Materiály pro tkáňové inženýrství
|
|
- Miluše Beránková
- před 6 lety
- Počet zobrazení:
Transkript
1 Materiály pro tkáňové inženýrství (Materiály II) Katedra netkaných textilií Fakulta textilní Technická univerzita v Liberci Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
2 Nanokompozitní materiály Nanokompozity jsou materiály složené ze dvou nebo více různých složek, z nich alespoň jedna se v materiálu vyskytuje ve formě částic o velikostech jednotek až desítek nanometrů. Většinou se jedná o nanočástice aktivní látky (tj. látky se zajímavými magnetickými, elektrickými a jinými vlastnostmi) rovnoměrně rozptýlené v inertní matrici. V našem případě se budeme bavit o nano/mikro částicích inkorporovaných do/mezi nanovlákna. Nano/mikro částice je možné do/mezi vlákna inkorporovat následujícími způsoby 1) Koaxiálním zvlákňováním jako materiál jádra 2) Zvlákňování z polymerní disperze 3) Elektrickým naprašováním 4) Elektrickým sprejováním (nanokapsle, enkapsulace) 5) (Ne)kovalentní vázání na povrch vrstvy
3 Koaxiální zvlákňování Koaxiální zvlákňování je metoda výroby nanovláken typu jádro/plášť. Tato metoda umožňuje zvlákňování materiálů, které jsou běžným způsobem nezvláknitelné. Oba materiály musí být vzájemně nemísitelné. Z toho důvodu je důležité vybrat vhodný plášťový materiál. Výhodou této metody je větší množství materiálu uvnitř vláken oproti zvlákňování z disperze. Nevýhodou je poměrně složitý proces dávkování obou látek. Použití Cílená doprava léčiv s řízeným uvolňováním Inteligentní scaffoldy obsahující podpůrné látky (růstové faktory, lipozomy a pod)
4 Jehlové zvlákňování 10% PCL - plášť, 9% PVA- jádro
5 Zvlákňování z polymerní disperze Druhou možností výroby nanokompozitních materiálů je inkorporace nano/mikro částic do polymerního roztoku a následné elektrostatické zvlákňování. Výhodou této metody je možnost inkorporace částic desítek/jednotek nanometrů do nanovláken. Je možné inkorporovat jak prokariotní tak eukariotní buněčné kultury. Nevýhodou této metody je omezené množství materiálu (1-3%), které lze dispergovat, neboť se vzrůstajícím množstvím částic roste viskozita, která zabraňuje následnému zvlákňování. Další nevýhodou je, že částice mají snahu aglomerovat. Je proto nutná dostatečná dispergace částic například metodou ultrazvuku.
6 Koloidní částice polyanilínu (Vesmír 2011) Kvasinka inkorporovaná v nanovláknu PVA Nanoželezo inkorporované nanovlákenech z polyuretanu
7 Nanokompozitni materialy, hydroxylapatit, aktivni uhli, antibakterialni uprava, 3D vrstvy Nanovlákenné materiály s inkorporovanými částicemi v mezivlákenném prostoru Částice nejsou uvnitř vláken, ale v prostoru mezi vlákny. To umožňuje značné zvýšení množství inkorporovaného materiálu. Částice nejsou překryté vrstvou polymeru což může být výhodou i nevýhodou. Omezení je ve velikosti inkorporovaných částic
8
9 - Electrospraying Electrospraying is an old method for production of nano/micro droplets Depending on used polymer and solvent, it is possible to create submicron droplets with narrow distribution. Possibility of incorporation of liquit agents using coaxial electrospraying. Several parameters are responsible for production of small droplets with narrow distribution of its sizes.
10 Polyvinylpyrrolidone (PVP) PVP is water soluble, biocompatible and biodegradable polymer practically used in pharmaceutical industry. Ethanol or other polar solvents can be used as well for elecrtrospraying. Ethanol has low surface tension and low molar enthalpy of vaporization comparing to the water. It is not toxic and environmentally friendly solvent.
11 Electrospraying (PVP) Ethylalkohol- částice Ethylalkohol- vlákna Průměr částic resp. vláken [nm] Koncentrace [hm. %]
12 PVP with different molecular weights 40 ths m.w. 1% 3% 5% 360 ths m.w. 1% 3% 5% 1300 ths m.w. 1% 3% 5%
13 Inkorporaion of FITC-Dextran into PVP capsules
14 Combination of spraying and spinning
15 Polyvinylalcohol (PVA) Another polymer which can be used for drug delivery systems is polyvinyl alcohol. PVA is simle water soluble biocompatible and biodegradable polymer. It can be easily chemically modified due to its OH groups. Problem for PVA is its difficult solubility in alcohols. Maximally about 30 40% of ethanol can be added to water. More ethanol cause coagulation of PVA. Some other solvents like DMSO, DMAC or DMF can be used, But it is not very good choice for medical applications To find a good solvent for PVA is a key for future applications
16 DRAWING POSTUP: A. Nanesení kapky polymerního roztoku na podkladový materiál Pohyb mikropipety, jehly nebo drátku směrem k okraji kapky B. Kontakt mikropipety s povrchem kapky polymeru C. Tažení vlákna z kapky polymeru určitou rychlostí, v závislosti na typu použitého polymeru - po nanesení kapky na podklad dochází k pomalému odpařování rozpouštědla a po několika minutách se kontaktní linie kapky stává více koncentrovaná - bez předchozího vypaření se kapalinový tok většinou rozpadá - výsledný průměr vlákna velmi závisí na přesném složení materiálu, rychlosti dloužení a rychlosti vypařování (případně chlazení)
17 Interakce buněk s polymery Adheze a rozprostření buněk Migrace buněk důležité pro regeneraci tkáně Tvorba agregátů mezibuněčné interakce Specifické funkce buněk např. tvorba extracelulární matrix (chondrocyty, osteoblasty, fibroblasty)
18 Rapid prototyping - 3D tisk Rapid prototyping neboli rychlá výroba prototypů je technika vztahující se ke skupině technologí, které používají počítačem podporovaný design (CAD systémy) k vytvoření trojrozměrných objektů. Prototyp neboli model je navržen pomocí počítače, dále jsou data převedena to tiskárny pro trojrozměrný tisk, která tiskne navržený model. Toto je výhodné, pokud je navrhován a vytvářen tvarově komplikovaný objekt. Největší výhodou je značná úspora času a finančních prostředků potřebných ke komplexnímu vývoji nového typu scaffoldu. 18
19 Netextilní výroba scaffoldů Rapid prototyping - 3D tisk Rychlá výroba prototypů + CAD počítačem podporovaný design. Model scaffoldu navržen počítačem a následně využita 3D tiskárna pro vytvoření vlastního scaffoldu místo inkoustu polymerní roztok nebo tavenina. 19
20 3D-Bioprinting 0DhBLEhdzk Once a tissue design is established, the first step is to develop the bioprocess protocols required to generate the multi-cellular building blocks also called bio-ink from the cells that will be used to build the target tissue. The bio-ink building blocks are then dispensed from a bioprinter, using a layer-by-layer approach that is scaled for the target output. Bio-inert hydrogel components may be utilized as supports, as tissues are built up vertically to achieve three-dimensionality, or as fillers to create channels or void spaces within tissues to mimic features of native tissue. The bioprinting process can be tailored to produce tissues in a variety of formats, from micro-scale tissues contained in standard multi-well tissue culture plates, to larger structures suitable for placement onto bioreactors for biomechanical conditioning prior to use.
