODOU ECAP EFFECT OF HEAT TREATMENT ON THE STRUCTURE OF THE ALUMINIUM ALLOY AA707 SUBJECTED TO INTENSIVE
VíceVZTAH MEZI MIKROSTRUKTUROU A VLASTNOSTMI ULTRAJEMNOZRNNÉHO HLINÍKU PRIPRAVENÉHO TECHNIKOU ECAP
VZTAH MEZI MIKROSTRUKTUROU A VLASTNOSTMI ULTRAJEMNOZRNNÉHO HLINÍKU PRIPRAVENÉHO TECHNIKOU ECAP Petr Král 1), Jirí Dvorák 1), Milan Svoboda 1), Václav Sklenicka 1) 1) Ústav fyziky materiálu,akademie ved
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND EGINEERING
VíceNauka o materiálu. Přednáška č.2 Poruchy krystalické mřížky
Nauka o materiálu Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů chemické,
VíceMagnesium, magnesium alloys, AZ91, severe plastic deformation, ultra-fine grained structure, thermal stability, structural stability, EBSD.
Klíčová slova: Hořčík, hořčíkové slitiny, AZ91, intenzivní plastická deformace, ultrajemnozrnná struktura, teplotní stabilita, strukturní stabilita, EBSD. Keywords: Magnesium, magnesium alloys, AZ91, severe
VícePlastická deformace a pevnost
Plastická deformace a pevnost Anelasticita vnitřní útlum Tahová zkouška (kovy, plasty, keramiky, kompozity) Fyzikální podstata pevnosti - dislokace (monokrystal polykrystal) - mez kluzu nízkouhlíkových
VíceVLIV MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ CHOVÁNÍ HLINÍKU PO EXTRÉMNÍ PLASTICKÉ DEFORMACI (ECAP)
VLIV MIKROSTRUKTURNÍCH ZMĚN NA MECHANICKÉ CHOVÁNÍ HLINÍKU PO EXTRÉMNÍ PLASTICKÉ DEFORMACI (ECAP) EFFECT OF MICROSTRUCTURE CHANGES ON THE MECHANICAL BEHAVIOUR OF ALUMINUM AFTER SEVERE PLASTIC DEFORMATION
VíceCREEPOVÉ CHOVÁNÍ ULTRAJEMNOZRNNÉHO HLINÍKU
CREEPOVÉ CHOVÁNÍ ULTRAJEMNOZRNNÉHO HLINÍKU Jiří Dvořák a, Václav Sklenička a, Milan Svoboda a a Ú fyziky materiálů, Akademie věd České republiky, Žižkova 22, 616 62 Brno, ČR, dvorak@ipm.cz Abstrakt Extrémně
VíceVŠB Technical University of Ostrava, Faculty of Mechanical engineering, 17. Listopadu 15, Ostrava Poruba, Czech Republic
SIMULACE PROTLAČOVÁNÍ SLITIN Al NÁSTROJEM ECAP S UPRAVENOU GEOMETRIÍ A POROVNÁNÍ S EXPERIMENTY Abstrakt Jan Kedroň, Stanislav Rusz, Stanislav Tylšar VŠB Technical University of Ostrava, Faculty of Mechanical
VíceVÝVOJ STRUKTURY SLITINY AlMn1Cu Z HLEDISKA ZMĚNY CESTY DEFORMACE PROCESEM SPD
VÝVOJ STRUKTURY SLITINY AlMn1Cu Z HLEDISKA ZMĚNY CESTY DEFORMACE PROCESEM SPD INFLUENCE OF CHANGES DEFORMATION ON STRUCTURE ALMN1CU ALLOY WITH USE SPD PROCESS Stanislav Tylšar a, Stanislav Rusz a, Jan
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceCREEPOVÉ CHOVÁNÍ HLINÍKOVÉ SLITINY Al-3Mg-0,2Sc PŘIPRAVENÉ METODOU ECAP. CREEP BEHAVIOUR OF Al-3Mg-0,2Sc ALLOY PROCESSED BY ECAP METHOD
CREEPOVÉ CHOVÁNÍ HLINÍKOVÉ SLITINY PŘIPRAVENÉ METODOU ECAP CREEP BEHAVIOUR OF ALLOY PROCESSED BY ECAP METHOD Jiří Dvořák a, Petr Král a, Václav Sklenička a a Ústav fyziky materiálů, Akademie věd České
Vícemateriálové inženýrství
Materiálové inženýrství Hutnické listy č.1/28 materiálové inženýrství Vliv extrémní plastické deformace metodou ECAP na strukturu a vlastnosti oceli P2-4BCh Prof. Ing.Vlastimil Vodárek,CSc. 1, Doc. Ing.
