1/82 Malé teplárenské zdroje mikrokogenerace

Rozměr: px
Začít zobrazení ze stránky:

Download "1/82 Malé teplárenské zdroje mikrokogenerace"

Transkript

1 1/82 Malé teplárenské zdroje mikrokogenerace spalovací pístové motory plynové mikroturbíny ORC cyklus palivové články Stirlingův motor

2 Teplárenské zdroje 2/82 velké centralizované zdroje energie uhlí, jádro provoz v základním zatížení ekonomika velkých zařízení

3 Teplárenské zdroje 3/82 decentralizované eliminace přenosových ztrát pružná záloha, snadná a rychlá regulace nezávislost spotřebitelů na dodávce energie z veřejné sítě za předpokladu využití tepla vyšší využití paliv, teplárenská výroba malé výkony, technologický vývoj, v minulosti špatná ekonomika malá kogenerace do 1,5 MW e mikrokogenerace do 50 kw e

4 Malé teplárenské zdroje 4/82

5 Kogenerace v decentrálních zdrojích 5/82 řízení podle dodávky tepla regulace jednotky podle potřeby tepla objektu (podle venkovní teploty, profilu užívání) produkce elektrické energie jako vedlejší produkt řízení podle požadavku dispečinku el. soustavy krytí špičkového zatížení dané lokality v kombinaci s akumulací tepla

6 Spalovací pístové motory 6/82 pístové motory vycházejí z automobilových motorů: vznětové (kapalné palivo) účinnost až 45 % (vysokotlaké) plynové účinnost okolo 40 %, spalování chudé směsi, přebytek spalovacího vzduchu 2, nízké emise mechanická práce využita pro pohon generátoru výroba el. energie odpadní teplo využito pro teplárenské účely požadavek na životnost a provozní spolehlivost nízkootáčkové stroje, masivní, stacionární pro spalovací motory se vžil název kogenerační jednotky

7 Spalovací pístové motory 7/82 palivo zemní plyn bioplyn (ČOV, zemědělská výroba) skládkový plyn kapalná paliva (horské oblasti) požadavek na ušlechtilé palivo: čištění bioplynu (od síry) dřevoplynu (od pevných částic)

8 Spalovací pístové motory 8/82

9 Spalovací pístové motory 9/82 využití odpadního tepla chlazení mazacího oleje: výměník olej/voda chlazení bloku motoru: výměník voda/voda chlazení výfukových plynů (až 450 C): výměník spaliny/voda: 50 % výkonu

10 Spalovací pístové motory 10/82

11 Spalovací pístové motory 11/82 malé jednotky 2 až 4 válcové provedení, kontejnerové jednotky asynchronní generátory, paralelní provoz se sítí dvojstupňový provoz (on/off), automatický start a zastavení velké jednotky 12 až 18 válců, samostatně odhlučněné prostory synchronní generátory, 4 pólové (1500 ot/min), 6 pólové (1000 ot/min) paralelně nebo nezávisle na síti řízení provozu dle zatížení

12 Spalovací pístové motory 12/82 soustrojí kogenerační jednotky generátor, el. rozvaděč akumulátorové baterie startování motoru výfuk spalin tlumič výfuku, snížení rychlosti proudění spalin

13 Spalovací motory parametry 13/82 výkon výkony od x0 kw do x MW

14 Spalovací pístové motory 14/82 výkon elektrický výkon svázaný s tepelným výkonem chladicí věže, nouzové chladiče (výměníky) pro přebytečný tepelný výkon větší rozsah než u PT, účinnost dramaticky neklesá

15 Spalovací pístové motory 15/82 technické parametry pro zdroje v menších soustavách CZT provozní teploty do 150 C (teplovody, výjimečně parovody) vytápění, ohřev vody (90 / 70 C) možnost častých, opakovaných a rychlých startů a odstávek větší rozsah regulace výkonu větší než u plynové turbíny bez významného snížení účinnosti využití pro vykrývání denních diagramů zatížení místních odběrů el. energie x vykrývání odběrů tepla

16 Spalovací motory dimenzování 16/82 roční diagram dodávky tepla kontinuální dodávka tepla dimenzování na odběr v letním období kogenerační jednotka jako výkonově doplňkový zdroj

17 Spalovací motory dimenzování 17/82 špičková výroba elektrické energie (16, 12, 8 hodin) řízení dodávek do el. sítě dimenzování na větší odběr, využití akumulace

18 Spalovací motory dimenzování 18/82 denní diagram dodávky tepla využití akumulace v době chodu motorů se nabíjí přebytkem tepelného výkonu v době odstávky se naakumulované teplo využívá ke krytí potřeb odběrů

19 Spalovací motory schéma 19/82

20 Spalovací pístové motory 20/82 provozní ukazatele

21 Spalovací pístové motory 21/82 výhody možnost rychlého najetí a odstávky vysoké účinnosti i u výkonově menších jednotek modulové uspořádání jednoduchá instalace malé prostorové nároky

22 Spalovací pístové motory 22/82 nevýhody spalování pouze ušlechtilých paliv vysoká hlučnost a vibrace pružné uložení na základ kontejnerové odhlučněné provedení, zvuková izolace strojovny tlumiče hluku ve výfukovém potrubí, v přívodu větracího vzduchu do strojovny častý servis opotřebení mechanických součástí spotřeba mazacích olejů, vzduchové filtry, svíčky - výměna

23 Spalovací pístové motory 23/82 využití okrskové, nebo areálové plynové kotelny energocentra obchodních, nemocničních, plaveckých, sportovních a administrativních komplexů, průmyslové podniky vysoká a rovnoměrná potřeba tepla, vysoká potřeba elektrické energie, potřeba na chlazení školská zařízení x letní provoz čistírny odpadních vod, skládky komunálních odpadů, bioplynové stanice kalový plyn, bioplyn potřeba tepla a elektřiny pro provoz ČOV a bioplynové stanice

24 Plynové mikroturbíny 24/82 plynová turbína vysoko-otáčkové soustrojí, otáček/min jednostupňový radiální vzduchový kompresor - jednostupňová radiální turbína - generátor elektrického proudu na společné hřídeli výkony x0 kw až x00 kw, teplárenský modul 0,5 až 0,7 tepelný výměník ve spalinách - odpadní teplo využito pro teplárenské účely (200 až 300 C), pro předehřev spalovacího vzduchu (rekuperace) palivo zemní plyn, bioplyn tlak min. 0,4 až 0,8 MPa, > STL (0,4 MPa): nestačí plynový kompresor

25 Plynové mikroturbíny 25/82 rekuperace

26 Plynové mikroturbíny 26/82

27 Plynové mikroturbíny 27/82

28 Plynové mikroturbíny 28/82 oproti klasickým plynovým turbínám vysokofrekvenční generátor, vysoké otáčky, není nutná převodovka vysoké otáčky, snadnější odhlučnění vzduchová ložiska, bez mazání, bezolejové hospodářství minimální údržba servis vzduchový filtr, zapalování, trysky generální oprava PH výrazně nižší provozní náklady než u spalovacích motorů

