Cherenkov counters. 1. Principle. 2. Radiators. 3. Threshold counters. 4. Differential counters. 5. RICH - Ring Image Cherenkov

Rozměr: px
Začít zobrazení ze stránky:

Download "Cherenkov counters. 1. Principle. 2. Radiators. 3. Threshold counters. 4. Differential counters. 5. RICH - Ring Image Cherenkov"

Transkript

1 Cherenkov counters 1. Principle 2. Radiators 3. Threshold counters 4. Differential counters 5. RICH - Ring Image Cherenkov 6. Application of Cherenkov counters: experiments DIRAC, DELPHI, Super Kamiokande, IceCube, MAGIC, Pierre Auger Observatory 1

2 1. Principle - particle identification, i.e. determination of particle types wrt. particle mass - measurement energy e.g. lead glass calorimeters 2

3 Princip: částice excituje atomy v prostředí, které se polarizují, tj vznikají dipóly a časově proměnné pole a tím vzniká elektromagnetické záření v < c/n vzniká symetrické pole, dipólová pole všech dipólů se vyruší v > c/n zbytková asymetrie, zbytkový dipólový moment vede k vyzařování v < c/n v > c/n 3

4 Cherenkov light in time t 2 n refractive index 1 in time t tc/n θ βct t 1 t 2 t 3 t 2 - t 1 = t 3 - t 2 t = t 3 - t 1 βn 1 tj. v c/n 4

5 Množství energie emitované na jednotce délky v jednotkovém intervalu frekvencí pro částici o náboji z r ω = 2πf = 2π/T= 2π c/λ Pro z=1: energy emitted per unit interval of the distance x and per unit interval of wave length λ r je poloměr elektronu electron radius Počet emitovaných fotonů r = e 2 /(4π ε 0 m e c 2 ) α = e 2 / (4π ε 0 ħc) Number of emitted photons 1 λ 2 n = n(λ) sin 2 θ 5

6 Celkový počet fotonů emitovaných na jednotce délky Total number of photons emitted per length unit Ex. Př. λ roentgen region n(λ) 1 Čerenkovské záření nemůže být emitováno λ < > nm - ideální pro fotokatodu z SbCs de/dx = 1180 sin 2 θ [ ev/cm ], dn/dx= 390 sin 2 θ [ N γ / cm ] β=1, radiator water n=1.33, Nechť β=1, prostředí voda n=1.33 => θ=41.2 o Cherenkov rad. cannot be emitted de/dx 513 ev/cm dn/dx 170 N γ /cm << než ionizační ztráty (de/dx) ion << světelný výstup ze scintilátoru, (100x ) light output from a scintillator 6

7 Cherenkov counters are used mainly for the particle identification, i.e. for the determination of particle masses Používají se hlavně pro identifikaci částic, tj. pro stanovení hmotnosti částic Hybnost se určí např. v dráhovém detektoru β se určí v čerenkovském počítači momentum measured in a tracker β measured in a Cherenkov counter counter types: Typy počítačů: threshold, differential prahové, diferenciální DISC, RICH β t c Threshold speed, threshold momentum prahová hybnost threshold momentum Voda n=1.33 Plynný vodík n= Gasseous H e - π protony 0.63 MeV MeV GeV 62.9 MeV 17.2 GeV GeV 7

8 2. Radiators kapalné n ~ 1 3, liquid plynné n-1 ~ 10-3 až 10-5 gaseous Si-aerogel N(SiO 2 ) + 2N (H 2 O) n ~1.025 až Transparentní, nesmí produkovat scintilační záření transparent, no scintillation light produced Malá hustota, malé Z, ionizační ztráty co nejmenší low density, small Z, small ionization losses n (radiator)~ n(oil) ~ n(window of photomultiplayer) úhel dopadu na fotokatodu ~ 30 o => 50% světla se odrazí Počet fotoelektronů z fotonásobiče na jednotku délky radiátoru: ε c účinnost sběru fotonů k fotokatodě, S (λ) odezva fotonásobiče efficiency of photon collection to a photocathode, photomultiplier response N e = N 0 L sin 2 θ N 0 obsahuje všechny účinnosti a konstanty, L délka radiátoru contains all other efficiencies and constants, L radiator length Number of photoelectron from a PM per unit length of a radiator

9 Gasseous radiators používají se hlavně pro částice s β 0.99 used mainly for particles with β 0.99 Index lomu : Refract. index n 1 => n 1 = K M / ρ M= V ρ, V volume, ρ density, K koeficient PV= RT, P pressure, T temperature, M/ρ = RT/P, => n-1 = (n 0-1) P/P 0 P 0, T 0 reference pressure and temperature Položíme η=n-1, potom => η = η 0 P/P 0 9

10 3. Prahové počítače Threshold counters Particle momenta are known, all particle with p > p t produced Ch. light 10

11 threshold counters with gaseous radiators express sin θ as a function of P: sin 2 θ = 1 1/(β 2 n 2 ) Define k= (n 0-1)/ P 0, n = 1 + kp i.e. for pressure P increases threshold p t decreases Pressure increases => higher intensity of Cherenkov photons 11

12 i) momentum p is fixed, we want to distinguish 2 different particles Vyjádřit počet čerenkovských fotonů N, resp. počet fototoelektronů N e jako funkci hmotností dvou částic, které mají stejnou hybnost express N,resp. number of photoelectrons N e as a funtion of particle masses ii) Detection efficiency, particle mass is fixed Vyjádřit detekční účinnost jako funkci hybnosti částice p a prahové hybnosti p t express the efficiency as a function of p a p t iii) Resolution at the threshold, Vyjádřit N e jako funkci rozlišení Δβ express N e as a function of the resolution Δβ iv) Influence of δ electrons, particle mass is fixed 12