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství Ing. Petr Král VLIV MIKROSTRUKTURY NA MECHANICKÉ VLASTNOSTI ULTRAJEMNOZRNNÉHO HLINÍKU A SLITINY Al-0,2%Sc
VíceTvářitelnost hořčíkových a titanových slitin. Formability of Magnesium and Titanium Alloys
VŠB TECHNICKÁ UNIVERZITA OSTRAVA Fakulta strojní Katedra mechanické technologie Tvářitelnost hořčíkových a titanových slitin Formability of Magnesium and Titanium Alloys AUTOR PRÁCE David Urban Author
VíceLOGO. Struktura a vlastnosti pevných látek
Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním
VíceStruktura a vlastnosti kovů I.
Struktura a vlastnosti kovů I. Vlastnosti fyzikální (teplota tání, měrný objem, moduly pružnosti) Vlastnosti elektrické (vodivost,polovodivost, supravodivost) Vlastnosti magnetické (feromagnetika, antiferomagnetika)
VíceNauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti
Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající
VíceMECHANICKÉ A CREEPOVÉ VLASTNOSTI HLINÍKOVÝCH SLITIN TVÁENÝCH TECHNIKOU ECAP
MECHANICKÉ A CREEPOVÉ VLASTNOSTI HLINÍKOVÝCH SLITIN TVÁENÝCH TECHNIKOU ECAP MECHANICAL AND CREEP PROPERTIES OF ALUMINIUM ALLOYS PROCESSED BY EQUAL-CHANNEL ANGULAR PRESSING (ECAP) J. Dvoák 1, P. Král 1,
VíceNOVÉ POZNATKY Z VÝVOJE A ZKUŠEBNÍHO PROVOZU PROTOTYPOVÉHO ZAŘÍZENÍ DRECE NEW FINDING FROM DEVELOPMENT AND TEST WORKING OF MODEL MACHINERY DRECE
NOVÉ POZNATKY Z VÝVOJE A ZKUŠEBNÍHO PROVOZU PROTOTYPOVÉHO ZAŘÍZENÍ DRECE NEW FINDING FROM DEVELOPMENT AND TEST WORKING OF MODEL MACHINERY DRECE Stanislav RUSZ a, Karel MALANÍK b, Jan KEDROŇ a, Irena SKOTNICOVÁ
VíceMETODA FSW FRICTION STIR WELDING
METODA FSW FRICTION STIR WELDING RNDr. Libor Mrňa, Ph.D. 1. Princip metody 2. Mikrostruktura svaru 3. Svařovací fáze 4. Svařovací nástroje 5. Svařitelnost materiálů 6. Svařovací zařízení 7. Varianty metody
VícePoruchy krystalové struktury
Tomáš Doktor K618 - Materiály 1 15. října 2013 Tomáš Doktor (18MRI1) Poruchy krystalové struktury 15. října 2013 1 / 30 Poruchy krystalové struktury nelze vytvořit ideální strukturu krystalu bez poruch
VíceKONSTITUČNÍ VZTAHY. 1. Tahová zkouška
1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební
VíceVLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE
VLASTNOSTI OCELI CSN 12050 (DIN C 45) S VELMI JEMNOU MIKROSTRUKTUROU PROPERTIES OF THE C45 DIN GRADE STEEL (CSN 12050) WITH VERY FINE MICROSTRUCTURE J. Drnek Z. Nový P. Fišer COMTES FHT s.r.o., Borská
Více2 MECHANICKÉ VLASTNOSTI SKLA
2 MECHANICKÉ VLASTNOSTI SKLA Pevnost skla reprezentující jeho mechanické vlastnosti nejčastěji bývá hlavním parametrem jeho využití. Nevýhodou skel je jejich poměrně nízká pevnost v tahu a rázu (pevnost
VíceSTRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK
STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),
VíceMechanické vlastnosti a vývoj mikrostruktury jemnozrnných polykrystalů vybraných hořčíkových slitin