29 Plynové mikroturbíny 29/82

30 Plynové mikroturbíny 30/82

31 Plynové mikroturbíny 31/82 výkonové parametry výkony od x0 kw do x00 kw účinnost 20 až 30 % teplárenský modul zpravidla 0,5 až 0,7

32 Plynové mikroturbíny 32/82 výhody možnost rychlého najetí a odstávky (desítky sekund) kompaktní provedení nízká hmotnost vysoká provozní spolehlivost jediná točící se součást, vzduchová ložiska, bez potřeby mazacího oleje provoz při částečném výkonu - dobrá regulace do 50% zatížení nízké emise, 10 x nižší emise NO x než u spalovacích motorů nízké provozní náklady

33 Plynové mikroturbíny 33/82 nevýhody nízká účinnost výroby elektrické energie 20 až 30 % přídavná práce na kompresor nízká celková účinnost rekuperace tepla pro ohřev vzduchu při výkonech pod 50 % rapidně klesá účinnost cena

34 Organický Rankinův cyklus (ORC) 34/82 parní cyklus modifikace Rankin-Clausiova oběhu liší se pracovní látkou pro turbínu organické (uhlovodíkové) sloučeniny odpaření při nízkých teplotách / tlacích poskytují vyšší účinnost cyklu pro jednoduchou jednostupňovou turbínu silikonový olej, alkany, freony, pentan, propan, toluen, čpavek nekorozivní, neagresivní, bez úpravy, hořlavé látky využití tepla pro vytápění, ohřev vody (nízké teploty) palivo palivo s nízkou výhřevností: biomasa geotermální energie, sluneční energie, odpadní teplo (!)

35 Organický Rankinův cyklus (ORC) 35/82 bez rekuperátoru T expanze do oblasti přehřáté páry rekuperace tepla! s

36 Organický Rankinův cyklus (ORC) 36/82 s rekuperátorem T s

37 Organický Rankinův cyklus (ORC) 37/82

38 Organický Rankinův cyklus (ORC) 38/82 K ekonomizér výparníky

39 Organický Rankinův cyklus (ORC) 39/82 ORC soustrojí olejová strojovna kotel

40 Organický Rankinův cyklus (ORC) 40/82

41 Organický Rankinův cyklus (ORC) 41/82 účinnost závisí na teplotě termooleje teplotě chladicí vody účinnosti rekuperace termodynamické účinnosti turbíny komerční jednotky 200 až 1500 kw e 16 až 18 % při 300/250 C (olej) a 60/80 C (voda)

42 Organický Rankinův cyklus (ORC) 42/82

43 Organický Rankinův cyklus (ORC) 43/82 30 až 65 kwe 190 až 240 C dvojitý šroubový expandér

44 Organický Rankinův cyklus (ORC) 44/82 10 kw e 50 kw e

45 Organický Rankinův cyklus (ORC) 45/82 výhody využití při nízkých teplotách primárního zdroje jednoduchá konstrukce turbíny, vysoká účinnost turbíny i při nízkých výkonech (zatížení) dobrá regulace soustrojí v celém výkonovém rozsahu vysoká životnost nízké otáčky, nízké mechanické namáhání turbíny nízké teploty a tlaky, běžné konstrukční materiály odpadá chemická úprava pracovních látek nízké provozní náklady

46 Organický Rankinův cyklus (ORC) 46/82 nevýhody nároky na těsnost cena

47 Organický Rankinův cyklus (ORC) 47/82 využití produkce el. energie z nízkopotenciální energie: odpadní teplo technologické procesy obnovitelné zdroje tepla geotermální, biomasa, sluneční energie, apod.

48 Palivové články 48/82 přímá přeměna chemické energie látek na elektrickou podobně jako baterie... ALE... látky nejsou součástí anody/katody průběžně přiváděné jako palivo elektrody jsou pouze katalyzátorem chemických přeměn bez limitu Carnotova cyklu pro termodynamické oběhy

49 Palivové články 49/82 kyslíko-vodíkový článek anoda elektrolyt katoda (+ katalyzátor) anoda přívod paliva (vodík) atomy vodíku za přispění katalyzátoru ztrácejí elektrony elektrony putují vnějším obvodem ke katodě elektrický proud katoda přívod okysličovadla (kyslík) redukce, atomy okysličovadla přijímají volné elektrony a reagují s kladnými ionty vodíku procházejícími elektrolytem elektrolyt - kyseliny, zásady, keramiky, membrány různé typy PČ

50 Palivové články 50/82

51 Palivové články 51/82 vodík vzduch elektrolyt vzduch voda

52 Palivové články 52/82

53 Palivové články 53/82 palivo vodík paliva bohatá na vodík: metan, zemní plyn, bioplyn, metanol úprava paliva reforming nízký obsah síry okysličovadlo kyslík produkce vodní páry, CO 2 (v případě uhlíkatých paliv) vzduch produkce NO x

54 Palivové články - druhy 54/82 s alkalickým elektrolytem AFC (Alcaline FC) vodný roztok alkalického hydroxidu (NaOH, KOH) vodík + kyslík katalyzátor platina, nikl, stříbro citlivé na CO 2 provozní teplota 60 až 90 C účinnost: 45 až 70 % výkon: do 20 kw využití: vojenské aplikace, kosmický výzkum

55 Palivové články - druhy 55/82 s polymerní membránou PEMFC (Proton-Exchange-Membrane) polymerní (iontoměničová) membrána místo elektrolytu, vodivá pro vodíkové kationty (protony) nevodivá pro elektrony, hydratovaná (vodivost), sulfonované fluoropolymery vodík, metanol + kyslík, vzduch katalyzátor platina necitlivé na CO 2 nízká pracovní teplota do 90 C (kvůli hydrataci), rychlý náběh účinnost: 40 až 45 % výkon: do 250 kw využití: mobilní aplikace

56 Palivové články - druhy 56/82 s kyselinou fosforečnou PAFC (Phosphoric Acid FC) elektrolytem je kyselina fosforečná H 3 PO 4 v matrici z PTFE nebo karbidu křemíku SiC vodík z parního reformingu fosilních paliv + vzduch katalyzátor platina pracovní teploty 150 až 220 C účinnost: 35 až 45 %, celková účinnost 85 % výkon: 50 až stovky kw využití: kogenerační jednotky, stacionární generátory

57 Palivové články - druhy 57/ kw PAFC

58 Palivové články - druhy 58/82 s tavenými uhličitany MCFC (Molten Carbonate FC) elektrolytem je tavenina směsi alkalických uhličitanů (Li, Na, K vodivé soli) v matrici LiAlO 2 vnitřní parní reforming přímo v článku: vodík, CO + vzduch bez drahých katalyzátorů, neplatinové pracovní teploty 600 až 700 C účinnost: 45 až 60 % výkon: do několika MW využití: kogenerační jednotky

59 Palivové články - druhy 59/ kw MCFC

60 Palivové články - druhy 60/82 s pevným elektrolytem SOFC (Solid Oxide) elektrolytem je iontově vodivá keramická membrána ZrO 2 vnitřní reforming přímo v článku: zemní plyn, bioplyn, vodík + CO + vzduch bez drahých katalyzátorů pracovní teploty 800 až 1000 C pro zajištění iontové vodivosti membrány účinnost: 40 až 65 % výkon: do několika MW využití: kogenerační jednotky

61 Palivové články SOFC 61/82

62 Palivové články SOFC 62/82 1 palivový článek 2 parní generátor, hořák, výměníky 3 vysokoteplotní izolace 500 až 2000 W!