21 Hydrogel Hydrogely jsou zesíťované (stabilizované vůči rozpuštění ve vodě) hydrofilní polymery, které reprezentují velmi důležitou skupinu biomateriálů pro biotechnologické a medicínské použití. Hydrogely bobtnají díky své hydrofilitě při kontaktu s vodou, kterou absorbují ve velkém množství. Nedojde však k jejich rozkladu či rozpuštění díky zesíťování dané struktury (Nguyen 2002). To jim dává vlastnosti podobné měkkým tkáním. Ačkoliv jsou hydrogely zdánlivě neporézní materiály, díky pronikání vody do daného polymerního materiálu mohou do struktury hydrogelu proniknout i buňky a další důležité látky pro tvorbu konečného implantátu. Polymery, které přirozeně tvoří hydrogely jsou například algináty, modifikovaný polyethylen oxid, kyselina hyaluronová, fibrin atd. 21
22 Netextilní výroba scaffoldů Výroba hydrogelů Alginátové hydrogely různých tvarů.
23 Hydrogely Vznik makromolekulárních látek: 1)Postupnými reakcemi nízkomolekulárních látek (polyadice, polykondenzace) 2)Polymerační řetězová reakce, síťovací polymerace 3)Spojování reaktivních konců nízkomolekulárních polymerů (10 3 g/mol) 4)Zavedením příčných vazeb do vysokomolekulárních polymerů Síťování polymerů: fyzikální nebo chemické Stupeň zesíťování nám určuje počet zesíťovaných míst na primární hmotnostně průměrné makromolekule. Relativní míru stupně zesíťování nám udává síťovací index: γ = n M w Kde n je látkové množství zesíťovaných jednotek a M w střední molární hmotnost.
24 Hydrogely -V první fázi vzrůstají rozměry molekul a polydisperzita systému. - Při určitém stupni reakce dospěje systém do bodu gelace, ve kterém <M w > vzroste nade všechny meze a v systému se objeví první stopy nekonečné struktury: gelu. - Po překročení bodu gelace se systém skládá ze dvou částí: nekonečné struktury, gelu a z molekul konečné velikosti solu. Obě části jsou od sebe oddělitelné extrakcí. Gel je nerozpustný v rozpouštědle, pouze bobtná. -V dalším průběhu reakce obsah solu klesá a jeho molární hmotnost i polydisperzita se zmenšují. -V gelu vznikají tzv. elasticky aktivní řetězce sítě, které při deformaci nesou napětí a určují pružnost gelu a jeho rovnovážný stupeň nabobtnání.
25 Bod gelace je charakterizován vznikem nekonečně velké makromolekuly <M w >. Schema struktury vzniklé síťováním mono-disperzního polymeru v předgelačním stádiu. První stopy gelu se objeví tehdy, když alespoň jeden útvar v systému dosáhne nekonečných (makroskopických) rozměrů. Systém je v bodě gelace tehdy, existuje-li můstek od molekuly A k B a od ní cesta přes další příčnou vazbu k další primární makromolekule a tak dále až do nekonečna. Pravděpodobnost že daná jednotka je zesíťovaná určuje stupeň zesíťování.
26 Flory definoval bod gelace jako konverzi funkčních skupin (p), při které koeficient větvení dosáhne kritické hodnoty. Koeficient větvení α uvažoval jako pravděpodobnost, že se funkční skupina na jedné větvící jednotce spojí s funkční skupinou na jiné větvící jednotce prostřednictvím lineárního řetězce libovolné délky. kde r je stechiometrický poměr reagujících funkčních skupin, β je poměr počtu funkčních skupin v přítomných molekulách větvícího monomeru a celkového počtu stejného typu funkčních skupin ve všech molekulách na počátku reakce. 26
27 Hydrogely Po překročení bodu gelace se systém rozdělí na sol/gel. Hmotnostní zlomek zesíťovaných jednotek v solu je obecně menší než v gelu. Těsně za bodem gelace je koncentrace zesíťovaných jednotek v gelu právě dvakrát větší než v solu či celém systému. V gelu se tedy příčné vazby tvoří přednostně. Teprve při velkém stupni zesíťování, kdy už je obsah solu malý se počet zesíťovaných jednotek solu blíží nule. Polymerní gel vzniká samovolným bobtnáním polymerní sítě ve vhodném rozpouštědle. V případě, že rozpouštědlem je voda, vzniká polymerní hydrogel. Míšení polymerních řetězců s molekulami rozpouštědla musí být energeticky výhodné. Volná energie bobtnajícího systému klesá až dosáhne svého minima, které odpovídá rovnovážnému stupni nabobtnání V případě, že se polymerní síť určena k přípravě hydrogelu skládá ze složek lišící se značně svou afinitou k vodě (hydrofilicitou), zachování topologie sítě během jejího bobtnání ve vodě může vést k fázové separaci složek v měřítku nanometrů tj. tvorbě nanofázově separovaných hydrogelů.