Univerzita Karlova v Praze Matematicko fyzikální fakulta BAKALÁŘSKÁ PRÁCE Zuzana Kvíčalová Mechanické vlastnosti a vývoj mikrostruktury jemnozrnných polykrystalů vybraných hořčíkových slitin Katedra fyziky
VíceVLIV GEOMETRIE NÁSTROJE ECAP NA DOSAŽENÉ ZJEMNĚNÍ ZRNA INFLUENCE OF ECAP DIE GEOMETRY ON ACHIEVED UFG
VLIV GEOMETRIE NÁSTROJE ECAP NA DOSAŽENÉ ZJEMNĚNÍ ZRNA INFLUENCE OF ECAP DIE GEOMETRY ON ACHIEVED UFG Stanislav Rusz a Jan Dutkiewicz b Lubomír Čížek a Jiří Hluchník a a VŠB Technická univerzita Ostrava,
VíceUNIVERZITA KARLOVA V PRAZE. Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Ondřej Srba
UNIVERZITA KARLOVA V PRAZE Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Ondřej Srba STUDIUM MECHANICKÝCH VLASTNOSTÍ A MIKROSTRUKTURY JEMNOZRNNÝCH POLYKRYSTALŮ Cu A SLITIN Cu Katedra fyziky materiálů Vedoucí
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství Ústav materiálových věd a inženýrství Ing. Michal Buksa ÚNAVOVÉ VLASTNOSTI ULTRAJEMNOZRNNÝCH MATERIÁLŮ FATIGUE PROPERTIES OF ULTRAFINE-GRAINED
VíceVLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA.
VLIV STŘÍDAVÉHO MAGNETICKÉHO POLE NA PLASTICKOU DEFORMACI OCELI ZA STUDENA. Petr Tomčík a Jiří Hrubý b a) VŠB TU Ostrava, Tř. 17. listopadu 15, 708 33 Ostrava, ČR b) VŠB TU Ostrava, Tř. 17. listopadu 15,
VíceIn-situ studium deformačních mechanizmů hořčíkových slitin a kompozitů metodami akustické emise a neutronové difrakce
In-situ studium deformačních mechanizmů hořčíkových slitin a kompozitů metodami akustické emise a neutronové difrakce Kristián Máthis, Gergely Farkas, Jan Čapek Katedra fyziky materiálů, Matematicko-fyzikální
VíceVÝVOJ NANOSTRUKTURNÍCH MATERIÁLU S VYUŽITÍM TECHNOLOGIE ECAP INVESTIGATION OF NANOSTRUCTURE MATERIALS WITH USE OF ECAP TECHNOLOGY
VÝVOJ NANOSTRUKTURNÍCH MATERIÁLU S VYUŽITÍM TECHNOLOGIE ECAP INVESTIGATION OF NANOSTRUCTURE MATERIALS WITH USE OF ECAP TECHNOLOGY Stanislav Rusz a Miroslav Greger a Martin Kubícek a Martin Pastrnák a Juliusz
VíceMinule vazebné síly v látkách
MTP-2-kovy Minule vazebné síly v látkách Kuličkový model polykrystalu kovu 1. Vakance 2. Když se povede divakance, je vidět, oč je pohyblivější než jednovakance 3. Nejzávažnější je ovšem prezentování zrn
VíceNespojitá vlákna. Nanokompozity
Nespojitá vlákna Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vliv nespojitých vláken Uspořádaná
VíceCvičení 7 (Matematická teorie pružnosti)
VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:
VíceSTUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI
STUDIUM MECHANICKÝCH VLASTNOSTÍ A CHOVÁNÍ V OKOLÍ MAKROVTISKŮ NA SYSTÉMECH S TENKÝMI VRSTVAMI EVALUATION OF MECHANICAL PROPERTIES AND BEHAVIOUR AROUND MACROINDENTS ON SYSTEMS WITH THIN FILMS Denisa Netušilová,
VíceFitování spektra dob života pozitronů
Fitování spektra dob života pozitronů modelová funkce S n I t i i e R t t B i1 i n i1 I i 1 diskrétní exponenciální komponenty -volné lépozitrony - pozitrony zachycené v defektech - zdrojové komponenty
VícePozitronový mikroskop