63 Palivové články SOFC 63/82

64 Palivové články - druhy 64/82

65 Palivové články - druhy 65/82 výhody nízké opotřebení vysoká životnost (desetitisíce hodin) nepřítomnost pohyblivých částí tichý chod spolehlivost

66 Palivové články - druhy 66/82 nevýhody pomalý náběh měly by pracovat v trvalém provozu odstraňování zplodin chemických reakcí: voda, jiné produkty oxidace udržování optimální teploty cena elektrody, pomocná zařízení

67 Stirlingův motor 67/82 teplovzdušný motor motor s vnějším spalováním dva vzájemně propojené zdvihové prostory s rozdílnou teplotou uzavřený oběh pracovní látky inertní plyn s vysokou roztažností, např. helium střídavě se zahřívá / roztahuje objem ochlazuje se / zmenšuje svůj objem hnací silou je rozdíl teplotních hladin dvou prostorů (objemů) dva písty, jeden nebo dva válce podle modifikace α, β, γ

68 Stirlingův motor - modifikace 68/82 α β γ

69 Stirlingův motor - princip 69/82 princip modifikace β přeháněcí (expanzní) píst vůle mezi pístem a válcem pracovní (kompresní) píst utěsněný písty jsou spojeny klikovým mechanismem zpoždění o ¼ otáčky (90 ) setrvačník pomáhá překonat mrtvý bod, zajišťuje plynulý chod motoru přeháněcí píst chlazení pracovní píst ohřev

70 Stirlingův motor - princip 70/82 přeháněcí píst přemístí plyn do ohřívané části válce plyn se ohřívá, zvětšuje svůj objem a tlak vytlačuje pracovní píst do horní úvrati roztáčí se setrvačník přeháněcí píst začíná přesouvat plyn do chlazené části válce

71 Stirlingův motor - princip 71/82 přeháněcí píst přemístil plyn do chlazené části válce plyn se ochlazuje, zmenšuje svůj objem a tlak pracovní píst je v dolní úvrati přeháněcí píst začíná plyn přesouvat do ohřívané části válce, kde se znova ohřívá celý cyklus se opakuje

72 Stirlingův motor - princip 72/82

73 Stirlingův motor - princip 73/82 modifikace α koncepčně nejjednodušší expanzní válec každý píst ve vlastním válci regenerátor potřeba velkého rozdílu teplot nejpoužívanější modifikace kompresní válec

74 Stirlingův motor - princip 74/82 modifikace β klasická modifikace patentovaná R. Stirlingem oba písty v jednom válci problém s utěsněním ojnice v pístu vývoj SM s volným pístem

75 Stirlingův motor - princip 75/82 modifikace γ vlastně β ve dvou válcích ohřívá se část přeháněcího válce chladí se zbytek přeháněcího válce a pracovní válec pouze jako modely

76 Stirlingův motor 76/82 malé výkony výkon 1 kw e / 6 kw t dodatkový zdroj kondenzační kotel celková účinnost 96 % teplárenský modul 0,17 Stirling s volným pístem bez klikové hřídele plyn - helium

77 Stirlingův motor 77/82 Stirlingův motor s volným pístem modifikace β volný píst na teplé straně (expanzní) bez mechanické vazby na píst pracovní pohyb je buzen diskovými pružinami (membránami) lineární generátor poháněn jen pracovním pístem pružné uložení pístní tyče v diskových pružinách

78 Stirlingův motor 78/82 hlava žebra regenerátor převáděcí píst vodní chladič pracovní píst magnety cívky lineární el. generátor

79 Stirlingův motor 79/ EUR = CZK (bez montáže)

80 Stirlingův motor v kotli na pelety 80/82

81 Stirlingův motor 81/82 výhody dokáže využít jakýkoli zdroj tepla, paliva nevhodná pro pístové motory a spalovací turbíny s regenerátorem účinnost až 40 % (naftové motory) tichý chod vysoká životnost a spolehlivost bez ventilů

82 Stirlingův motor 82/82 nevýhody vysoká teplota ohříváku, vysoký tlak plynu desítky MPa malý výkon vztažený ke hmotnosti problémy s těsností motoru obtížná regulace výkonu cena

Ekonomické a ekologické efekty kogenerace

Ekonomické a ekologické efekty kogenerace Ekonomické a ekologické efekty kogenerace Kogenerace (KVET) společná výroba elektřiny a dodávka tepla -zvyšuje využití paliva. Velká KVET teplárenství. Malá KVET - parní, plynová, paroplynová, palivové

Více

Decentralizovaná KVET VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA. Tepelná síť. DKVET na bázi spalovacích motorů

Decentralizovaná KVET VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA. Tepelná síť. DKVET na bázi spalovacích motorů VÝHLEDOVÉ PERSPEKTIVNÍ TYPY ZDROJŮ ELEKTŘINY A TEPLA Kombinovaná výroba elektřiny a tepla (KVET) Kombinovaná výroba elektřiny a tepla je významná z hledisek energetických ekologických společenských musí

Více

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil

Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe. Firemní profil Spolek pro kombinovanou výrobu elektřiny a tepla člen COGEN Europe Firemní profil Obsah prezentace Potenciál a možnosti využití Vybrané technologie Základní principy a vlastnosti Hlavní oblasti využití

Více

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace

Obsah. KVET _Mikrokogenerace. Technologie pro KVET. Vývoj pro zlepšení parametrů KVET. Využití KVET _ Mikrokogenerace Upozornění: Tato prezentace slouží výhradně pro účely firmy TEDOM. Byla sestavena autorem s využitím citovaných zdrojů a veřejně dostupných internetových zdrojů. Využití této prezentace nebo jejich částí

Více

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství

Vodík jako alternativní ekologické palivo. palivové články a vodíkové hospodářství Vodík jako alternativní ekologické palivo palivové články a vodíkové hospodářství Charakteristika vodíku vodík je nejrozšířenějším prvkem ve vesmíru na Zemi je třetím nejrozšířenějším prvkem po kyslíku