28 Technologie používané v tkáňovém inženýrství
29 Aplikace Alternativa k transplantacím 1. Vytvoření funkční tkáně mimo tělo pro pozdější implantaci-náhrada poraněné tkáně, např. kožní kryty pro léčbu popálenin 2. Implantace buněčného substrátu, který vyvolá regeneraci tkáně v organismu (využití růstových faktorů), např. podpora regenerace kostní tkáně 3. Vytvoření funkční tkáně za využití kmenových buněk, např. kosti, svalstvo, chrupavka, játra
30 Chrupavka Omezená regenerační kapacita (nízká dostupnost chondrocytů-ukotveny v ECM kloubního povrchu, absence progenitorových buněk, avaskulární tkáň) Izolace autologních chondrocytů/bmsc (bone marrow stromal cells=buňky kostní dřeně) + polymerní 3D scaffold (PLA, PGA, PCL, kolagen) kultivace v bioreaktoru implantace
31 Anatomie kolenní chrupavky Relativně jednoduchá tkáň = žádné nervy, žádné cévy atd. Relatively easy tissue = no nerves, no blood vessels, no other supplemental properties. Existují tři druhy chrupavky podle zastoupení jednotlivých složek (chondrocyty, kolagenní vlákna, extracelulární matrice atd. A/ kloubní chrupavka, B/ Elastická chrupavka, C/ Vazivová chrupavka ploténky
32
33 Kost Využití: osteogenesis imprerfecta (mutace v genu pro kolagen typu I), osteoporoza (řídnutí kostí) Scaffold: mechanická pevnost, ideální velikost pórů, tvrdost, 3D struktura, PCL/HA+β-TCP (kyselina hyaluronová+βtrikalcium fosfát) Izolace mesenchymálních progenitorových buněk z kostní dřeně (MSCs)- diferenciace osteoblasty/osteocytyprodukce mineralizované ECM (hydroxyapatit) a kolagenu After 12 weeks of implantation: Mature bone (B) with bone marrow like tissue (Bm) was deposited directly onto the cement surface (C). Methylene blue and basic fuchsin staining. Acid phosphatase staining revealed osteoclastic, bone remodeling activity.
34 Intervertebral disc Spine fusion device containing a collagen sponge infused with Bone Morphogenetic Protein (BMP). BMP induce native bone to fill the cavity within the device. (in clinical use, Medtronic)
35 Šlachy připojují kosti ke svalům, vazy spojují jednotlivé kosti Pojivová tkáň obsahující fibroblasty, kolagen typu I, GAGs Použití lidských vazivových fibroblastů- ACL (anterior cruciate ligaments) Šlachy a vazy
36 Svaly Využití prekurzorových svalových buněk (MPCs=muscle precursor cells)- Duchenova, Beckerova muskulární dystrofie (genetické choroby vedoucí k postupnému ochabování svalstva) Poranění svalů-nutná aktivace satelitních buněk (klidové myogenní kmenové buňky) myoblasty fúze se svalovými vlákny reparace poškození Kulturistika.net
37 Epidermis schopna regenerace Dermis regenerace pouze v malé míře náhrada tkáně jizvou, která postrádá elasticitu a pevnost škáry Kožní náhrady zakrytí rány, stimulace regenerace dermis Kůže Proces hojení ran: 1.reepitelizace 2.remodelace granulační tkáně 3.tvorba jizvy
38 Severe burns Diabetic skin ulcers INTEGRA - acellular scaffold to provide an environment for healing using the patient s own cells. Cook OASIS Wound Matrix - a thin extracellular matrix- based material, derived from the submucosal layer of pig small intestine, known to release natural factors as the material degrades
39 Apligraf (Graftskin) Spodní vrstva tvořena kolagenem a lidskými fibroblasty (kožní buňky), které produkují ECM Horní vrstva tvořena lidskými keratinocyty, které dávají vzniknout epidermis Neobsahuje cévy, vlasové folikuly, melanocyty, potní žlázy Léčba diabetických vředů
40
41 Močový měchýř Autologous urothelium a buňky hladkého svalstva rozšířené ex vivo a osázené na biodegradabilní kolagen nebo kolagen-plga kompozit byly implantovány na sedm pediatrických pacientů kteří potřebovali cystoplastycitu (Atala et al., 2006).
42 Játra Nedostatek dárců Transplantace hepatocytů na polymerním nosiči (PVA, PLA, PGA, PLGA) Liver assist system-enkapsulované hepatocyty sloužící k mimotělní podpoře při selhání jater Dr. Simionescu, Clemson University
43 Pankreas (slinivka břišní) V ČR diabetiků, celosvětově přes (7-10% dm I.typu), prevalence vzrůstá Léčba insulinem nevyhovující (insulin vyplavován fyziologicky po příjmu glukosy) Léčba pomocí transplantace pankreatu, Langerhansových ostrůvků nebo β buněk produkujících insulin Nedostatek lidských dárců využití prasečích/hovězích tkání (produkují insulin homologní s lidským) Enkapsulace ostrůvků zamezení imunologické rejekce
44 2001 Terese Winslow, Lydla Kibluk
45
46 Cévy Limitováno možný vznikem trombů, chronického zánětu, rejekcí nebo špatnými mechanickými vlastnostmi Endoteliální buňky, buňky hladkého svalstva (zajišťují vasoaktivitu cév a mechanickou pevnost při působení tlaku v oběhovém systému), cytokiny a růstové faktory, biodegradabilní polymery První pokusy s PET (Dacron) a PTFEpasivní transport krve, minimální interakce s krví a tkáněmi Možnost pokrytí povrchu proteiny, antikoagulanty, antibiotiky Reakce krve po kontaktu s materiálem Usazování plasmatických proteinů a destiček Infiltrace neutrofily a monocyty Migrace a proliferace endoteliálních a svalových buněk
47 Srdeční chlopně Umělé srdeční chlopně-nebezpečí trombembolismu (celoživotně podávání antikoagulancií) Bioprotézy (např. transplantace prasečí chlopně): nevýhody-kalcifikace, změny struktury výhody-netrombogenní, neinfekční, delší životnost, přežívání buněk možnost růstu, regenerace, remodelace (využití především u dětských pacientů)
48 Artificial Heart Valves Mechanical (A, B) Caged Ball Hinged Leaflets Stented Bovine Pericardium Biological (C-F) Glutaraldehyde-fixed Animal Tissues Stentless Porcine Valve Stented Porcine Valve Stentless Porcine Valve From: Simionescu D, Artificial Heart Valves, Wiley Encyclopedia of Biomedical Engineering, (A, C, F) Copyright Edwards Lifesciences, Inc and (B, D, E) St. Jude Medical, Inc All rights reserved.