13 i) Aby částice 1 emitovala čerenkovské záření musí m 1 < m 2. Nechť emituje fotony v intervalu ( λ 1, λ 2 ). Potom počet čerenkovských fotonů je Vyjádříme dn/dx jako funkci hmotností částic Např. pro vlnové délky mezi 400 nm a 700 nm je dn/dx = 490 sin 2 θ 1 13

14 Při velkých rychlostech je β 1, tj. P = γβmc γmc, a dále při zanedbání hmotností E pc.potom Protože p 1 = p 2 = p, dostaneme Počet fotoelektronů z čerenkovského záření radiátoru o délce L N e ε q ( λ) L ε q kvantová účinnost fotokatody Požadujeme-li N e, stanovíme minimální délku L a rovněž index lomu podle Masses: electron 0.5 MeV proton 935 MeV γ 2 2 n = mion 100 MeV kaon ~500 MeV γ pion ~ 150 MeV Př. Protony vs mezony K, hybnost 10 GeV, požadujeme N e =10, ε q = 0.25 protony na prahu, potom L=12.8 cm, n=

15 i) Distinguish two particles, masses m 1 and m 2, they have the same momenta, particle 2 is at threshold Particle 1 emits Cher. light λ within λ 1 and λ 2 for 400nm 700 nm Express dn/dx as a function of particle masses 1 15

16 at high speed β 1 P = γβmc γmc, E= m γ c 2 neglect masses E pc p 1 = p 2 = p Number of phototelectrons from a radiator of the length L quantum efficiency requesting a given N e L can be obtained, and n is given by Masses: electron 0.5 MeV mion 100 MeV pion ~ 150 MeV proton 935 MeV kaon ~500 MeV Ex. Protons vs K mesons, p=10 GeV, fixed N e =10, ε q = 0.25 protons at threshold L=12.8 cm, n=1.005 n = γ 2 2 γ

17 ii) Detekční účinnost v důsledku fluktuacích fotoelektronů částice o hmotnosti m a hybnosti p, prahová hybnost p t detection efficiency due to the fluctuation of photoelectrons ε = 1 - Pr(0, N e ), Pr je pravděpodobnost, že se na fotokatodě nevytvoří probability, that no electron is created at the photocat. žádný fotoelektron, N e je střední počet fotoelektronů Poissonovo rozdělení Pr(n, n) = e n n! n n n N e Pr(0, N e ) = e N e Vyjádříme N e jako funkci hybnosti p pro fixní hmotnost m express N e as a function of p for fixed value of mass m N e = N 0 L ( 1 β t 2 β 2 ) = N 0 L β t 2 [ 1 β t 2-1 β 2 ] = N 0 L β t 2 [ 1 γ t 2 β t 2-1 γ 2 β 2 ] βγ = p/mc => N e = N 0 L β t 2 c 2 m 2 [ 1 p t 2-1 p 2 ] Účinnost : ε = 1 - e N e 17

18 iii) Rozlišení na prahu resolution at threshold N e = N 0 L ( 1 β t 2 )= N β 2 0 L β2 2 β t β 2 Nechť rozlišení v β je Δβ. Potom na prahu β = β t + Δβ, zanedbáme (Δβ) 2 suppose resolution of β is Δβ β = β t + Δβ, neglect (Δβ) 2 N e = N 0 L 2 β β t +2 β => β β t = N e 2 N 0 L N e Známe počet fotoelektronů N e, známe L dostaneme rozlišení 18

19 iv) Influence of δ electrons, particle mass is fixed 19

20 Použití prahových detektorů hlavně k identifikace částic v primárních svazcích, Application of threshold detectors for the identification of particles in particle beams, particle momenta are the same are known with high precession, example: π-meson: koincidence C1 C2 C3 K-meson: C1 C2 (anti C3) proton: C1 (anti C2) (anti C3) 20

21 4. Differential Cherenkov counter, DISC Measurement of β i.e. of the angle θ Fofonásobič PM Částice particle θ f r Zrcadlo mirror diaphragm Pro malá r: tan θ r/f for small r: r = f tan θ rozlišení: Δr = f Δθ/ cos 2 θ resolution: Δθ = cos 2 θ Δr/f Vliv disperse: n=n(λ), cos θ = 1/(nβ) dispersion : d(cosθ) dθ = -dn/(β n 2 ) Δθ disp = Δn / (n tan θ ) 21

22 Schéma diferenciálního čerenkovského počítače Sketch of a differential Cherenkov counter 22

23 Diferenciální počítač využívající lomu světla. DICS using the refraction Pro určitý mezní úhel θ k dojde k totálnímu odrazu For an angle θ k total internal reflection.měří se úhlový interval od nejnižšího úhlu θ k θ k Measurement of θ between θ min and θ k Critical angle : law of refraction For θ > θ k total refraction, no light enter air light guide Cherenkov light for θ k : cos θ k = 1/(n β k ) = β k Resolution: Δβ/β up to 10 7 separation π/kaons up to 100 GeV J. Žáček 23

24 5. Ring Image Cherenkov (RICH) počítač Čerenkovské fotony zrcadlo Primární svazek Detektor fotonů 24

25 detector mirror Emitted particle target In the detector - Cherenkov rings radius r r f tan θ Measurement: radius r Resolution of mass m: depends on the resolution of p and of γ i.e of β = 1/(n cosθ ) 25

26 Small angles: Θ= r/f = 2r/(R) (Δm) 2 = ( m p )2 (Δp) 2 + ( m γ )2 (Δγ) 2 Δm m =? 26

27 RICH with 2 radiators liquid radiator gaseous radiator Čerenkovské kroužky Cherenkov rings 27

28 Detektor čerenkovského záření a detector of Cherenkov light tří souřadnícová driftová komora - three coordinate drift chamber fotony jsou konvertovány na elektrony photons are converted to electrons přes fotoefekt via photoefect (příměs plynu s velkým Z) (gas with high Z) Měří se doba mezi vznikem elektronů a jejich dopadem na anodu, což dává jednu souřadnici Pořadové číslo anodového drátu další udává souřadnici Dělení náboje na anodovém drátu dává souřadnici ve směru drátu 28