rychlé pozitrony z b + radioizotopu prostorové rozlišení 1 mm nedestruktivní mapování rozložení defektů mapování rozložení defektů mikrotvrdost dislokace (work hardening) D hranice zrn (Hall-Petch) 1/
VíceLETECKÉ MATERIÁLY. Úvod do předmětu
LETECKÉ MATERIÁLY Úvod do předmětu Historický vývoj leteckých konstrukčních materiálů Uplatnění konstrukčních materiálů souvisí s pevnostními koncepcemi leteckých konstrukcí Pevnostní koncepce leteckých
VíceNespojitá vlákna. Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008
Nespojitá vlákna Technická univerzita v Liberci kompozitní materiály 5. MI Doc. Ing. Karel Daďourek 2008 Vliv nespojitých vláken Zabývejme se nyní uspořádanými nespojitými vlákny ( 1D systém) s tahovým
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VíceAnalýza napjatosti PLASTICITA
Analýza napjatosti PLASTICITA TENZOR NAPĚTÍ Teplota v daném bodě je skalár, je to tenzor nultého řádu, který nezávisí na změně souřadného systému Síla je vektor, je to tenzor prvního řádu, v trojrozměrném
Více12. Struktura a vlastnosti pevných látek
12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace
VíceVÝZKUM VLIVU EXTRÉMNÍCH PODMÍNEK DEFORMACE NA SUBMIKROSTRUKTURU KOVŮ A ZKUŠEBNÍCH METOD PRO DIAGNOSTIKU JEJICH TECHNOLOGICKÝCH VLASTNOSTÍ
VÝZKUM VLIVU EXTRÉMNÍCH PODMÍNEK DEFORMACE NA SUBMIKROSTRUKTURU KOVŮ A ZKUŠEBNÍCH METOD PRO DIAGNOSTIKU JEJICH TECHNOLOGICKÝCH VLASTNOSTÍ RESEARCH OF INFLUENCE OF EXTREME DEFORMATION CONDITIONS ON METAL
VíceGRAIN REFINEMENT IN STRIP SHEET PREPARED BY DRECE MACHINERY
GRAIN REFINEMENT IN STRIP SHEET PREPARED BY DRECE MACHINERY Stanislav RUSZ a, Vít MICHENKA b, Jan KEDROŇ a, Stanislav TYLŠAR a, Jan DUTKIEWICZ c a VŠB Technická univerzita Ostrava, 17.listopadu 15, 708
VíceBAKALÁŘSKÁ PRÁCE. Jan Čapek. Vliv mikrostrukturních parametrů na mechanické vlastnosti polykrystalického hořčíku Katedra fyziky materiálů
Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Jan Čapek Vliv mikrostrukturních parametrů na mechanické vlastnosti polykrystalického hořčíku Katedra fyziky materiálů Vedoucí
VíceTEORIE TVÁŘENÍ. Lisování
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA, Praha 10, Na Třebešíně 2299 příspěvková organizace zřízená HMP Lisování TEORIE TVÁŘENÍ TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM, STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
VíceTváření. produktivní metody výroby polotovarů a hotových výrobků, které se dají dobře mechanizovat i automatizovat (velká výkonnost, minimální odpad)
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10; s platností do r. 2016 v návaznosti na platnost norem. Zákaz šíření a modifikace materiálů. Děkuji Ing. D. Kavková
VíceZápadočeská univerzita v Plzni fakulta Strojní
Západočeská univerzita v Plzni fakulta Strojní 23. dny tepelného zpracování s mezinárodní účastí Návrh technologie laserového povrchového kalení oceli C45 Autor: Klufová Pavla, Ing. Kříž Antonín, Doc.
VíceÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?
VícePožadavky na technické materiály
Základní pojmy Katedra materiálu, Strojní fakulta Technická univerzita v Liberci Základy materiálového inženýrství pro 1. r. Fakulty architektury Doc. Ing. Karel Daďourek, 2010 Rozdělení materiálů Požadavky
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ Ing. LUCIE NAVRÁTILOVÁ MIKROSTRUKTURA, JEJÍ STABILITA A ÚNAVOVÉ VLASTNOSTI ULTRAJEMNOZRNNÉ MĚDI PŘIPRAVENÉ
VíceNávrh žebrové desky vystavené účinku požáru (řešený příklad)
Návrh žebrové desky vystavené účinku požáru (řešený příklad) Posuďte spřaženou desku v bednění z trapézového plechu s tloušťkou 1 mm podle obr.1. Deska je spojitá přes více polí, rozpětí každého pole je
VíceAb-inito teoretické výpočty pozitronových parametrů
Ab-inito teoretické výpočty pozitronových parametrů Standardní schéma: J. Puska, R. ieminen, J. Phys. F: Met. Phys. 3, 333 (983) at elektronová hustota atomová superpozice (ATSUP) n r n r Ri i limit of
VíceVlastnosti a zkoušení materiálů. Přednáška č.2 Poruchy krystalické mřížky
Vlastnosti a zkoušení materiálů Přednáška č.2 Poruchy krystalické mřížky Opakování z minula Materiál Degradační procesy Vnitřní stavba atomy, vazby Krystalické, amorfní, semikrystalické Vlastnosti materiálů
Více7 Lineární elasticita
7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový
VíceBULKY FORMING OF MAGNESIUM ALLOYS. Barbora Kuřetová a Miroslav Greger a
OBJEMOVÉ TVÁŘENÍ HOŘČÍKOVÝCH SLITIN BULKY FORMING OF MAGNESIUM ALLOYS Barbora Kuřetová a Miroslav Greger a a VŠB-TU Ostrava, 17. listopadu 15/2172, 708 33 Ostrava-Poruba, ČR, barbora.kuretova.fmmi@vsb.cz
VíceZPRACOVÁNÍ KOVOVÝCH MATERIÁLŮ SELEKTIVNÍM LASEROVÝM TAVENÍM ZA ZVÝŠENÝCH TEPLOT
ZPRACOVÁNÍ KOVOVÝCH MATERIÁLŮ SELEKTIVNÍM LASEROVÝM TAVENÍM ZA ZVÝŠENÝCH TEPLOT Martin Malý, Ing. ÚSTAV KONSTRUOVÁNÍ Fakulta strojního inženýrství VUT v Brně V Brně, 26. 2. 2018 Obsah Motivace pro řešení
VíceMŘÍŽKY A VADY. Vnitřní stavba materiálu
Poznámka: tyto materiály slouží pouze pro opakování STT žáků SPŠ Na Třebešíně, Praha 10;s platností do r. 2016 v návaznosti na platnost norem. Zákaz šířění a modifikace těchto materálů. Děkuji Ing. D.