49 Beating Heart Created In Laboratory Potkaní decelularizované srdce (vrchní tři obrázky), a během osazování buňkami (spodní dva obrázky). Doris Taylor, Ph.D., Center for Cardiovascular Repair, Medtronic Bakken
50 Nervový systém Využití neuronálních kmenových buněk (NSCs=neronal stem cells) k léčbě CNS (poranění míchy a mozku) Diferenciace ve 3 typy nervových buněk: neurony (vlastní nervové buňky), astrocyty a oligodendrocyty (podpůrné buňky nervové tkáně) Autor: Sestra
Materiály pro tkáňové inženýrství
Materiály pro tkáňové inženýrství (Vlákenné nosiče) 8. přednáška Katedra netkaných textilií Fakulta textilní Technická univerzita v Liberci Tento projekt je spolufinancován Evropským sociálním fondem a
Nevlákenné nosiče pro tkáňové inženýrství (II. Materiály pro tkáňové inženýrství)
Nevlákenné nosiče pro tkáňové inženýrství (II. Materiály pro tkáňové inženýrství) 9.přednáška Katedra netkaných textilií Fakulta textilní Technická univerzita v Liberci Tento projekt je spolufinancován
doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU
Bi8120 Aplikovaná buněčná biologie - 4.5.2011 Buněčné terapie doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU Regenerativní medicína = lékařské ř ké postupy,
EPITELOVÁ TKÁŇ. šita. guru. sthira. ušna. mridu višada. drva. laghu. čala. Epitelová tkáň potní žlázy. Vše co cítíme na rukou, je epitelová tkáň
EPITELOVÁ TKÁŇ Epitelová tkáň potní žlázy Vše co cítíme na rukou, je epitelová tkáň Epitel tvoří vrstvy buněk, které kryjí vnější a vnitřní povrchy Epitel, kterým cítíme, je běžně nazýván kůže Sekrece
Elektrostatické zvlákňování orientace vláken, výroba nití a bikomponentní vlákna. Eva Košťáková KNT, FT, TUL
Elektrostatické zvlákňování orientace vláken, výroba nití a bikomponentní vlákna Eva Košťáková KNT, FT, TUL Rotující válec Řízení orientace vláken Vibrující deska Ostrý disk Rámeček Řízení orientace vláken
VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ
OBNOVA A REPARACE 1 VÝZNAM FYZIOLOGICKÉ OBNOVY BUNĚK V MEDICÍNĚ Příklad: Fyziologická obnova buněk: obnova erytrocytů Rychlost obnovy: 2 miliony nových erytrocytů/s (při průměrné době života erytrocytu
Chrupavka a kost. Osifikace 605
Chrupavka a kost Osifikace 605 Pojiva Pojiva jsou tkáň, která je složena z buněk a mezibuněčné hmoty. Rozdělení: Vazivo Chrupavka Kost Tuková tkáň Chrupavka Buňky: Chondroblasty Chondrocyty (Chondroklasty)
Úvod do tkáňového inženýrství. Jana Horáková
Úvod do tkáňového inženýrství Jana Horáková Definice Interdisciplinární obor využívající znalostí inženýrství a přírodních věd k vývoji biologických náhrad sloužících k obnově, zachování nebo zlepšení
Fyzikální principy tvorby nanovláken. 1. Úvod. D.Lukáš
Fyzikální principy tvorby nanovláken 1. Úvod D.Lukáš 1 Physical principles of electrospinning (Electrospinning as a nano-scale technology of the twenty-first century) Physical principles of electrospinning
Advanced Therapies Products Produkty Moderní terapie a výrobní laboratoře. Barbara Kubešová
Advanced Therapies Products Produkty Moderní terapie a výrobní laboratoře Barbara Kubešová Národní Tkáňové Centrum, a.s. vyvíjí a vyrábí léčivé přípravky pro Advancedtherapiesa zpracovává tkáně a buňky
Vstup látek do organismu
Vstup látek do organismu Toxikologie Ing. Lucie Kochánková, Ph.D. 2 podmínky musí dojít ke kontaktu musí být v těle aktivní Působení jedů KONTAKT - látka účinkuje přímo nebo po přeměně (biotransformaci)
doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU
Bi8120 Aplikovaná buněčná biologie 18.4.2012 Buněčné terapie doc. RNDr. Renata Veselská, Ph.D., M.Sc. Ústav experimentální biologie Přírodovědecká fakulta MU Regenerativní medicína = lékařské ř ké postupy,
Netkané textilie. Materiály 2
Materiály 2 1 Pojiva pro výrobu netkaných textilií Pojivo je jednou ze dvou základních složek pojených textilií. Forma pojiva a jeho vlastnosti předurčují technologii a podmínky procesu pojení způsob rozmístění
Elektrostatické zvlákňování: Výroba polymerních nanovláken a jejich využití v kompozitních materiálechl
Elektrostatické zvlákňování: Výroba polymerních nanovláken a jejich využití v kompozitních materiálechl Seminář: KOMPOZITY ŠIROKÝ POJEM, Ústav teoretické a aplikované mechaniky AV ČR Eva Košťáková, Pavel
Buňky, tkáně, orgány, orgánové soustavy. Petr Vaňhara Ústav histologie a embryologie LF MU
Buňky, tkáně, orgány, orgánové soustavy Petr Vaňhara Ústav histologie a embryologie LF MU Dnešní přednáška: Koncept uspořádání tkání Embryonální vznik tkání Typy tkání a jejich klasifikace Orgánové soustavy
Úvod do elektrostatického zvlákňování. Eva Košťáková KNT, FT, TUL
Úvod do elektrostatického zvlákňování Eva Košťáková KNT, FT, TUL Lidský vlas Bavlněné vlákno Jednou v podstatě velmi jednoduchou metodou výroby nanovláken je tak zvané Elektrostatické zvlákňování (anglicky
Vazivo. Chrupavka. Kost
Pojivová tkáň Vazivo Chrupavka Kost Mezenchym Mezenchym Vazivo Chrupavka Kost Původ a funkce Původ mezenchym Funkce: - nutritivní (krevní cévy, difuze živin) - protektivní imunocompetentní buňky a produkce
ČLOVĚK. Antropologie (z řeckého anthrópos člověk) - snaží se vytvořit celkový obraz člověka
ČLOVĚK Antropologie (z řeckého anthrópos člověk) - snaží se vytvořit celkový obraz člověka Fyzická antropologie - studuje lidské tělo, jeho vývoj a genetiku anatomie - zkoumá stavbu těla organismů fyziologie
HLADINOVÉ KOAXIÁLNÍ ZVLÁKŇOVÁNÍ PRO MASIVNÍ PRODUKCI NANOVLÁKEN DRUHÉ GENERACE
HLADINOVÉ KOAXIÁLNÍ ZVLÁKŇOVÁNÍ PRO MASIVNÍ PRODUKCI NANOVLÁKEN DRUHÉ GENERACE Buzgo M. 1,3,4, Vysloužilová L. 2, Míčková A. 1,3,4, Benešová J. 1,3,4, Pokorná H. 1,3,4, Lukáš D. 2, Amler E. 1,3,4 1 Fakulta
Laboratoř na čipu. Lab-on-a-chip. Pavel Matějka
Laboratoř na čipu Lab-on-a-chip Pavel Matějka Typy analytických čipů 1. Chemické čipy 1. Princip chemického čipu 2. Příklady chemických čipů 3. Příklady analytického použití 2. Biočipy 1. Princip biočipu
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, Karlovy Vary Autor: Hana Turoňová Název materiálu:
Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_07_TKÁNĚ1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077
Výměnné pobyty s US vysokými školami
Výměnné pobyty s US vysokými školami Hlavní řešitel: prof. RNDr. David Lukáš, CSc. Fakulta textilní, Katedra netkaných textilií a nanovlákenných materiálů Závěrečný seminář k rozvojovým programům MŠMT
Povrchová integrita z pohledu významných evropských pracovišť
Povrchová integrita z pohledu významných evropských pracovišť 1. mezinárodní podzimní školu povrchového inženýrství OP VK Systém vzdělávání pro personální zabezpečení výzkumu a vývoje v oblasti moderního
Výzkum a technologie budoucnosti
Výzkum a technologie budoucnosti Anna Holubová holubann@gmail.com Centrum podpory aplikačních výstupů a spin-off firem 1. LF UK Pokročilé technologie v diabetologii Zimní semestr 2016/17 Transplantace
regenerativní medicíně
Matrix terapie v regenerativní medicíně 27/07/2016 Matrix terapie v regenerativní medicíně 1 Sprej pro léčbu chronických ran Úvod Technologie RGTA je založena na obnově mikroprostředí buněk, nazývaného
ZÁKLADY FUNKČNÍ ANATOMIE
OBSAH Úvod do studia 11 1 Základní jednotky živé hmoty 13 1.1 Lékařské vědy 13 1.2 Buňka - buněčné organely 18 1.2.1 Biomembrány 20 1.2.2 Vláknité a hrudkovité struktury 21 1.2.3 Buněčná membrána 22 1.2.4
BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN
BIOLOGIE ČLOVĚKA BUŇKA TKÁŇ ORGÁN Živočišná buňka lysozóm jádro cytoplazma plazmatická membrána centrozom Golgiho aparát ribozomy na drsném endoplazmatickém retikulu mitochondrie Živočišná tkáň soubor
Kosmetika a kosmetologie Přednáška 3 Kůže jako předmět kosmetické péče I
Kosmetika a kosmetologie Přednáška 3 Kůže jako předmět kosmetické péče I Přednáška byla připravena v rámci projektu Evropského sociálního fondu, operačního programu Vzdělávání pro konkurenceschopnost s
Živá soustava, hierarchie ž.s.
Téma: Tkáně Živá soustava, hierarchie ž.s. Charakteristiky ž.s.: 1) Biochemické složení 2) Autoreprodukce 3) Dědičnost 4) Složitost, hierarchické uspořádání 5) Metabolismus 6) Dráždivost 7) Růst 8) Řízení
Typy molekul, látek a jejich vazeb v organismech
Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,
Kmenové buňky a tkáňové náhrady naděje moderní medicíny.
Kmenové buňky a tkáňové náhrady naděje moderní medicíny. RNDr. Pavla Jendelová PhD. Ústav experimentální medicíny AVČR Ústav neurověd, UK 2. lékařská fakulta Centrum buněčné terapie a tkáňových náhrad
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Prameny Určeno pro 8. třída (pro 3. 9. třídy) Sekce Základní / Nemocní /
Druhy tkání. Autor: Mgr. Vlasta Hlobilová. Datum (období) tvorby: Ročník: osmý. Vzdělávací oblast: přírodopis
Druhy tkání Autor: Mgr. Vlasta Hlobilová Datum (období) tvorby: 23. 10. 2012 Ročník: osmý Vzdělávací oblast: přírodopis Anotace: Žáci si rozšíří znalosti o tkáních, z kterých se pak vytváří větší celky
VYROVNÁNÍ HANDICAPU ŽÁKŮ GVN J. HRADEC PŘI STUDIU PŘÍRODOVĚDNÝCH DISCIPLÍN PRAXÍ
Anotace přednášek Název projektu: VYROVNÁNÍ HANDICAPU ŽÁKŮ GVN J. HRADEC PŘI STUDIU PŘÍRODOVĚDNÝCH DISCIPLÍN PRAXÍ Registrační číslo projektu: CZ.1.07/1.1.14/02.0004 Přednášející: RNDr. Oldřich Syrovátka,
Nové orgány na postupu
Nové orgány na postupu Pěstování celých orgánů z kmenových buněk je v současnosti oblíbené. Základní postup, který biologové používají, je vesměs podobný. Aby se kmenová buňka změnila ve správný buněčný
Přehled tkání. Pojivová tkáň, složky pojivové tkáně, mezibuněčná hmota
Přehled tkání. Pojivová tkáň, složky pojivové tkáně, mezibuněčná hmota Ústav pro histologii a embryologii Předmět: Histologie a embryologie 1, B01131, obor Zubní lékařství Datum přednášky: 15.10.2013 K
Diferenciace tkání. Diferenciace blastocysta: Cytotrofoblast. Trofoblast. Syncytiotrofoblast. Epiblast. Embryoblast. Hypoblast
Histogenese 511 Diferenciace tkání Diferenciace blastocysta: Trofoblast Cytotrofoblast Syncytiotrofoblast Embryoblast Epiblast Hypoblast Extraembryonální mesoderm Epiblast Diferenciace epiblastu: Gamety
Témata disertačních prací. Materiálové inženýrství
Témata disertačních prací Materiálové inženýrství Vývoj originálních metod na síťování hyaluronanu ve vodě Síťování hyaluronanu je proces, který je hodně používán při přípravě omezeně rozpustných, biokompatibilních
Nejmenší jednotka živého organismu schopná samostatné existence. Výměnu látek Růst Pohyb Rozmnožování Dědičnost
BUŇKA Nejmenší jednotka živého organismu schopná samostatné existence Buňka je schopna uskutečňovat základní funkce organismu: obrázky použity z Nečas: BIOLOGIE LIDSKÉ TĚLO Alberts: ZÁKLADY BUNĚČNÉ BIOLOGIE
USPOŘÁDEJTE HESLA PODLE PRAVDIVOSTI DO ŘÁDKŮ
Proteiny funkce Tematická oblast Datum vytvoření Ročník Stručný obsah Způsob využití Autor Kód Chemie přírodních látek proteiny 22.7.2012 3. ročník čtyřletého G Procvičování struktury a funkcí proteinů
Drug Delivery. Definice
Drug Delivery Definice Vhodné dodávání léčiv pomocí různých cestdo těla zajišťující zlepšení zdraví. Velmi interdisciplinární obor Tento obor je poměrně starý Musíme do něho zahrnout následující: Fyzikálně-chemické
Výzkumné centrum buněčné terapie a tkáňových náhrad
Výzkumné centrum buněčné terapie a tkáňových náhrad Od 1.7. 2014 podpořeno: Národní program udržitelnosti MŠMT NPU I Vybudováno v rámci Evropského rozvojového regionálního fondu (Operační program Praha
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU
BIOMECHANIKA BIOMECHANIKA KOSTERNÍHO SUBSYSTÉMU MECHANICKÉ VLASTNOSTI BIOLOGICKÝCH MATERIÁLŮ Viskoelasticita, nehomogenita, anizotropie, adaptabilita Základní parametry: hmotnost + elasticita (akumulace
VÍTÁM VÁS NA PŘEDNÁŠCE Z PŘEDMĚTU TCT
VÍTÁM VÁS NA PŘEDNÁŠCE Z PŘEDMĚTU TCT opakování Jeden směr křížem Cros - cros náhodně náhodně náhodně NT ze staplových vláken vlákna pojená pod tryskou Suchá technologie Mokrá technologie vlákna Metody
STABHA přínosy a působení. Dokument vznikl ve spolupráci MDT International SA a Noviere.