Více

1/79 Teplárenské zdroje

1/79 Teplárenské zdroje 1/79 Teplárenské zdroje parní protitlakové turbíny parní odběrové turbíny plynové turbíny s rekuperací paroplynový cyklus Teplárenské zdroje 2/79 parní protitlaké turbíny parní odběrové turbíny plynové

Více

Expert na zelenou energii

Expert na zelenou energii Expert na zelenou energii Člen podnikatelské skupiny LUKA & BRAMER GROUP se sídlem v Brně Zaměřená na: dodávku technologií pro využití a zpracování odpadů dodávku a servis technologických celků a zařízení

Více

7.5.2015. Bionafta. Bionafta. Bioetanol. Bioetanol. Bioetanol. Bioetanol

7.5.2015. Bionafta. Bionafta. Bioetanol. Bioetanol. Bioetanol. Bioetanol Bionafta Bionafta z řepkového semene se lisuje olej působením katalyzátoru a vysoké teploty se mění na metylester řepkového oleje = bionafta první generace mísí se s některými lehkými ropnými produkty,

Více

Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy

Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy Kombinovaná výroba elektrické energie a tepla (KVET) Možnosti využití biomasy Spotřeba PEZ svět 2004 Výroba el. energie svět 2004 Výroba el. energie ČR 2004 Využit ití tepla KVET Vytápění Ohřev TUV Technologie

Více

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek

Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI. Pavel Žitek Teplárenské cykly ZVYŠOVÁNÍ ÚČINNOSTI 1 Zvyšování účinnosti R-C cyklu ZÁKLADNÍ POJMY Tepelná účinnost udává, jaké množství vloženého tepla se podaří přeměnit na užitečnou práci či elektrický výkon; vypovídá

Více

Expert na zelenou energii

Expert na zelenou energii Expert na zelenou energii Člen podnikatelské skupiny LUKA & BRAMER GROUP se sídlem v Brně Zaměřená na: dodávku technologií pro využití a zpracování odpadů dodávku a servis technologických celků a zařízení

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Úvod do problematiky Základní způsoby získávání energie Spalováním

Více

Technická zařízení pro energetické transformace bioplynu

Technická zařízení pro energetické transformace bioplynu Technická zařízení pro energetické transformace bioplynu Cíle Seznámit studenty s technologiemi energetického využití bioplynu: Kogenerace Trigenerace Palivové články Klíčová slova Bioplyn, energie, kogenerace,

Více

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu

AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013. Kogenerační jednotky a zařízení na úpravu plynu AHK-obchodní cesta do České republiky Využití bioplynu k výrobě tepla a elektřiny 21.-25. října 2013 Kogenerační jednotky a zařízení na úpravu plynu Dreyer & Bosse Kraftwerke GmbH, Streßelfeld 1, 29475

Více

1/62 Zdroje tepla pro CZT

1/62 Zdroje tepla pro CZT 1/62 Zdroje tepla pro CZT kombinovaná výroba elektřiny a tepla výtopny, elektrárny a teplárny teplárenské ukazatele úspory energie teplárenským provozem Zdroje tepla 2/62 výtopna pouze produkce tepla kotle

Více

Základní charakteristika

Základní charakteristika Základní charakteristika Plynové kogenerační jednotky (KGJ) značky ADW jsou modulové stavebnicové systémy určené k zástavbě do strojoven, určené k trvalé výrobě elektřiny a tepla. Jako palivo je standardně

Více

Vícepalivový tepelný zdroj

Vícepalivový tepelný zdroj Vícepalivový tepelný zdroj s kombinovanou výrobou elektrické energie a tepla z biomasy systémem ORC v Třebíči Historie projektu vícepalivového tepelného zdroje s kombinovanou výrobou el. energie a tepla

Více

pro bioplynové stanice

pro bioplynové stanice Progresivní možnosti zvyšov ování účinnosti mikroturbín n jako kogeneračních jednotek pro bioplynové stanice MŽP VaV SPII2f1/27/07 Minimalizace emisní zátěže kogenerační jednotky výzkumem nových technologických

Více

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy:

zapaluje směs přeskočením jiskry mezi elektrodami motoru (93 C), chladí se válce a hlavy válců Druhy: zapis_spalovaci_motory_208/2012 STR Gd 1 z 5 29.1.4. Zapalování Zajišťuje zapálení směsi ve válci ve správném okamžiku (s určitým ) #1 Zapalování magneto Bateriové cívkové zapalování a) #2 generátorem

Více

MODERNÍ ZPŮSOBY ENERGETICKÉHO VYUŽÍVÁNÍ BIOMASY

MODERNÍ ZPŮSOBY ENERGETICKÉHO VYUŽÍVÁNÍ BIOMASY MODERNÍ ZPŮSOBY ENERGETICKÉHO VYUŽÍVÁNÍ BIOMASY KOMBINOVANÁ VÝROBA ELEKTŘINY A TEPLA Z BIOMASY KLÍČOVÁ SLOVA: kombinovaná výroba elektřiny a tepla KVET, centrální zásobování teplem CZT, Organický Rankinův

Více

Obnovitelné zdroje energie

Obnovitelné zdroje energie ČVUT v Praze Fakulta stavební Katedra technických zařízení budov TBA1 Vytápění Zdroje tepla - obnovitelné zdroje 1 Obnovitelné zdroje energie Zákon 406/2000 Sb o hospodaření energií OZE=nefosilní přírodní

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv Spalovací turbíny Ing. Jan Andreovský Ph.D. Spalovací turbíny Základní informace Historie a vývoj Spalovací

Více

Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK

Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Přeměna chemické energie na elektrickou energii GALVANICKÝ ČLÁNEK Pokus: Ponořte dva různé kovy vzdáleně od

Více

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové

SPALOVACÍ MOTORY. - vznětové = samovznícením. - dvoudobé. - kapalinou. - dvouřadé s válci do V - vodorovné - ležaté. - vstřikové SPALOVACÍ MOTORY Druhy spalovacích motorů rozdělení podle způsobu zapalování podle počtu dob oběhu podle chlazení - zážehové = zvláštním zdrojem (svíčkou) - vznětové = samovznícením - čtyřdobé - dvoudobé

Více

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami

Tepelné zdroje soustav CZT. Plynová turbína. Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Zásobovaní z tepláren s velkými spalovacími (plynovými) turbínami Tepelné zdroje soustav CZT tepelná část kombinovaného oběhu neovlivňuje silovou (mechanickou) část oběhu teplo se odvádí ze silové části

Více

Pístové spalovací motory-pevné části

Pístové spalovací motory-pevné části Předmět: Ročník: Vytvořil: Datum: Silniční vozidla třetí NĚMEC V. 28.8.2013 Definice spalovacího motoru Název zpracovaného celku: Pístové spalovací motory-pevné části Spalovací motory jsou tepelné stroje,

Více

VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie

VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Strana 5677 441 VYHLÁŠKA ze dne 5. prosince 2012 o stanovení minimální účinnosti užití energie při výrobě elektřiny a tepelné energie Ministerstvo průmyslu a obchodu stanoví podle 14 odst. 4 zákona č.