29 29

30 Čerenkovský kroužek z jednoho případu v interakci těžkého iontu Superpozice čerenkovských kroužků ze stovky případů 30

31 Rekonstrukce čerenkovských kroužků Čerenkovský kroužek od jednoho elektronu 31

32 Rozdělení poloměrů čerenkovských kroužků 32

33 Experiment DIRAC, CERN 33

34 Threshold Cerenkov 34

35 35

36 RIC aparatuře DELPHI, která byla umístěna na urychlovači LEP v CERN, kde se proti s y s pozitrony Collider subjaderné LEP (electron fyziky 36

37 Využití čerenkovského záření v detektoru 37

38 Čerenkovské záření v IceCube Neutrino Observatory 38

39 J. Žáček Experimentální metody jaderné a 39

40 40

41 Čerenkovské záření produkované MAGIC experiment kosmickým zářením v atmosféře Cherenkov radiation produced by cosmic gammas via electromagnetic showers in the atmosphere, La Palma, a Canary Island, energy of γ 50 GeV - 30 TeV 41

42 Auger Observatory n the vast plain known as the Pampa Amarilla (yellow prairie) in western Argentina detection of cosmic rays of highest energies which interact with atmospheric nuclei cosmic ray showers (hadro nic and electromagnetic) The resulting particle cascade, called "an extensive air shower, arrives at ground level with billions of energetic particles extending over an area as large as 10 square miles. The Auger Observatory is a "hybrid detector," employing two independent methods to detect and study high-energy cosmic rays. One technique detects high energy particles through their interaction with water placed in surface detector tanks Cherenkov light - the 1,600 water tanks, each 3,000-gallon (12,000 liter) tank, eparated from each of its neighbors by 1.5 kilometers. It covers an area of 3000 square kilometers Cherenkov light is measured by photomultiplier tubes mounted on the tanks. energy of primary cosmic particles sum of energies of energies of secondary particles penetrating water tanks sum of energies of Cherenkov light 42

43 43

44 Přechodové záření transition radiation Transition radiation detectors are used for the identification of electrons from hadrons in the momenta range ( ) GeV TR is emitted always if a particle crosses boundary between different media 44

45 45

46 46

47 TR radiator Žádný radiátor 47

48 Detektor : Xe proportional chamber, radiator: Li foils particle momenta 1.4 GeV DUMMY= no radiator 48

49 Background from primary particles which ionize the chamber gas Problem: δ electrons created by primary particles in the chamber gas mean ionization energy losses of primary particles Background reduction: - discriminators, i.e. detection of charges above Q threshold - search for anode wire clusters, a cluster several neighbouring wires with signals δ electrons smaller clusters ~2 wires cuts on the number of wires > 2 better separation of pions and electrons e/π separation up to 10 3 electron identification efficiency ~95 % 49

50 ATLAS TR tracker, LHC CERN Straw Xe-based mix Cross section view 4mm electrons 15 x15μm polyethylene foils Gas mixture : 70% Xe + 20% CF % CO 2 straw tube with 4mm diameter with a 0.03 mm diameter gold-plated tungsten wire in the center straws in Barrel, each straw 144 cm long, ends of straws are read out separately straws in both endcaps, each straw 39 cm long Precision measurement of ~ 0.16 mm 50

51 Přechodové záření 51

52 52

53 50 % energie je v oblasti energií fotonů nutný velký počet přechodů 53

54 úhel emise fotonů 1/γ 54

55 55

56 Klustr několik sousedících anodových drátu, které dají signál 56

57 57

58 Detekce přechodových fotonů v mnohodrátové komoře rozdělení registrovaného náboje od ionizačních elektronů a δ elektronů 58

59 energetické spektrum přechodového záření 59

60 Particle identification i. e. identification of particle masses 1. Cherenkov counters 2. Transition radiation counters 3. Time of flight method 4. Multiple measurement of ionization losses 60

61 3. Time of flight method detector particle Particle momentum is known Mass m? From the time of flight PM Express Δt as a function of particle masses Taylor expansion of the fraction 1 1+x = 1 x + x2 +.., x= - ( m 1 c 2 E 1 ) 2 61

62 c 2 L c Ex. Distinguish 2 particles if Δt = 4 σ t, (σ t time resolution of time measurement) σ t, = 300 ps. For p=1 GeV, pions vs kaons L=3 m needed 62

63 4. Multiple measurement of the ionization for particle with relativistic increase of de/dx measurement: in a drift chamber with many anode wires i.e. measurement of charges 63

64 64

65 Problem: Landau fluctuation Measurement of energy losses to an upper limit δ electrons are excluded From this measurement calculate mean losses Truncated mean e.g. from 40% of all possible measurements 65

66 Two methods: i) many measurements of de/dx, e.g. 100 times, resolution: for π mesons, K mesons, protons at 50 GeV Pressure increases resolution improves, but relativistic effect smaller ii) the second method: Landau distribution is the probability distribution - probability that a pion create a signal with the value x i, in the i th - measurement - Total probability after N measurements of a pion - Total probability after N measurements of a kaon Probability of the identification of a pion 66

67 x i ΔE i 5 measurement of energy losses P 1 pion P 2 (kaon) P (pion) 1 P (kaon) 1 67

68 Identifikace částic 68

69 69

70 70

71 71

72 72

73 73

74 74

75 75

76 76

77 77

78 78

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

piony miony neutrina Elektrony,

piony miony neutrina Elektrony, piony miony neutrina Elektrony, In the energy range of 1012-1015 ev (electron-volts*), cosmic rays arriving at the edge of the Earth's atmosphere have been measured to consist of: ~ 50% protons ~ 25% alpha