STABHA přínosy a působení Dokument vznikl ve spolupráci MDT International SA a Noviere. září 2016 Přínosy látky STABHA u poranění měkkých tkání vazů a šlach Co je STABHA? STABHA je obchodní značka společnosti
Materiálové inženýrství
Témata disertačních prací Materiálové inženýrství Vývoj originálních metod na síťování hyaluronanu ve vodě Síťování hyaluronanu je proces, který je hodně používán při přípravě omezeně rozpustných, biokompatibilních
Modelování a aproximace v biomechanice
Modelování a aproximace v biomechanice Během většiny lidské aktivity působí v jednom okamžiku víc než jedna skupina svalů. Je-li úkolem analyzovat síly působící v kloubech a svalech během určité lidské
FUNKČNÍ VZOREK FUNKČNÍ VZOREK ELEKTROSPREJOVACÍ ZAŘÍZENÍ PRO PŘÍPRAVU VYSOCE KVALITNÍCH NANOČÁSTIC.
ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ LABORATOŘ POLYMERAČNÍHO INŽENÝRSTVÍ FUNKČNÍ VZOREK FUNKČNÍ VZOREK ELEKTROSPREJOVACÍ ZAŘÍZENÍ PRO PŘÍPRAVU VYSOCE KVALITNÍCH NANOČÁSTIC. Autor: Ing. Jiří Maršálek Bc. Karel
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM
MECHANISMUS TVORBY PORÉZNÍCH NANOVLÁKEN Z POLYKAPROLAKTONU PŘIPRAVENÝCH ELEKTROSTATICKÝM ZVLÁKŇOVÁNÍM Daniela Lubasová a, Lenka Martinová b a Technická univerzita v Liberci, Katedra netkaných textilií,
Kdo jsme. Vyrábíme aktivní látky pro farmaceutický a kosmetický průmysl pomocí biotechnologických procesů.
Kdo jsme Vyrábíme aktivní látky pro farmaceutický a kosmetický průmysl pomocí biotechnologických procesů. Každý rok uvádíme na trh vlastní finální produkty zejména v oblasti veteriny a hojení ran. Klademe
Hematologie. Nauka o krvi Klinická hematologie Laboratorní hematologie. -Transfuzní lékařství - imunohematologie. Vladimír Divoký
Hematologie Nauka o krvi Klinická hematologie Laboratorní hematologie -Transfuzní lékařství - imunohematologie Vladimír Divoký Fyzikální vlastnosti krve 3-4 X více viskózní než voda ph : 7.35 7.45 4-6
Chrupavka a kost. Osifikace BST-30
Chrupavka a kost Osifikace BST-30 Pojiva Pojiva jsou tkáň, která je složena z buněk a mezibuněčné hmoty. Rozdělení: Vazivo Chrupavka Kost Tuková tkáň Chrupavka Chondroblasty Chondrocyty (Chondroklasty)
Vývoj hydrogelů na bázi hyaluronanu pro využití v tkáňovém inženýrství a regenerativní medicíně
Témata disertačních prací Materiálové inženýrství Vývoj originálních metod na síťování hyaluronanu ve vodě Síťování hyaluronanu je proces, který je hodně používán při přípravě omezeně rozpustných, biokompatibilních
Trpíte defekty artikulární chrupavky? My máme řešení. ChondroFiller. Informace pro pacienty
Trpíte defekty artikulární chrupavky? My máme řešení. ChondroFiller Informace pro pacienty Vážený paciente, trpíte bolestmi kolenního, hlezenního nebo ramenního kloubu máte diagnostikovaný defekt kloubní
Vlákna a textilie na bázi hyaluronanu
CETRUM TRANSFERU BIOMEDICÍNSKÝCH TECHNOLOGIÍ HK CZ.1.05/3.1.00/10.0213 Vlákna a textilie na bázi hyaluronanu Seminář JAK VÝZKUMNĚ SPOLUPRACOVAT S FIRMOU CONTIPRO? CENTRUM TRANSFERU BIOMEDICÍNSKÝCH TECHNOLOGIÍ
Bunka a bunecné interakce v patogeneze tkánového poškození
Bunka a bunecné interakce v patogeneze tkánového poškození bunka - stejná genetická výbava - funkce (proliferace, produkce látek atd.) závisí na diferenciaci diferenciace tkán - specializovaná produkce
Úspěchy a limity české transplantační medicíny
Úspěchy a limity české transplantační medicíny Eva Pokorná Česká transplantační společnost Transplantace orgánů Život zachraňující výkony Hlavní problém imunologický (rejekce) Do poloviny 80 let minulého
Prů r v ů od o c d e e T -ex e kur u z r í Pe P t e r t a a M e M n e y n ja j r a ov o á 18.12.2010
Průvodce T-exkurzí Petra Menyjarová 18.12.2010 Krátce o T-exkurzích T-exkurze je součástí projektu Vzdělání a rozvoj talentované mládeže JMK. Jsou určeny pro studenty středních škol se zájmem o přírodní
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Anglický jazyk
5. Metabolismus hyaluronanu v průběhu hojení rány 6. Role hyaluronanu v angiogenezi 7. Hyaluronový pericelulární obal buněk
Náměty pro postgraduální studium v rámci Institutu pro studium lékařských nanobiotechnologií realizované ve spolupráci s Farmaceutickou fakultou UK v Hradci Králové 1. Studium a optimalizace fyzikálně-chemických