VíceNauka o materiálu. Přednáška č.3 Pevnost krystalických materiálů
Nauka o materiálu Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které lze získat
VíceNAUKA O MATERIÁLU I. Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení)
NAUKA O MATERIÁLU I Přednáška č. 03: Vlastnosti materiálu II (vlastnosti mechanické a technologické, odolnost proti opotřebení) Autor přednášky: Ing. Daniela Odehnalová Pracoviště: TUL FS, Katedra materiálu
VíceTepelně aktivovaná deformace
2 typy překážek působící proti pohybu D: Tepelně aktivovaná deformace a) překážky vytvářející napěťové pole dalekého dosahu (τ G, τ µ ) Síla působící na dislokaci F G se mění pomalu s polohou dislokace
VíceVlastnosti a zkoušení materiálů. Přednáška č.3 Pevnost krystalických materiálů
Vlastnosti a zkoušení materiálů Přednáška č.3 Pevnost krystalických materiálů Zpevnění monokrystalu a polykrystalického kovu Monokrystal Atomy jsou pravidelně uspořádány, tvoří trojrozměrné útvary, které
VícePolotovary vyráběné tvářením za studena
Polotovary vyráběné tvářením za studena Úvodem základní pojmy z nauky o materiálu Krystalová mřížka Krystalová mřížka je myšlená konstrukce, která vznikne, když krystalem proložíme tři vhodně orientované
VíceSTANOVENÍ MIKROTVRDOSTI TENKÝCH OCHRANNÝCH POVRCHOVÝCH VRSTEV. Laboratorní cvičení předmět: Experimentální metody v tváření
STANOVENÍ MIKROTVRDOSTI TENKÝCH OCHRANNÝCH POVRCHOVÝCH VRSTEV Laboratorní cvičení předmět: Experimentální metody v tváření Zadání / Cíl Na dodaných vzorcích hlubokotažného plechu používaného v automobilovém
VíceTéma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření
Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu
VíceKřehké materiály. Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008
Křehké materiály Technická univerzita v Liberci Nekovové materiály, 5. MI Doc. Ing. Karel Daďourek, 2008 Základní charakteristiky Křehký lom bez znatelné trvalé deformace Mez pevnosti má velký rozptyl
VíceVlastnosti a zkoušení materiálů. Přednáška č.9 Plasticita a creep
Vlastnosti a zkoušení materiálů Přednáška č.9 Plasticita a creep Vliv teploty na chování materiálu 1. Teplotní roztažnost L = L α T ( x) dl 2. Závislost modulu pružnosti na teplotě: Modul pružnosti při
Vícedoc. RNDr. Miloš Janeček, CSc , Kolín, Česká republika III. Jmenování profesorem/kou pro obor Fyzika - Fyzika kondenzovaných látek
doc. RNDr. Miloš Janeček, CSc. 17.4.1958, Kolín, Česká republika III. Jmenování profesorem/kou pro obor Fyzika - Fyzika kondenzovaných látek prof. RNDr. Vladimír Matolín, DrSc., MFF UK Praha prof. RNDr.
VíceZákladem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:
Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie
VíceNelineární problémy a MKP
Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)
VíceTVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry
TVÁŘENÍ KOVŮ Cíl tváření: dát polotovaru požadovaný tvar a rozměry získat výhodné mechanické vlastnosti ve vztahu k funkčnímu uplatnění tvářence Výhody tváření : vysoká produktivita práce automatizace
VíceTENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému
TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -
VíceMechanismy zpevnění kovů
Mechanismy zpevnění kovů Zvyšování pevnosti materiálů: i) eliminace všech dislokací ii) vytváření max. množství silných překážek pohybu dislokací Deformační zpevnění (zpevnění způsobené PD) (work hardening):
Více13.otázka. Tváření za tepla
Tváření za tepla 1. Princip tváření 2. Vliv teploty na deformaci materiálu (textura, zotavení, rekrystalizace, překrystalizace) 3. Tvářecí teplota a ohřev materiálu 4. Způsoby tváření za tepla a. Válcování
VíceTutoriál programu ADINA
Nelineární analýza materiálů a konstrukcí (V-132YNAK) Tutoriál programu ADINA Petr Kabele petr.kabele@fsv.cvut.cz people.fsv.cvut.cz/~pkabele Petr Kabele, 2007-2010 1 Výstupy programu ADINA: Preprocesor
VíceTváření za tepla. Jedná se o proces, kdy na materiál působíme vnějšími silami a měníme jeho tvar bez porušení celistvosti materiálu.