Více

Kalorimetry calorimeters

Kalorimetry calorimeters Kalorimetry calorimeters Measurement of energies of particles at higher energies, when a cascade process (i.e. a shower) is initiated 1. Proces energetických ztrát je statistický DE/E ~ 1/ E process of

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS)

Scintilace. Co zachytí oko? Pokud během 1/10 s nejméně 15 fotonů. Jedna z nejstarších detekčních metod (Rutherford a ZnS) Scintilace Jedna z nejstarších detekčních metod (Rutherford a ZnS) scintilace -puls světla krátce po průchodu částice fluorescence světelný puls krátce (< 10 ns) po absorpci γ kvanta fosforescence emise

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Global Properties of A-A Collisions II

Global Properties of A-A Collisions II Satz Lecture Notes Global Properties of A-A Collisions II M. Kliemant, R. Sahoo, T. Schuster, R. Stock 18.10.2013 RQGP: Vojtěch Pacík & Olga Rusňáková Osnova Úvod Rozdělení příčné energie E T Prostorová

Více

Theory Česky (Czech Republic)

Theory Česky (Czech Republic) Q3-1 Velký hadronový urychlovač (10 bodů) Než se do toho pustíte, přečtěte si prosím obecné pokyny v oddělené obálce. V této úloze se budeme bavit o fyzice částicového urychlovače LHC (Large Hadron Collider

Více

Mezony π, mezony K, mezony η, η, bosony 1

Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, mezony K, mezony η, η, bosony 1 Mezony π, (piony) a) Nabité piony hmotnost, rozpady, doba života, spin, parita, nezachování parity v jejich rozpadech b) Neutrální piony hmotnost, rozpady, doba

Více

Experimentální metody ve fyzice vysokých energií Alice Valkárová

Experimentální metody ve fyzice vysokých energií Alice Valkárová Experimentální metody ve fyzice vysokých energií Alice Valkárová alice@ipnp.troja.mff.cuni.cz 10/20/2004 1 Literatura o detektorech částic Knihy: C.Grupen, Particle detectors,cambridge University Press,1996

Více

Prověřování Standardního modelu

Prověřování Standardního modelu Prověřování Standardního modelu 1) QCD hluboce nepružný rozptyl, elektron (mion) proton, strukturní funkce fotoprodukce γ proton produkce gluonů v e + e produkce jetů, hadronů 2) Elektroslabá torie interference

Více

Studium proton-protonových srážek na RHIC

Studium proton-protonových srážek na RHIC Studium proton-protonových srážek na RHIC diplomová práce Jan Kapitán vedoucí diplomové práce: Michal Šumbera, CSc. Ústav jaderné fyziky AVČR, & MFF UK 6.12.2006 / Řež J. Kapitán (ÚJF AVČR) PP collisions

Více

Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos

Spectroscopy. Radiation and Matter Spectroscopic Methods. Luís Santos Spectroscopy Radiation and Matter Spectroscopic Methods Spectroscopy Spectroscopy studies the way electromagnetic radiation (light) interacts with matter as a function of frequency, thus, it studies the

Více

Semiconductor (solid state) detectors

Semiconductor (solid state) detectors 1. Introduction Semiconductor (solid state) 2. Principle of semiconductors detectors 3. Silicon detectors, p-n junction, depleted region, induced charge 4. energy measurement, germanium detectors 5. position

Více

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků

zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků detektory statistické metody Skupina částicové fyziky SLO/UPOL zve studenty 1, 2, 3, 4, 5, 6, 7, (tedy všech) ročníků na stručnou prezentaci výsledků své práce a nabídku neuronové sítě statistické metody

Více

Kosmické záření a jeho detekce stanicí CZELTA

Kosmické záření a jeho detekce stanicí CZELTA Kosmické záření a jeho detekce stanicí CZELTA Jiří Slabý slabyji2@fjfi.cvut.cz 30.10.2008, Fyzikální seminář, Fakulta jaderná a fyzikálně inženýrská Českého vysokého učení technického v Praze Co nás čeká

Více

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä

Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI. Jiri Kral University of Jyväskylä Elektromagnetická kalorimetrie a rekonstrukce π0 na ALICI Jiri Kral University of Jyväskylä Zimní škola EJF 2013 Kalorimetrie Hardware IJZ, věže detektoru Elektronizace a on-line kalibrace Digitalizace

Více

Jak můžeme vidět částice?

Jak můžeme vidět částice? Jak můžeme vidět částice? J. Žáček Ústav částicové a jaderné fyziky, Matematicko-fyzikální fakulta Karlova Univerzita v Praze H1 po 20. rokoch, Prírodovedecká fakulta UPJŠ v Košiciach Proč chceme částice

Více

Pozitron teoretická předpověď

Pozitron teoretická předpověď Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul

Více

Detekce a spektrometrie neutronů

Detekce a spektrometrie neutronů Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce

Více

Compression of a Dictionary

Compression of a Dictionary Compression of a Dictionary Jan Lánský, Michal Žemlička zizelevak@matfyz.cz michal.zemlicka@mff.cuni.cz Dept. of Software Engineering Faculty of Mathematics and Physics Charles University Synopsis Introduction

Více

Senzory ionizujícího záření

Senzory ionizujícího záření Senzory ionizujícího záření Senzory ionizujícího záření dozimetrie α = β = He e 2+, e + γ, n X... elmag aktivita [Bq] (Becquerel) A = A e 0 λt λ...rozpadová konstanta dávka [Gy] (Gray) = [J/kg] A = 0.5

Více

Radiova meteoricka detekc nı stanice RMDS01A

Radiova meteoricka detekc nı stanice RMDS01A Radiova meteoricka detekc nı stanice RMDS01A Jakub Ka kona, kaklik@mlab.cz 15. u nora 2014 Abstrakt Konstrukce za kladnı ho softwarove definovane ho pr ijı macı ho syste mu pro detekci meteoru. 1 Obsah

Více

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK. Mathematics. Teacher: Student:

Gymnázium, Brno, Slovanské nám. 7 WORKBOOK.   Mathematics. Teacher: Student: WORKBOOK Subject: Teacher: Student: Mathematics.... School year:../ Conic section The conic sections are the nondegenerate curves generated by the intersections of a plane with one or two nappes of a cone.