Seminář pro maturanty
Úvod do biologie člověka Seminář pro maturanty 2006 Organismy mají hierarchickou strukturu Buňka - tkáň - orgán - orgánová soustava celkem asi 216 typů buněk v lidském těle tkáň = skupina buněk stejné
Interakce buněk s mezibuněčnou hmotou. B. Dvořánková
Interakce buněk s mezibuněčnou hmotou B. Dvořánková Obsah přednášky Buňka a její organely Extracelulární matrix Interakce buněk s ECM i navzájem Kultivace buněk in vitro Buněčné jádro Alberts: Molecular
Celosvětová produkce plastů
PRODUKCE PLASTŮ Zpracování plastů cvičení 1 TU v Liberci, FS Celosvětová produkce plastů Mil. tun Asie (bez Japonska) 16 % Střední a západní Evropa 21 % Společenství nezávislých států 3 % 235 mil. tun
BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA
BIOMECHANIKA ŠLACHY, VAZY, CHRUPAVKA FUNKCE ŠLACH A VAZŮ Šlachy: spojují sval a kost přenos svalové síly na kost nebo chrupavku uložení elastické energie Vazy: spojují kosti stabilizace kloubu vymezení
Návrhování experimentů pro biomedicínský výzkum pomocí metod DOE
Návrhování experimentů pro biomedicínský výzkum pomocí metod DOE Libor Beránek, Rudolf Dvořák, Lucie Bačáková Abstrakt V minulých desetiletích se v medicíně rozšířilo použití umělých materiálů, ať už v
CZ.1.07/1.5.00/ Člověk a příroda
GYMNÁZIUM TÝN NAD VLTAVOU, HAVLÍČKOVA 13 Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0437 III/2- Inovace a zkvalitnění výuky prostřednictvím IVT Člověk a příroda
PRAKTICKÉ CVIČENÍ č. 1
PRAKTICKÉ CVIČENÍ č. 1 Název cvičení: ŽIVOČIŠNÉ TKÁNĚ Teoretický úvod: Tkáň je soubor morfologicky podobných buněk, které plní určitou funkci. Buňky tvořící tkáň mohou být stejného typu, existují však
Oběhová soustava - cirkulace krve v uzavřeném oběhu cév - pohyb krve zajišťuje srdce
Oběhová soustava - cirkulace krve v uzavřeném oběhu cév - pohyb krve zajišťuje srdce Krevní cévy tepny (artérie), tepénky (arterioly) - silnější stěna hladké svaloviny (elastická vlákna, hladká svalovina,
Pojivové tkáně - vazivo
Pojivové tkáně - vazivo Původ mezenchym Funkce mechanická /vlákna/ vitální /buňky vaziva/ Stavba: buňky mezibuněčná hmota fibrilární složka interfibrilární /amorfní/ Buňky vaziva Fibroblasty a fibrocyty
NOVÉ TRENDY V REGENERATIVNÍ MEDICÍNĚ. doc. RNDr. Evžen Amler, CSc.
NOVÉ TRENDY V REGENERATIVNÍ MEDICÍNĚ doc. RNDr. Evžen Amler, CSc. TKÁŇOVÉ INŽENÝRSTVÍ TKÁŇOVÉ INŽENÝRSTVÍ Aplikace zákonitostí a metod inženýrství a přírodních věd na vývoj biologických náhrad sloužících
Obecná anatomie kostí a kloubů. Karel Smetana Anatomický ústav 1. LF UK
Obecná anatomie kostí a kloubů Karel Smetana Anatomický ústav 1. LF UK Endoskelet vs exoskelet Typy kostí Plochá Krátká Dlouhá David B. Fankhauser, Ph.D., Professor of Biology and Chemistry University
Biodegradabilní plasty: současnost a perspektivy
Biodegradabilní plasty: současnost a perspektivy Biodegradabilní plasty V průběhu minulého století nárůst využívání polymerů Biodegradabilní plasty Problémy s odpadovým hospodářstvím Vznik několika strategií,
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení
FUNKČNÍ ANATOMIE. Mikrocirkulace označuje oběh krve v nejmenších cévách lidského těla arteriolách, kapilárách a venulách.
MIKROCIR ROCIRKULACE FUNKČNÍ ANATOMIE Mikrocirkulace označuje oběh krve v nejmenších cévách lidského těla arteriolách, kapilárách a venulách. (20-50 µm) (>50 µm) (4-9 µm) Hlavní funkcí mikrocirkulace je
STUDIUM SKLOKERAMICKÝCH POVLAKŮ V BIOLOGICKÉM PROSTŘEDÍ
STUDIUM SKLOKERAMICKÝCH POVLAKŮ V BIOLOGICKÉM PROSTŘEDÍ Ing. Vratislav Bártek e-mail: vratislav.bartek.st@vsb.cz doc. Ing. Jitka Podjuklová, CSc. e-mail: jitka.podjuklova@vsb.cz Ing. Tomáš Laník e-mail:
LOGOMANUÁL / LOGOMANUAL
LOGOMANUÁL / LOGOMANUAL OBSAH / CONTENTS 1 LOGOTYP 1.1 základní provedení logotypu s claimem 1.2 základní provedení logotypu bez claimu 1.3 zjednodušené provedení logotypu 1.4 jednobarevné a inverzní provedení
Potravinářské aplikace
Potravinářské aplikace Nanodisperze a nanokapsle Funkční složky (např. léky, vitaminy, antimikrobiální prostředky, antioxidanty, aromatizující látky, barviva a konzervační prostředky) jsou základními složkami
Obsah. 3 Bezpečnost práce Úrazová zábrana a pracovní úraz Odpovědnost za bezpečnost při práci Vznik úrazů...