Tváření za tepla Tváření za tepla je hospodárná a produktivní metoda výroby výrobků a polotovarů s malým množstvím odpadu materiálu (5-10%). Tvářecí procesy lez dobře mechanizovat a automatizovat. Jedná
VíceVŠB TECHNICKÁ UNIVERZITA OSTRAVA TECHNICAL UNIVERSITY OF OSTRAVA
VŠB TECHNICKÁ UNIVERZITA OSTRAVA TECHNICAL UNIVERSITY OF OSTRAVA FAKULTA METALURGIE A MATERIÁLOVÉHO INŽENÝRSTVÍ FACULTY OF METALURGY AND MATERIAL ENGINEERING MECHANICKÉ VLASTNOSTI ČISTÉHO TITANU ZPRACOVANÉHO
Více8. Základy lomové mechaniky. Únava a lomová mechanika Pavel Hutař, Luboš Náhlík
Únava a lomová mechanika Koncentrace napětí nesingulární koncentrátor napětí singulární koncentrátor napětí 1 σ = σ + a r 2 σ max = σ 1 + 2( / ) r 0 ; σ max Nekonečný pás s eliptickým otvorem [Pook 2000]
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
VícePružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
VíceMETODY PŘÍPRAVY JEMNOZRNNÝCH MATERIÁLŮ (ECAP)
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MATERIÁLOVÝCH VĚD A INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF MATERIALS SCIENCE AND ENGINEERING
Víceb) Křehká pevnost 2. Podmínka max τ v Heigově diagramu a) Křehké pevnosti
1. Podmínka max τ a MOS v Mohrově rovině a) Plasticity ϭ K = ϭ 1 + ϭ 3 b) Křehké pevnosti (ϭ 1 κ R * ϭ 3 ) = ϭ Rt Ϭ red = max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) MOS : max (ϭ 1, ϭ 1 - κ R * ϭ 3 ) = ϭ Rt a) Plasticita
VíceIntegrita povrchu a její význam v praktickém využití
Integrita povrchu a její význam v praktickém využití Michal Rogl Obsah: 7. Válečkování články O. Zemčík 9. Integrita povrchu norma ANSI B211.1 1986 11. Laserová konfokální mikroskopie Válečkování způsob
VíceUčební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová. Katedra betonových konstrukcí a mostů
PŘEDNÁŠKY Učební pomůcka Prof.Ing. Vladimír Křístek, DrSc. Ing. Alena Kohoutková, CSc. Ing. Helena Včelová Katedra betonových konstrukcí a mostů Text učební pomůcky lze nalézt na internetové stránce http://beton.fsv.cvut.cz
VíceSvazek pomalých pozitronů
Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne
Více1. cvičení. Strojírenské materiály
1. cvičení Strojírenské materiály Akademický rok 2007 / 2008 2 / 40 Program cvičen ení 1. Elastická, anelastická a plastická deformace 2. Zkouška tahem kovy 3. Diskontinuální průběh síly na mezi kluzu,
VíceKatedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Zemní tlaky cvičení doc. Dr. Ing. Hynek Lahuta Inovace studijního oboru Geotechnika CZ.1.07/2.2.00/28.0009. Tento projekt je spolufinancován Evropským sociálním
Více133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B2. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí
133PSBZ Požární spolehlivost betonových a zděných konstrukcí Přednáška B2 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí Tahové zpevnění spolupůsobení taženého betonu mezi trhlinami
VíceTéma 2 Napětí a přetvoření
Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram
VíceZEFEKTIVNĚNÍ PROCESU VÍCENÁSOBNÉ PLASTICKÉ DEFORMACE INCREASING THE EFFECTIVENESS OF SEVERE PLASTIC DEFORMATION PROCESS
ZEFEKTIVNĚNÍ PROCESU VÍCENÁSOBNÉ PLASTICKÉ DEFORMACE INCREASING THE EFFECTIVENESS OF SEVERE PLASTIC DEFORMATION PROCESS Stanislav Rusz a Karel Malaník b Josef Bořuta c a VŠB Technická univerzita Ostrava,
VícePrvky betonových konstrukcí BL01 11 přednáška
Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav
Více1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge.
V1. Hallův jev Úkoly měření: 1. Změřte Hallovo napětí v Ge v závislosti na proudu tekoucím vzorkem, magnetické indukci a teplotě. 2. Stanovte šířku zakázaného pásu W v Ge. Použité přístroje a pomůcky:
Více