Více

STRUCTURE AND PROPERTIES OF LIQUIDS

STRUCTURE AND PROPERTIES OF LIQUIDS STUCTUE AND POPETIES O LIQUIDS. Surface tension a) phenomenon The surface of a iquid behaves ike a stretched eastic membrane (proof pond skater, sma drops spheres Expanation: r range of attraction r nm,

Více

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace)

Referát z atomové a jaderné fyziky. Detekce ionizujícího záření (principy, technická realizace) Referát z atomové a jaderné fyziky Detekce ionizujícího záření (principy, technická realizace) Měřicí a výpočetní technika Šimek Pavel 5.7. 2002 Při všech aplikacích ionizujícího záření je informace o

Více

Charakterizace koloidních disperzí. Pavel Matějka

Charakterizace koloidních disperzí. Pavel Matějka Charakterizace koloidních disperzí Pavel Matějka Charakterizace koloidních disperzí 1. Úvod koloidní disperze 2. Spektroskopie kvazielastického rozptylu 1. Princip metody 2. Instrumentace 3. Příklady použití

Více

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA

CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA CHAPTER 5 MODIFIED MINKOWSKI FRACTAL ANTENNA &KDSWHUSUHVHQWVWKHGHVLJQDQGIDEULFDW LRQRIPRGLILHG0LQNRZVNLIUDFWDODQWHQQD IRUZLUHOHVVFRPPXQLFDWLRQ7KHVLPXODWHG DQGPHDVXUHGUHVXOWVRIWKLVDQWHQQDDUH DOVRSUHVHQWHG

Více

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů.

Klepnutím lze upravit styl předlohy. nadpisů. nadpisů. 1/ 13 Klepnutím lze upravit styl předlohy Klepnutím lze upravit styl předlohy www.splab.cz Soft biometric traits in de identification process Hair Jiri Prinosil Jiri Mekyska Zdenek Smekal 2/ 13 Klepnutím

Více

Transportation Problem

Transportation Problem Transportation Problem ١ C H A P T E R 7 Transportation Problem The transportation problem seeks to minimize the total shipping costs of transporting goods from m origins (each with a supply s i ) to n

Více

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT

Princip metody Transport částic Monte Carlo v praxi. Metoda Monte Carlo. pro transport částic. Václav Hanus. Koncepce informatické fyziky, FJFI ČVUT pro transport částic Koncepce informatické fyziky, FJFI ČVUT Obsah Princip metody 1 Princip metody Náhodná procházka 2 3 Kódy pro MC Příklady použití Princip metody Náhodná procházka Příroda má náhodný

Více

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION

CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION UHLÍKATÉ ČÁSTICE V OVZDUŠÍ MORAVSKO- SLEZSKÉHO KRAJE CARBONACEOUS PARTICLES IN THE AIR MORAVIAN-SILESIAN REGION Ing. MAREK KUCBEL Ing. Barbora SÝKOROVÁ, prof. Ing. Helena RACLAVSKÁ, CSc. Aim of this work

Více

Gas detectors. 2. Single wire proportional counter jednodrátové proporcionální počítače

Gas detectors. 2. Single wire proportional counter jednodrátové proporcionální počítače Gas detectors 1. Ionization of gases 2. Single wire proportional counter jednodrátové proporcionální počítače 3. Multiwire proportional chambers mnohodrátové proporcionální komory 4. Drift chambers driftové

Více

Kalorimetry 10/29/2004 1

Kalorimetry 10/29/2004 1 Kalorimetry měření energie s pomocí totální absorpce kombinované s prostorovou rekonstrukcí kalorimetrie je destruktivní metoda odezva detektoru E kalorimetrie funguje pro nabité částice (e+, e- a hadrony)

Více

:= = := :=.. := := := := ρ := := α := π α = α = := = :=

:= = := :=.. := := := := ρ := := α := π α = α = := = := := = := :=.. := := := := ρ := := α := π α = α = := = := := α := α := = := α := := α = = ρ ρ := := := = := = := := := + + := + + := + := := := := + + := + + := + = = = :=.. := η := η := := π = :=.. :=,

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha.

Detektory. požadovaná informace o částici / záření. proudový puls p(t) energie. čas příletu. výstupní signál detektoru. poloha. Detektory požadovaná informace o částici / záření energie čas příletu poloha typ citlivost detektoru výstupní signál detektoru proudový puls p(t) E Q p t dt účinný průřez objem vnitřní šum vstupní okno

Více

Podivnosti na LHC. Abstrakt

Podivnosti na LHC. Abstrakt Podivnosti na LHC O. Havelka 1, J. Jerhot 2, P. Smísitel 3, L. Vozdecký 4 1 Gymnýzium Trutnov, ondra10ax@centrum.cz 2 SPŠ Strojní a elektrotechnická, České Budějovice, jerrydog@seznam.cz 3 Gymnázium Vyškov,

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Efekty pozadí v měření oscilací neutrin Experiment Daya Bay. Viktor Pěč, ÚČJF MFF