Více

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE

BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE TRIGENERATION BAKALÁŘSKÁ PRÁCE BACHELOR'S

Více

28.10.2013. Kogenerace s parním strojem. Limity parního motoru

28.10.2013. Kogenerace s parním strojem. Limity parního motoru Parní motor PM VS je objemový parní stroj sestávající z bloku motoru, válců, pístů šoupátkového rozvodu. Parní stroj je spojen s generátorem elektrické energie. Parní stroj i generátor je umístěn na společném

Více

OBSAH. 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise. 6.0 Porovnání palivových článků s konvenčními způsoby výroby energie

OBSAH. 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise. 6.0 Porovnání palivových článků s konvenčními způsoby výroby energie 2 PALIVOVÉ ČLÁNKY OBSAH 1.0 Úvod 2.0 Princip činnosti palivového článku 3.0 Druhy palivových článků, elektrolyty, teploty, paliva, emise 4.0 Provozovaná zařízení s palivovými články 5.0 Výhled využití

Více

KOGENERACE PLYNOVÉ MOTORY

KOGENERACE PLYNOVÉ MOTORY KOGENERACE PLYNOVÉ MOTORY SPOLEHLIVOST ŽIVOTNOST ZÁRUKY BIOPLYNOVÉ STANICE ČISTÍRNY ODPADNÍCH VOD SKLÁDKY PRŮMYSL KOMFORT FLEXIBILITA APLIKACE VÝKONY MOTORY KONTAKTY SLYŠELI JSTE, ŽE KOGENERACE JE JEDNODUCHÁ.

Více

Základní technický popis kogenerační jednotky EG-50

Základní technický popis kogenerační jednotky EG-50 Energas Czech s.r.o. Na výsluní 201/13 100 00 Praha 10 Základní technický popis kogenerační jednotky EG-50 (platí pro model 2016-01) Výrobce: Energas Czech s.r.o., Na výsluní 201/13, 100 00 Praha 10 Popis

Více

Ondřej Mišina. Měření volt-ampérové charakteristiky palivových článků

Ondřej Mišina. Měření volt-ampérové charakteristiky palivových článků Ondřej Mišina Měření volt-ampérové charakteristiky palivových článků Vedoucí práce: Mgr. František Tichý Datum odevzdání: 18. 8. 2018 Abstrakt V této práci byl sestaven měřicí obvod pro měření volt-ampérové

Více

Přehled technologii pro energetické využití biomasy

Přehled technologii pro energetické využití biomasy Přehled technologii pro energetické využití biomasy Tadeáš Ochodek Seminář BIOMASA JAKO ZDROJ ENERGIE 6. - 7.6. 2006, Hotel Montér, Ostravice Z principiálního hlediska lze rozlišit několik způsobů získávání

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory echatronika 02 - Pneumatika 1 z 5 3. Výroba stlačeného - kompresory Kompresory jsou stroje ke stlačování (kompresi), neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého pohybu) na tlakovou

Více

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM

DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM DÁLKOVÉ VYTÁPĚNÍ =DISTRICT HEATING, = SZT SYSTÉM ZÁSOBOVÁNÍ TEPLEM = CZT CENTRALIZOVANÉ ZÁSOBOVÁNÍ TEPLEM 184 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla

Více

Kombinovaná výroba elektřiny a tepla - kogenerace

Kombinovaná výroba elektřiny a tepla - kogenerace Kombinovaná výroba elektřiny a tepla - kogenerace Úvodem otázka Která energetická technologie dokáže ve srovnání s klasickými technologiemi výroby tepla a elektřiny zvýšit energetickou účinnost řádově

Více

Kombinovaná výroba elektřiny a tepla v roce 2008

Kombinovaná výroba elektřiny a tepla v roce 2008 Energetická statistika Kombinovaná výroba a tepla v roce 2008 Výsledky statistického zjišťování duben 2010 Oddělení surovinové a energetické statistiky Impressum oddělení surovinové a energetické statistiky

Více

Žádosti o podporu v rámci prioritních os 2 a 3 jsou přijímány od 1. března 2010 do 30. dubna 2010.

Žádosti o podporu v rámci prioritních os 2 a 3 jsou přijímány od 1. března 2010 do 30. dubna 2010. XVII. výzva k podávání žádostí o poskytnutí podpory v rámci Operačního programu Životní prostředí podporovaných z Fondu soudržnosti a Evropského fondu pro regionální rozvoj. Ministerstvo životního prostředí

Více

budoucí masová náhrada plynových kotlů a palivové články

budoucí masová náhrada plynových kotlů a palivové články Spalovací mikroturbíny budoucí masová náhrada plynových kotlů a palivové články V Praze 29.11.2016 Ing. Jan Šurovský, bývalý předseda Asociace mikroturbín konzultant mikroturbín, 725 385 915 Poznámky z

Více

PŘEDSTAVENÍ VÝROBY ELEKTŘINY

PŘEDSTAVENÍ VÝROBY ELEKTŘINY PŘEDSTAVENÍ VÝROBY ELEKTŘINY INTRODUCTION NA PALIVOVÝCH OF GASIFICATION ČLÁNCÍCH TECHNOLOGY, IGCC Seminář ELECTRICITY SVSE, 3.května PRODUCTION 2012 AND ALTERNATIVE ENERGY SOLUTIONS Ing. Tomáš Rohal, Business

Více

Součástí dodávky mikrokogenerační jednotky:

Součástí dodávky mikrokogenerační jednotky: 1 z 5 2013-02-22 16:21 Úvod (/home/) > CLEANERGY C9G (/cleanergy-9kwe/) > Kogenerační jednotka CLEANERGY C9G Součástí dodávky mikrokogenerační jednotky: mikrokogenerační jednotka CLEANERGY C9G elektroměr,

Více

Kombinovaná výroba elektřiny a tepla

Kombinovaná výroba elektřiny a tepla Kombinovaná výroba elektřiny a tepla Kurz Kombinovaná výroba elektřiny a tepla Doc. Ing. Jiří Míka, CSc. Katedra energetiky (361) Energetické jednotky pro využití netradičních zdrojů energie Program 6.9.2017

Více

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel

FLUIDNÍ KOTLE. Fluidní kotel na biomasu(parní) parní výkon 16 150 t/h tlak páry 1,4 10 MPa teplota páry 220 540 C. Fluidní kotel FLUIDNÍ KOTLE Osvědčená technologie pro spalování paliv na pevném roštu s fontánovou fluidní vrstvou. Možnost spalování široké palety spalování pevných paliv s velkým rozpětím výhřevnosti uhlí, biomasy

Více

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS

NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE. Ing. Stanislav HONUS NEKONVENČNÍ ZPŮSOBY VÝROBY TEPELNÉ A ELEKTRICKÉ ENERGIE Ing. Stanislav HONUS ORGANICKÝ MATERIÁL Spalování Chemické přeměny Chem. přeměny ve vodním prostředí Pyrolýza Zplyňování Chemické Biologické Teplo