Obsah 1 Úvodem.... 13 1.1 Význam zdravovědy pro kadeřníka.................... 13 1.2 Osobní hygiena kadeřníka........................... 14 1.2.1 Péče o čistotu těla................................. 15
Fysiologie pojivové tkáně. Kryštof Slabý RHB a TVL UK 2. LF
Fysiologie pojivové tkáně Kryštof Slabý RHB a TVL UK 2. LF http://tvl.lf2.cuni.cz Pojivová tkáň mesenchym; vazivo (fibro-), chrupavka (chondro-), kost (osteo-), Funkce strukturální funkce mechanická podpora,
Analýza magnetických mikročástic mikroskopií atomárních sil
Analýza magnetických mikročástic mikroskopií atomárních sil Zapletalová 1 H., Tvrdíková 2 J., Kolářová 1 H. 1 Ústav lékařské biofyziky, LF UP Olomouc 2 Ústav chemie potravin a biotechnologií, CHF VUT Brno
Adhezní síly v kompozitech
Adhezní síly v kompozitech Nanokompozity Pro 5. ročník nanomateriály Fakulta mechatroniky Katedra materiálu Strojní fakulty Technická univerzita v Liberci Doc. Ing. Karel Daďourek, 2010 Vazby na rozhraní
Summer Workshop of Applied Mechanics. Vliv mechanického zatížení na vznik a vývoj osteoartrózy kyčelního kloubu
Summer Workshop of Applied Mechanics June 2002 Department of Mechanics Faculty of Mechanical Engineering Czech Technical University in Prague Vliv mechanického zatížení na vznik a vývoj osteoartrózy kyčelního
Univerzita Karlova v Praze Farmaceutická fakulta v Hradci Králové Katedra biologických a lékařských věd
Univerzita Karlova v Praze Farmaceutická fakulta v Hradci Králové Katedra biologických a lékařských věd Terapie chronické rány The chronic wound therapy Student: Vedoucí: Mgr. Zuzana Prosková Doc.RNDr.Vladimír
:25 1/5 1. přednáška
2016-08-27 00:25 1/5 1. přednáška 1. přednáška Člověk je vyudován hierarchicky buňka tkáň orgán orgánový systém oranizmus Buňka základni morfologická a funkční jednotka organismu je základní stavební prvek
Proč by se průmysl měl zabývat výzkumem nanomateriálů
Proč by se průmysl měl zabývat výzkumem nanomateriálů Měření velikost částic Jak vnímat nanomateriály Pigmenty x nanopigmenty Nové vlastnosti? Proč se věnovat studiu nanomateriálů Velikost (cm) 10-1000
OSIFIKACE A RŮST KOSTÍ
OSIFIKACE A RŮST KOSTÍ Čihák, R. Anatomie Kosti vznikají přestavbou pojivových tkání (vaziva a chrupavky) procesem, který nazýváme kostnatění neboli osifikace. Osifikace v kloubních koncích kostí probíhá
-v místě zlomeniny vzniká nejprve fibrózní tkáň, která je nahrazena spongiózní kostní tkání a nakonec kostí lamelární
Bioceramics: Properties, characterizations and applications 5. 3. HARD TISSUE HEALING AND REMODELING Hojení a opravné procesy kosti jsou podobně jako hojení kůže regenerativní. Jedinou další tkání s regenerativní
HISTOLOGIE A MIKROSKOPICKÁ ANATOMIE PRO BAKALÁŘE
OBSAH 1. STAVBA BUŇKY (S. Čech, D. Horký) 10 1.1 Stavba biologické membrány 11 1.2 Buněčná membrána a povrch buňky 12 1.2.1 Mikroklky a stereocilie 12 1.2.2 Řasinky (kinocilie) 13 1.2.3 Bičík, flagellum
8. Polysacharidy, glykoproteiny a proteoglykany
Struktura a funkce biomakromolekul KBC/BPOL 8. Polysacharidy, glykoproteiny a proteoglykany Ivo Frébort Polysacharidy Funkce: uchovávání energie, struktura, rozpoznání a signalizace Homopolysacharidy a
Základní stavební složka živočišného těla TKÁŇ
Tkáně lidského těla Základní stavební složka živočišného těla TKÁŇ buněčná složka mezibuněčná složka 1typ buněk nositel funkce extracelulární matrix Tkáně Složené ze souborů (populací) buněk, které mají
Největší orgán lidského těla Průměr 1,7 m2 Dvě hlavní vrstvy epidermis a dermis Léčba rozsáhlých kožních ztrát představuje závažný lékařský problém
Kůže Největší orgán lidského těla Průměr 1,7 m2 Dvě hlavní vrstvy epidermis a dermis Léčba rozsáhlých kožních ztrát představuje závažný lékařský problém Anatomia del corpo humano Juan Valverde de Amusco
Pojivo, mezibuněčná hmota a nárazníková funkce biologických struktur
Pojivo, mezibuněčná hmota a nárazníková funkce biologických struktur Kirsti Witter Histologie a embryologie Department patobiologie Univerzita veterinární medicíny Vídeň, Rakousko Pojivo pojivo bohaté
PŘEHLED OBECNÉ HISTOLOGIE
PŘEDMLUVA 8 1. ZÁKLADY HISTOLOGICKÉ TECHNIKY 9 1.1 Světelný mikroskop a příprava vzorků pro vyšetření (D. Horký) 9 1.1.1 Světelný mikroskop 9 1.1.2 Zásady správného mikroskopování 10 1.1.3 Nejčastější
Histogeneze příklady. 151 Kurs 5: Vývoj buněk a tkání
Histogeneze příklady 151 Kurs 5: Vývoj buněk a tkání Kurs 5: Vývoj buněk a tkání 137 Kasuistika: Thalidomide 138 Základní morfogenetické procesy 139 Regenerace a reparace 140 Ženský reprodukční systém
Nano a mikrotechnologie v chemickém inženýrství. Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ
Nano a mikrotechnologie v chemickém inženýrství Hi-tech VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMICKÉHO INŽENÝRSTVÍ Hi-tech Nano a mikro technologie v chemickém inženýrství umožňují: Samočisticí
Tlakové membránové procesy
Membránová operace Tlakové membránové technologie Retentát (Koncentrát) Vstupní roztok Permeát Tlakové membránové procesy Mikrofiltrace Ultrafiltrace Nanofiltrace Reverzní osmóza -hnací silou rozdíl tlaků
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA
Mgr. Šárka Vopěnková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou VY_32_INOVACE_02_3_20_BI2 HORMONÁLNÍ SOUSTAVA NADLEDVINY dvojjediná žláza párově endokrinní žlázy uložené při horním pólu ledvin obaleny tukovým
Fakulta textilní TUL
Fakulta textilní TUL Katedra netkaných textilií a nanovlákenných materiálů Představení týmu Školní rok 2013-14 Fakulta textilní TUL Katedra netkaných textilií a nanovlákenných materiálů Tým vedený prof.
ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION
AKUSTICKÁ EMISE VYUŽÍVANÁ PŘI HODNOCENÍ PORUŠENÍ Z VRYPOVÉ INDENTACE ACOUSTIC EMISSION SIGNAL USED FOR EVALUATION OF FAILURES FROM SCRATCH INDENTATION Petr Jiřík, Ivo Štěpánek Západočeská univerzita v
Přehled pracovišť pro trainee
Přehled pracovišť pro trainee Trainee program v Contipru je na období jednoho až jednoho a půl roku. Každý trainee má možnost vybrat si preferované pracoviště, ke kterému nabídneme další pracoviště, která