Efekty pozadí v měření oscilací neutrin Experiment Daya Bay. Viktor Pěč, ÚČJF MFF Efekty pozadí v měření oscilací neutrin Experiment Daya Bay, ÚČJF MFF Oscilace neutrin Experiment Daya Bay Detekce neutrin Pozadí Simulace záchytu mionů Oscilace neutrin Bruno Pontecorvo Vlastní stav slabé

Více

Observatoř Pierra Augera: gigantický detektor kosmického záření. Michael Prouza Fyzikální ústav

Observatoř Pierra Augera: gigantický detektor kosmického záření. Michael Prouza Fyzikální ústav Observatoř Pierra Augera: gigantický detektor kosmického záření Michael Michael Prouza Prouza Fyzikální Fyzikální ústav ústav AV AV ČR ČR What are ultra-high energy cosmic rays (UHECRs)? UHECRs are particles

Více

Stojaté a částečně stojaté vlny

Stojaté a částečně stojaté vlny Stojaté a částečně stojaté vlny Interference 2 postupných vln Dokonalá stojatá vlna: interference 2 vln stejné amplitudy a antiparalelních vlnových vektorů Problém s radiometrickou definicí intensity pomocí

Více

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová

Air Quality Improvement Plans 2019 update Analytical part. Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová Air Quality Improvement Plans 2019 update Analytical part Ondřej Vlček, Jana Ďoubalová, Zdeňka Chromcová, Hana Škáchová vlcek@chmi.cz Task specification by MoE: What were the reasons of limit exceedances

Více

Krátká teorie. Monochromatická elektromagnetická vlna Intenzita světla Superpozice elektrických polí. Intenzita interferenčního obrazce.

Krátká teorie. Monochromatická elektromagnetická vlna Intenzita světla Superpozice elektrických polí. Intenzita interferenčního obrazce. Interference 1 Krátká teorie Monochromatická elektromagnetická vlna Intenzita světla Superpozice elektrických polí Intenzita interferenčního obrazce 2 ), ( ), ( t r E t r I 2 E r E p I r p r p E E E E

Více

Jana Nováková Proč jet do CERNu? MFF UK

Jana Nováková Proč jet do CERNu? MFF UK Jana Nováková MFF UK Proč jet do CERNu? Plán přednášky 4 krát částice kolem nás intermediální bosony mediální hvězdy hon na Higgsův boson - hit současné fyziky urychlovač není projímadlo detektor není

Více

Entrance test from mathematics for PhD (with answers)

Entrance test from mathematics for PhD (with answers) Entrance test from mathematics for PhD (with answers) 0 0 3 0 Problem 3x dx x + 5x +. 3 ln 3 ln 4. (4x + 9) dx x 5x 3. 3 ln 4 ln 3. (5 x) dx 3x + 5x. 7 ln. 3 (x 4) dx 6x + x. ln 4 ln 3 ln 5. 3 (x 3) dx

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 1 Pracovní úkol 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Litosil - application

Litosil - application Litosil - application The series of Litosil is primarily determined for cut polished floors. The cut polished floors are supplied by some specialized firms which are fitted with the appropriate technical

Více

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič

Více

Vlastnosti nejenergetičtějších částic ve vesmíru

Vlastnosti nejenergetičtějších částic ve vesmíru Vlastnosti nejenergetičtějších částic ve vesmíru Radomír Šmída Fyzikální ústav AV ČR smida@fzu.cz 1/50 Kosmické záření a Astročásticová fyzika 2/50 Objev kosmického záření Zkoumání radioaktivity (1896

Více

Stavba atomů a molekul

Stavba atomů a molekul Stavba atomů a molekul Michal Otyepka V prezentaci jsou použity obrázky z řady zdrojů, které nejsou důsledně citovány, tímto se všem dotčeným omlouvám. Vidět znamená věřit Úvod l cíle seznámit studenty

Více

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru

2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru Pracovní úkol: 1. Seznámit se s interaktivní verzí simulace 2. Prostudovat charakter interakcí různých částic v hadronovém kalorimetru 3. Kvantitativně srovnat energetické ztráty v kalorimetru pro různé

Více

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD.

Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. Životní prostředí pro přírodní vědy RNDr. Pavel PEŠAT, PhD. KAP FP TU Liberec pavel.pesat@tul.cz tel. 3293 Radioaktivita. Přímo a nepřímo ionizující záření. Interakce záření s látkou. Detekce záření, Dávka

Více

Studium produkce jetů v experimentu ALICE na urychlovači LHC

Studium produkce jetů v experimentu ALICE na urychlovači LHC Studium produkce jetů v experimentu ALICE na urychlovači LHC Vít Kučera, Vedoucí práce: RDr. Jana Bielčíková, Ph.D. Matematicko-fyzikální fakulta, Univerzita Karlova v Praze Ústav jaderné fyziky AV ČR,

Více

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení

Transformers. Produkt: Zavádění cizojazyčné terminologie do výuky odborných předmětů a do laboratorních cvičení Název projektu: Automatizace výrobních procesů ve strojírenství a řemeslech Registrační číslo: CZ..07/..30/0.0038 Příjemce: SPŠ strojnická a SOŠ profesora Švejcara Plzeň, Klatovská 09 Tento projekt je

Více

é č í é ě í ž ý í Ú á í ž ý í ý Á í ÁŘ É Á ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é é č á ú í ář é á á ů ě ž é é č é é ě ý ží á ý ý í ář é á ě ž é ří é ď ý é ě í í č í č íčá é

Více

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích

Zhodnocení dozimetrických vlastností MicroDiamond PTW detektoru a jeho využití ve stereotaktických ozařovacích polích Zhodnocení dozimetrických vlastností MicroDiamond PTW 60019 detektoru a jeho využití ve stereotaktických ozařovacích polích T. Veselský 1,2,4, J. Novotný Jr. 1,2,4, V. Paštyková 1,3,4, B. Otáhal 5, L.