Více

3. Výroba stlačeného vzduchu - kompresory

3. Výroba stlačeného vzduchu - kompresory zapis_pneumatika_kompresory - Strana 1 z 6 3. Výroba stlačeného vzduchu - kompresory Kompresory jsou stroje ke stlačování ( #1 ) vzduchu, neboli zvýšení jeho tlaku Mění mechanickou energii motoru (otáčivého

Více

KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY

KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY KONTEJNEROVÉ MIKRO-KOGENERAČNÍ JEDNOTKY Energie pro budoucnost Brno 8/10/2013 1/14 Michal Schrimpel, Roman Mašika Skupina ČKD GROUP je společenství inženýrských a výrobních firem podnikajících v segmentech:

Více

OUTdoor MGW 260. Kontejnerové provedení. Typový list kogenerační jednotky. s plynovým motorem GE WAUKESHA. Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2

OUTdoor MGW 260. Kontejnerové provedení. Typový list kogenerační jednotky. s plynovým motorem GE WAUKESHA. Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Typový list kogenerační jednotky s plynovým motorem GE WAUKESHA Kontejnerové provedení OUTdoor MGW 260 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Specifikace dodávky Technické parametry Motor a generátor

Více

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta

Elektrárny část II. Tepelné elektrárny. Ing. M. Bešta Tepelné elektrárny 1) Kondenzační elektrárny uhelné K výrobě elektrické energie se využívá tepelné energie uvolněné z uhlí spalováním. Teplo uvolněné spalováním se využívá k výrobě přehřáté (ostré) páry.

Více

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou.

Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava Energetika se zabývá získáváním, přeměnou a distribucí všech forem energie. Energii nevytváříme, pouze transformujeme z jedné formy na druhou. VŠB TU Ostrava 2 VŠB TU Ostrava 3 Dle zdroje:

Více

OUTdoor MGW 800. Kontejnerové provedení. Typový list kogenerační jednotky. s plynovým motorem WAUKESHA. Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2

OUTdoor MGW 800. Kontejnerové provedení. Typový list kogenerační jednotky. s plynovým motorem WAUKESHA. Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Typový list kogenerační jednotky s plynovým motorem WAUKESHA Kontejnerové provedení OUTdoor MGW 800 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Specifikace dodávky Technické parametry Motor a generátor Řídící

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování

Zplyňování biomasy. Sesuvný generátor. Autotermní zplyňování Autotermní a alotermní zplyňování Zplyňování = termochemická přeměna uhlíkatého materiálu v pevném či kapalném skupenství na výhřevný energetický plyn pomocí zplyňovacích médií a tepla. Produktem je plyn obsahující výhřevné složky (H 2,

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej

Funkční vzorek průmyslového motoru pro provoz na rostlinný olej Funkční vzorek průmyslového motoru pro provoz na rostlinný olej V laboratořích Katedry vozidel a motorů Technické univerzity v Liberci byl vyvinut motor pro pohon kogenerační jednotky spalující rostlinný

Více

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami

Zapojení špičkových kotlů. Obecné doporučení 27.10.2015. Typy turbín pro parní teplárny. Schémata tepláren s protitlakými turbínami Výtopny výtopny jsou zdroje pouze pro vytápění a TUV teplo dodávají v páře nebo horké vodě základním technologickým zařízením jsou kotle s příslušenstvím (dle druhu paliva) výkonově výtopny leží mezi domovními

Více

Alternativní zdroje energie

Alternativní zdroje energie Autor: Ivo Vymětal Pracovní list 1 Přeměny energie 1. Podle vzoru doplň zdroje a druhy energie, které se uplatní v popsaných dějích. Využij seznamu: Žárovka napájená z tepelné elektrárny. Slunce Rostliny

Více

Možnosti výroby elektřiny z biomasy

Možnosti výroby elektřiny z biomasy MOŽNOSTI LOKÁLNÍHO VYTÁPĚNÍ A VÝROBY ELEKTŘINY Z BIOMASY Možnosti výroby elektřiny z biomasy Tadeáš Ochodek, Jan Najser Žilinská univerzita 22.-23.5.2007 23.5.2007 Cíle summitu EU pro rok 2020 20 % energie

Více

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo,

ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, ZDROJE TEPLA Rozdělení Jako zdroj tepla může být navržena kotelna, CZT (centrální zásobování teplem) nebo netradiční zdroj (tepelné čerpadlo, sluneční energie, termální teplo apod.). Nejčastější je kotelna.

Více

Kontejnerové kogenerační jednotky s vysokou účinností. Energie pro budoucnost Brno 11/9/2012

Kontejnerové kogenerační jednotky s vysokou účinností. Energie pro budoucnost Brno 11/9/2012 Kontejnerové kogenerační jednotky s vysokou účinností Kogenerační /trigenerační jednotky pro komerčně-rezidenční budovy v ČR Energie pro budoucnost Brno 11/9/2012 Michal Schrimpel, Roman Mašika, Jarmila

Více

DODAVATELSKÝ PROGRAM

DODAVATELSKÝ PROGRAM DODAVATELSKÝ PROGRAM HLAVNÍ ČINNOSTI DODÁVKY KOTELEN NA KLÍČ Projekty, dodávka, montáž, zkoušky a uvádění do provozu Teplárny Energetická centra pro rafinerie, cukrovary, papírny, potravinářský průmysl,chemický

Více

KOGENERAČNÍ JEDNOTKY ZAŘÍZENÍ NA ÚPRAVU PLYNU PLYNOVÉ TEPELNÉ ČERPADLO GENERÁTOROVÁ SOUSTROJÍ SPALOVACÍ MOTORY

KOGENERAČNÍ JEDNOTKY ZAŘÍZENÍ NA ÚPRAVU PLYNU PLYNOVÉ TEPELNÉ ČERPADLO GENERÁTOROVÁ SOUSTROJÍ SPALOVACÍ MOTORY KOGENERAČNÍ JEDNOTKY ZAŘÍZENÍ NA ÚPRAVU PLYNU PLYNOVÉ TEPELNÉ ČERPADLO GENERÁTOROVÁ SOUSTROJÍ SPALOVACÍ MOTORY Kogenerační jednotky Kogenerační jednotky jsou zařízení pro společnou výrobu elektřiny a tepla.

Více

VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza

VÝROBA VODÍKU reforming benzinových frakcí parní reforming zemního plynu parciální oxidace ropných zbytků zplyňováním biomasy elektrolýza VODÍK - představuje jeden z hlavních chemických prvků v celém vesmíru jak ve hvězdách, tak i mezigalaktickém prostoru; - tvoří přibližně 75 % jeho hmoty a dokonce 90 % všech atomů; - z chemického hlediska

Více

Mikrokogenerace efektivní nástroj stability a bezpečnosti dodávek. nástroj stability a bezpečnosti dodávek energie

Mikrokogenerace efektivní nástroj stability a bezpečnosti dodávek. nástroj stability a bezpečnosti dodávek energie Publikace Programu EFEKT 2011 Označení dokumentu: 1103_01_ENS Strana: 1 z 99 Zákazník: Projekt: MINISTERSTVO PRŮMYSLU A OBCHODU ČR Mikrokogenerace efektivní nástroj stability a bezpečnosti dodávek Stupeň:

Více

VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů

VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Strana 394 Sbírka zákonů č. 37 / 2016 37 VYHLÁŠKA ze dne 21. ledna 2016 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Ministerstvo průmyslu a obchodu stanoví

Více

Průmyslové pístové kompresory RL - RH - RK

Průmyslové pístové kompresory RL - RH - RK Průmyslové pístové kompresory RL - RH - RK SPOLEHLIVÁ TECHNOLOGIE RL - RH - RK Kompresor přímo spojený s motorem řešení pro průmysl Vyzkoušená technologie, solidní konstrukce RL-RH-RK jsou kompresory přímo

Více

PLYNOVÉ KOGENERAČNÍ JEDNOTKY

PLYNOVÉ KOGENERAČNÍ JEDNOTKY PLYNOVÉ KOGENERAČNÍ JEDNOTKY Záleží nám na prostředí, ve kterém žijeme. Mnoho lidí, organizací a státních institucí nám předkládá modely ekologického chování, které mají chránit životní prostředí, zvláště

Více

2. Specifické emisní limity platné od 20. prosince 2018 do 31. prosince Specifické emisní limity platné od 1. ledna 2025

2. Specifické emisní limity platné od 20. prosince 2018 do 31. prosince Specifické emisní limity platné od 1. ledna 2025 POPIS k Příloze č. 2 k vyhl. 415/2012 Sb. ve znění vyhl. 452/2017 Sb. Část II Specifické emisní limity pro spalovací stacionární zdroje o celkovém jmenovitém tepelném příkonu vyšším než 0,3 MW a nižším

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_E.3.20 Integrovaná střední

Více

Technologie zplyňování biomasy

Technologie zplyňování biomasy Technologie zplyňování biomasy Obsah prezentace Profil společnosti Proces zplyňování Zplyňovací technologie Generátorový plyn Rozdělení technologií Typy zplyňovacích jednotek Čištění plynu Systém GB Gasifired

Více

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty

POHONNÉ JEDNOTKY. Energie SPALOVACÍ MOTOR. Chemická ELEKTROMOTOR. Elektrická. Mechanická energie HYDROMOTOR. Tlaková. Ztráty Energie Chemická Elektrická Tlaková POHONNÉ JEDNOTKY SPALOVACÍ MOTOR ELEKTROMOTOR HYDROMOTOR Mechanická energie Ztráty POHONNÉ JEDNOTKY - TRANSFORMÁTOR ENERGIE 20013/2014 Pohonné jednotky I. SCHOLZ 1 SPALOVACÍ

Více

Ochrana ovzduší ve státní správě. Sezimovo Ústí, 14. - 16. listopadu 2006

Ochrana ovzduší ve státní správě. Sezimovo Ústí, 14. - 16. listopadu 2006 Ochrana ovzduší ve státní správě Sezimovo Ústí, 14. - 16. listopadu 2006 Emise škodlivých látek kog. jednotek při spalování alternativních paliv Ing. Jiří Štochl TEDOM-VKS s.r.o. KVET = kombinovaná výroba

Více

1 Předmět úpravy Tato vyhláška upravuje v návaznosti na přímo použitelný předpis Evropské unie 1 ) a) způsob určení množství elektřiny z vysokoúčinné

1 Předmět úpravy Tato vyhláška upravuje v návaznosti na přímo použitelný předpis Evropské unie 1 ) a) způsob určení množství elektřiny z vysokoúčinné 453 VYHLÁŠKA ze dne 13. prosince 2012 o elektřině z vysokoúčinné kombinované výroby elektřiny a tepla a elektřině z druhotných zdrojů Ministerstvo průmyslu a obchodu stanoví podle 53 odst. 1 písm. g) a

Více

Expert na zelenou energii

Expert na zelenou energii Expert na zelenou energii Člen podnikatelské skupiny LUKA & BRAMER GROUP se sídlem v Brně Zaměřená na: dodávku technologií pro využití a zpracování odpadů dodávku a servis technologických celků a zařízení

Více

Bioplyn - hořlavý a energeticky bohatý plyn

Bioplyn - hořlavý a energeticky bohatý plyn Bioplyn - hořlavý a energeticky bohatý plyn je použitelný ke kogenerační výrobě elektrické energie a tepla je skladovatelný a po úpravě na biomethan může být použit jako zemní plyn biomethan je použitelný

Více

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE

PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/ PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE PROJEKT ŘEMESLO - TRADICE A BUDOUCNOST Číslo projektu: CZ.1.07/1.1.38/02.0010 PŘEDMĚT VYUŽITÍ ELEKTRICKÉ ENERGIE Obor: Ročník: Zpracoval: Elektrikář - silnoproud Třetí Bc. Miroslav Navrátil PROJEKT ŘEMESLO

Více

DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM)

DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM) DÁLKOVÉ VYTÁPĚNÍ (DISTRICT HEATING, CZT CENTRALIZOVAN ZÁSOBOVÁNÍ TEPLEM) 125TBA1 - prof. Karel Kabele 160 Zdroj tepla Distribuční soustava Předávací stanice Otopná soustava Dálkové vytápění Zdroj tepla

Více

Termomechanika 5. přednáška Michal Hoznedl

Termomechanika 5. přednáška Michal Hoznedl Termomechanika 5. přednáška Michal Hoznedl Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autory s využitím citovaných zdrojů

Více

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno

AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, Brno AUTOMATICKÝ KOTEL SE ZÁSOBNÍKEM NA SPALOVÁNÍ BIOMASY O VÝKONU 100 KW Rok vzniku: 2010 Umístěno na: ATOMA tepelná technika, Sladkovského 8, 612 00 Brno Popis Prototyp automatického kotle o výkonu 100 kw

Více

i) parní stroj s rekuperací tepla, j) organický Rankinův cyklus, nebo k) kombinace technologií a zařízení uvedených v písmenech

i) parní stroj s rekuperací tepla, j) organický Rankinův cyklus, nebo k) kombinace technologií a zařízení uvedených v písmenech Strana 4814 Sbírka zákonů č. 344 / 2009 344 VYHLÁŠKA ze dne 30. září 2009 o podrobnostech způsobu určení elektřiny z vysokoúčinné kombinované výroby elektřiny a tepla založené na poptávce po užitečném

Více

VUT PE / PW EC Rekuperační jednotky

VUT PE / PW EC Rekuperační jednotky VUT PE EC VUT 50 PE EC VUT PE EC VUT PE EC VUT 000 PE EC VUT PW EC Osazeno VUT PW EC VUT PW EC VUT 000 PW EC motory motory Podstropní rekuperační jednotka s účinností rekuperace až 90%, elektrickým ohřívačem

Více

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy

Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy Energetické zhodnocení komunálního odpadu, plastů, kalů ČOV, kyselých kalů, gudrónov, gumy a biomasy obsah Prezentace cíl společnosti Odpadní komodity a jejich složení Nakládání s komunálním odpadem Thermo-katalitická

Více

Konstrukce drážních motorů

Konstrukce drážních motorů Konstrukce drážních motorů Vodní okruhy spalovacího motoru ( objem vody cca 500 l ) 1. Popis hlavního okruhu V hlavním vodním okruhu je ochlazována voda kterou je chlazen spalovací motor a pláště turbodmychadel.