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í NUCLEAR PHYSICS I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í 1. Introduction 4 14 17 1 nucleus E. Rutherford, 1914 the first reaction: α N O H 2 7 8 1 nuclear forces = a new kind of very strong

Více

Studium proton-protonových srážek na RHIC

Studium proton-protonových srážek na RHIC Studium proton-protonových srážek na RHIC... referát o diplomové práci Jan Kapitán vedoucí diplomové práce: Michal Šumbera, CSc. Ústav částicové a jaderné fyziky MFF UK, Praha 26.4.2006 / MFF J. Kapitán

Více

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření

Elektromagnetické záření. lineárně polarizované záření. Cirkulárně polarizované záření Elektromagnetické záření lineárně polarizované záření Cirkulárně polarizované záření Levotočivé Pravotočivé 1 Foton Jakékoli elektromagnetické vlnění je kvantováno na fotony, charakterizované: Vlnovou

Více

By David Cameron VE7LTD

By David Cameron VE7LTD By David Cameron VE7LTD Introduction to Speaker RF Cavity Filter Types Why Does a Repeater Need a Duplexer Types of Duplexers Hybrid Pass/Reject Duplexer Detail Finding a Duplexer for Ham Use Questions?

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model

Elementární částice. 1. Leptony 2. Baryony 3. Bosony. 4. Kvarkový model 5. Slabé interakce 6. Partonový model Elementární částice 1. Leptony 2. Baryony 3. Bosony 4. Kvarkový model 5. Slabé interakce 6. Partonový model I.S. Hughes: Elementary Particles M. Leon: Particle Physics W.S.C. Williams Nuclear and Particle

Více

Elektronová mikroanalýza trocha historie

Elektronová mikroanalýza trocha historie Elektronová mikroanalýza trocha historie 1949 - Castaing postavil první mikrosondu s vlnově disperzním spektrometrem a vypracoval teorii 1956 počátek výroby komerčních mikrosond (Cameca) 1965 - počátek

Více

Elektroinstalační lišty a tvarovky. Elektroinstalační lišty / Cable trunkings

Elektroinstalační lišty a tvarovky. Elektroinstalační lišty / Cable trunkings Elektroinstalační lišty a tvarovky Elektroinstalační lišty / Cable trunkings Z důvodu jednodušší instalace jsou lišty na spodní straně opatřeny montážními otvory. Délka 2m. Na přání lze vyrobit v různých

Více

(v zrcadle výtvarné estetiky)

(v zrcadle výtvarné estetiky) Několik vět o nejmenším: kosmickém záření a elementárních částicích (v zrcadle výtvarné estetiky) Jan Hladký, Fyzikální ústav v. v. i., AV ČR Praha. Proč studia částic a KZ provádíme? - základní výzkum

Více

Statický kvarkový model

Statický kvarkový model Statický kvarkový model Supermulltiplet: charakterizován I a hypernábojem Y=B+S Skládání multipletů spinových či izotopických, např. dvě částice se spinem 1/2 Tři částice se spinem 1/2 Kvartet a dva dublety

Více

SPECIAL THEORY OF RELATIVITY

SPECIAL THEORY OF RELATIVITY SPECIAL THEORY OF RELATIVITY 1. Basi information author Albert Einstein phenomena obsered when TWO frames of referene moe relatie to eah other with speed lose to the speed of light 1905 - speial theory

Více

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum

Urychlení KZ. Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Urychlení KZ Obecné principy, Fermiho urychlení, druhý řád, první řád, spektrum Obecné principy Netermální vznik nekompatibilní se spektrem KZ nerealistické teploty E k =3/2 k B T, Univerzalita tvaru spektra

Více

Hmotnostní spektrometrie Mass spectrometry - MS

Hmotnostní spektrometrie Mass spectrometry - MS Hmotnostní spektrometrie Mass spectrometry - MS Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Hmotnostní spektrometrie Mass spectrometry - MS hmotnostní spektroskopie versus hmotnostní

Více

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1

Kalorimetr Tilecal a rekonstrukce signálu. Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetr Tilecal a rekonstrukce signálu Seminář FzÚ, 9.4.2010 Tomáš Davídek, ÚČJF MFF UK 1 Kalorimetry (1) Základní úkoly: identifikace a měření směru a energie elektronů, pozitronů a fotonů (elektromagnetické

Více

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory.

Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích z bublinové komory. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM IV Úloha č.: I Název: Studium relativistických jaderných interakcí. Identifikace částic a určování typu interakce na snímcích

Více

TechoLED H A N D B O O K

TechoLED H A N D B O O K TechoLED HANDBOOK Světelné panely TechoLED Úvod TechoLED LED světelné zdroje jsou moderním a perspektivním zdrojem světla se širokými možnostmi použití. Umožňují plnohodnotnou náhradu žárovek, zářivkových

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

OPVK CZ.1.07/2.2.00/

OPVK CZ.1.07/2.2.00/ 18.2.2013 OPVK CZ.1.07/2.2.00/28.0184 Cvičení z NMR OCH/NMR Mgr. Tomáš Pospíšil, Ph.D. LS 2012/2013 18.2.2013 NMR základní principy NMR Nukleární Magnetická Resonance N - nukleární (studujeme vlastnosti

Více

Kosmické záření a Observatoř Pierra Augera. připravil R. Šmída

Kosmické záření a Observatoř Pierra Augera. připravil R. Šmída Kosmické záření a Observatoř Pierra Augera připravil R. Šmída Astročásticová fyzika Astronomie (makrosvět) Částicová fyzika (mikrosvět) Kosmické záření Objev kosmického záření 1896: Objev radioaktivity

Více

O čem se mluví v CERNu? Martin Rybář

O čem se mluví v CERNu? Martin Rybář O čem se mluví v CERNu? 29.11. 2012 Martin Rybář CERN Evropská organizace pro jaderný výzkum (Conseil Européen pour la recherche nucléaire) Založen roku 1954 ČR součástí od roku 1993 nejrozsáhlejší výzkumné