Více

Plynové kotle. www.viadrus.cz

Plynové kotle. www.viadrus.cz Plynové kotle www.viadrus.cz Plynové kotle G36 stacionární samotížný plynový kotel G42 (ECO) stacionární plynový nízkoteplotní kotel vysoká provozní spolehlivost a dlouhá životnost litinového tělesa vysoká

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KOGENERACE BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KOGENERACE BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE KOGENERACE COGENERATION BAKALÁŘSKÁ PRÁCE BACHELOR'S

Více

OUTdoor MGM 400 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2. V kontejenru. Typový list kogenerační jednotky s plynovým motorem MAN

OUTdoor MGM 400 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2. V kontejenru. Typový list kogenerační jednotky s plynovým motorem MAN Typový list kogenerační jednotky s plynovým motorem MAN V kontejenru OUTdoor MGM 400 Zemní plyn - emise NOx < 500 mg/m3 @ 5%O2 Specifikace dodávky Technické parametry Motor a generátor Řídící systém Bilance

Více

Filtry Vstupní a výstupní G4 vestavěné filtry zajišťují filtraci sání a odtahu vzduchu. U některých jednotek lze použít vstupní filtr F7.

Filtry Vstupní a výstupní G4 vestavěné filtry zajišťují filtraci sání a odtahu vzduchu. U některých jednotek lze použít vstupní filtr F7. Rekuperační jednotky VUT PE EC VUT PW EC Energeticky úsporné podstropní rekuperační jednotky s kapacitou až 4000 m 3 /h(vut PE EC) a 3800 m 3 /h(vut PW EC) a účinností rekuperace až 90 % v tepelně a zvukově

Více

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov

Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov Tematické okruhy z předmětu Vytápění a vzduchotechnika obor Technická zařízení budov 1. Klimatické poměry a prvky (přehled prvků a jejich význam z hlediska návrhu a provozu otopných systémů) a. Tepelná

Více

Tradice. Motory TEDOM

Tradice. Motory TEDOM motory Tradice Historie výroby motorů TEDOM navazuje na bohatou tradici výroby automobilů v Libereckém kraji, která se datuje již od roku 1906. V roce 1953 pak byla založena společnost LIAZ - Liberecké

Více

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D.

ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE. Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. ODBORNÉ VZDĚLÁVÁNÍ ÚŘEDNÍKŮ PRO VÝKON STÁTNÍ SPRÁVY OCHRANY OVZDUŠÍ V ČESKÉ REPUBLICE Spalování paliv - Kotle Ing. Jan Andreovský Ph.D. Kotle Emisní zátěž Praktický příklad porovnání emisní zátěže a dalších

Více

Obnovitelné zdroje energie Budovy a energie

Obnovitelné zdroje energie Budovy a energie ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Obnovitelné zdroje energie Budovy a energie doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu. M.Kabrhel 1 Typy tepelných

Více

Průmyslové pístové kompresory RL - RH - RK

Průmyslové pístové kompresory RL - RH - RK Ing.Zdeněk Štuksa Konstrukce a výroba jednoúčelových strojů a automatizační techniky www.ingsuksa.cz Průmyslové pístové kompresory RL RH RK SPOLEHLIVÁECHNOLOGIE RL RH RK Kompresor přímo spojený s motorem

Více

ASK AČR Registrační list motoru

ASK AČR Registrační list motoru ASK AČR Registrační list motoru Registrační list č.: M/01/08 Platné od: 01.01.2008 Platné do: 31.12.2010 1. Všeobecné 1.1 Výrobce: IAME spa - ZINGONIA (ITALY) 1.2 Obchodní označení -(Typ/model): PARILLA

Více

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění prostorů. Základní pojmy

ČVUT v Praze Fakulta stavební Katedra technických zařízení budov. Vytápění prostorů. Základní pojmy ČVUT v Praze Fakulta stavební Katedra technických zařízení budov Vytápění prostorů Základní pojmy Energonositel UHLÍ, PLYN, ELEKTŘINA, SLUNEČNÍ ZÁŘENÍ hmota nebo jev, které mohou být použity k výrobě mechanické

Více

Hodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET

Hodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET 1/54 Hodnocení energetické náročnosti z pohledu primární energie - souvislosti s KVET Tomáš Matuška Ústav techniky prostředí, Fakulta strojní ČVUT v Praze Hodnocení energetické náročnosti budov 2/54 potřeby

Více

Palivové články. Obsah 1 Seznam zkratek... 3 Úvod... 3

Palivové články. Obsah 1 Seznam zkratek... 3 Úvod... 3 Palivové články Obsah 1 Seznam zkratek... 3 Úvod... 3 8.1 Historie a blízká budoucnost 3 8.2 Základní princip a konstrukce palivových článků... 5 8.2.1 Rozdělení palivových článků.. 8 8.2.2 Aplikace, výhody

Více

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 9. Vysoká škola technická a ekonomická V Českých Budějovicích

ENS. Nízkoenergetické a pasivní stavby. Přednáška č. 9. Vysoká škola technická a ekonomická V Českých Budějovicích Vysoká škola technická a ekonomická V Českých Budějovicích ENS Nízkoenergetické a pasivní stavby Přednáška č. 9 Přednášky: Ing. Michal Kraus, Ph.D. Cvičení: Ing. Michal Kraus, Ph.D. Garant: Ing. Michal

Více

Hybridní pohony. Měniče a nosiče energie. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha

Hybridní pohony. Měniče a nosiče energie. Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha Hybridní pohony Měniče a nosiče energie Doc. Ing. Pavel Mindl, CSc. ČVUT FEL Praha 1 Hybridní pohony Obsah Měniče energie pracující na principu Fyzikální princip Pracovní média Účinnost přeměny energie

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE OPTIMALIZACE ENERGETICKÉHO ZÁSOBOVÁNÍ FSI

Více

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3

(mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 zapis_spalovaci 108/2012 STR Gc 1 z 5 Spalovací Mění #1 energii spalovaného paliva na #2 (mechanickou energii) působením na píst, lopatky turbíny nebo využitím reaktivní síly Používají se jako #3 dopravních

Více