Více

1. Zadání Pracovní úkol Pomůcky

1. Zadání Pracovní úkol Pomůcky 1. 1. Pracovní úkol 1. Zadání 1. Ověřte měřením, že směry výletu anihilačních fotonů vznikajících po β + rozpadu jader 22 Na svírají úhel 180. 2. Určete pološířku úhlového rozdělení. 3. Vysvětlete tvar

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

Techniky prvkové povrchové analýzy elemental analysis

Techniky prvkové povrchové analýzy elemental analysis Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded

Více

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC

Effect of temperature. transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC Effect of temperature on water vapour transport properties J. FOŘT, Z. PAVLÍK, J. ŽUMÁR,, M. PAVLÍKOVA & R. ČERNÝ Č CTU PRAGUE, CZECH REPUBLIC Outline Introduction motivation, water vapour transport Experimental

Více

Kosmické záření a astročásticová fyzika

Kosmické záření a astročásticová fyzika Kosmické záření a astročásticová fyzika Jan Řídký Fyzikální ústav AV ČR Obsah Kosmické záření a současná fyzika. Historie pozorování kosmického záření. Současné znalosti o kosmickém záření. Jak jej pozorujeme?

Více

Dualismus vln a částic

Dualismus vln a částic Dualismus vln a částic Filip Horák 1, Jan Pecina 2, Jiří Bárdoš 3 1 Mendelovo gymnázium, Opava, Horaksro@seznam.cz 2 Gymnázium Jeseník, pecinajan.jes@mail.com 3 Gymnázium Teplice, jiri.bardos@post.gymtce.cz

Více

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce

Metody využívající rentgenové záření. Rentgenografie, RTG prášková difrakce Metody využívající rentgenové záření Rentgenografie, RTG prášková difrakce 1 Rentgenovo záření 2 Rentgenovo záření X-Ray Elektromagnetické záření Ionizující záření 10 nm 1 pm Využívá se v lékařství a krystalografii.

Více

Image Analysis and MATLAB. Jiří Militky

Image Analysis and MATLAB. Jiří Militky Image Analysis and MATLAB Jiří Militky Basic Matlab commands 0.5 0.8 IMREAD Read image from graphics file IMHIST Display histogram of image data. 0.694 GRAYTHRESH Compute global image threshold using Otsu's

Více

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE

KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE české pracovní lékařství číslo 1 28 Původní práce SUMMARy KULOVÝ STEREOTEPLOMĚR NOVÝ přístroj pro měření a hodnocení NEROVNOMĚRNÉ TEPELNÉ ZÁTĚŽE globe STEREOTHERMOMETER A NEW DEVICE FOR measurement and

Více

Objev gama záření z galaxie NGC 253

Objev gama záření z galaxie NGC 253 Objev gama záření z galaxie NGC 253 Dalibor Nedbal ÚČJF, Kosmické záření (KZ) Otázky Jak vzniká? Kde vzniká? Jak se šíří? Vysvětlení spektra? Paradigma KZ ze supernov (SN) Pokud platí, lze očekávat velké

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

Identifikace částic. Důležitý aspekt pro experimentování ve fyzice vys.energií

Identifikace částic. Důležitý aspekt pro experimentování ve fyzice vys.energií Identifikace částic Důležitý aspekt pro experimentování ve fyzice vys.energií Některé fyzikální veličiny je možné studovat jen s pomocí sofistikované identifikac částic (B- fyzika, CP narušení, řídké exkluzivní

Více

Urychlené částice z pohledu sluneční rentgenové emise Brzdné záření

Urychlené částice z pohledu sluneční rentgenové emise Brzdné záření Urychlené částice z pohledu sluneční rentgenové emise Brzdné záření Jana Kašparová Astronomický ústav AV ČR, Ondřejov kasparov@asu.cas.cz Vybrané kapitoly z astrofyziky, MFF UK, 1. listopadu 2006 Energie

Více

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.

Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011

Laserové technologie v praxi I. Přednáška č.1. Fyzikální princip činnosti laserů. Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 2011 Laserové technologie v praxi I. Přednáška č. Fyzikální princip činnosti laserů Hana Chmelíčková, SLO UP a FZÚ AVČR Olomouc, 0 LASER kvantový generátor světla Fyzikální princip činnosti laserů LASER zkratka

Více

Balmerova série vodíku

Balmerova série vodíku Balmerova série vodíku Josef Navrátil 1, Barbora Pavlíková 2, Pavel Mičulka 3 1 Gymnázium Ivana Olbrachta, pepa.navratil.ez@volny.cz 2 Gymnázium Jeseník, barca@progeo-sys.cz 3 Gymnázium a SOŠ Frýdek Místek,

Více

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška

TEORIE NETKANÝCH TEXTILIÍ. Kapky Kapilární délka. Simulace pomocí Isingova modelu. 7.přednáška Kapky Kapilární délka Simulace pomocí Isingova modelu 7.přednáška Kapaliny vykazují poněkud zvláštní vlastnosti. Mají schopnost porazit gravitaci a vytvořit kapilární mosty, přesouvat se po šikmých rovinách,

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii

Speciální spektrometrické metody. Zpracování signálu ve spektroskopii Speciální spektrometrické metody Zpracování signálu ve spektroskopii detekce slabých signálů synchronní detekce (Lock-in) čítaní fotonů měření časového průběhu signálů metoda fázového posuvu časově korelované

Více

Metody analýzy povrchu

Metody analýzy povrchu Metody analýzy povrchu Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. Povrch pevné látky: Poslední monoatomární vrstva + absorbovaná monovrstva Ovlivňuje fyzikální vlastnosti (ukončení

Více