IDENTIFIKACE METALOPROTEINŮ A STANOVENÍ JIM PŘÍSLUŠNÝCH KOVOVÝCH SPECIÍ. Hana Ovadová, Tomáš Vaculovič, Viktor Kanický, Jan Havliš
|
|
- Šimon Němec
- před 6 lety
- Počet zobrazení:
Transkript
1 IDENTIFIKACE METALOPROTEINŮ A STANOVENÍ JIM PŘÍSLUŠNÝCH KOVOVÝCH SPECIÍ Hana Ovadová, Tomáš Vaculovič, Viktor Kanický, Jan Havliš Katedra analytické chemie, Přírodovědecká fakulta, Masarykova Univerzita Kotlářská 2, Brno Hana.Ovadova@seznam.cz Úvod Kovové ionty hrají důležitou roli v biologické aktivitě. Studování kovových specií v lidských tkáních je nezbytné pro porozumění jejich esenciálním, toxickým, a biochemickým dopadům na biologické systémy. Mezi biomolekuly obsahující kovové specie se řadí i metaloproteiny. Bylo odhadnuto, že kolem 40 % proteinů a enzymů obsahuje ve své struktuře kovové ionty 1. Metaloprotein, složená bílkovina, obsahuje ve své molekule kovový iont jako kofaktor nebo prostetickou skupinu. Z analytického hlediska je tvořen ze dvou částí, z apoproteinu a kovové specie, které je třeba stanovit paralelně beze ztrát informací. Interakce, ke kterým dochází mezi proteinem a kovovým iontem, by měly být zachovány v průběhu manipulace se vzorkem. Separace nekovalentních komplexů, např. kovových komplexů s proteiny, vyžaduje nedenaturující podmínky separace. Mezi metody pro separaci proteinů patří gelová elektroforéza (GE). GE v přítomnosti dodecylsíranu sodného (SDS) nebo GE při vysokém napětí vedou pravděpodobně ke ztrátě kovového iontu během takové separace 2. Metalomický analytický přístup (MAA) zabývající se metaloproteiny, se skládá ze tří částí i) selektivní složky separace, ii) citlivé složky prvkového detektoru, iii) strukturní složky molekulově specifického detektoru 3-5. GE jako selektivní složka se velmi dobře kombinuje s LA ICP-MS (laserová ablace s hmotnostní spektrometrií indukčně vázaného plazmatu) jako citlivou složkou i se strukturní složkou MALDI TOF MS. Cílem této práce bylo studovat podmínky separace GE v nedenaturujícím prostředí, z důvodu zachování vazby kovového iontu a proteinu, dále optimalizovat spojení off-line metody GE s LA ICP-MS na modelovém analytu kov vážícího proteinu.
2 Experimentální část Chemikálie Pro GE byly používány chemikálie zakoupené od firmy Bio-Rad, (Philadelphia, USA) o čistotě ACS. Barvící činidlo CBB R-250 bylo vyrobeno firmou Serva (Heidelberg, Německo). Ostatní použité chemikálie byly od firmy Lachema a Sigma o čistotě ACS. Modelové vzorky Nativní GE byla studována pomocí proteinů získaných od firmy Sigma (Steinheim, Německo), BSA - hovězí sérový albumin, cytochrom C - z koňského srdce, ribonukleasa - z hovězí slinivky břišní, inzulin - z hovězí slinivky břišní a myoglobin - koňský. Lysozym - ze slepičího bílku byl vyroben firmou Fluka (Buchs, Švýcarsko). Gelová elektroforéza GE byla uskutečněna pomocí přístroje Mini-Protean 3 Cell od firmy Bio-Rad (Philadelphia, USA) dle Orstein-Davise 6-7. Používal se koncentrační gel o zesítění 4 % a separační gel o 8 % zesítění. Pro zakoncentrování vzorku bylo použito napětí 100 V po dobu 10 minut a separace trvala 30 minut při 200 V. Laserová ablace K předběžnému studiu chování gelu a k analýze modelového vzorku byl použit nanosekundový Nd:YAG laser (New Wave, USA) pracující při vlnové délce 213 nm s délkou pulzu 4 ns a frekvencí 20 Hz. Laserové záření bylo zaostřováno na povrch vzorku a velikost ozářené plochy je vybírána pomocí clon. Pro studium chování gelu byla její velikost 110 µm a hustota zářivého výkonu se měnila v rozsahu od 0,0125 GW.cm -2 do 9,25 GW.cm -2. Hustota zářivého výkonu laserového záření použitého k ablaci modelového vzorku byla 3 GW.cm -2. Vzorek gelu byl umístěn do ablační cely o objemu 10 cm -3. Poté byl spuštěn záznam ICP-MS signálu a po 10 vteřinách byla spuštěna i laserová ablace. Ta byla prováděna při rychlosti pohybu ablační cely 50 m.s -1. Laserem generovaný aerosol gelu byl unášen do ICP-MS spektrometru proudem argonu o průtoku 1,30 l.min -1. ICP-MS spektrometr zaznamenával signál odpovídající 63 Cu a 65 Cu. ICP-MS Časově rozlišený záznam hmotnostních spekter byl měřen pomocí ICP-MS spektrometru Agilent 7500 (Agilent Technologies, USA). Podmínky ICP-MS spektrometru byly optimalizovány pomocí standardu NIST 612. Optimalizované podmínky jsou shrnuty v Tabulce I.
3 Tabulka I : Optimalizované podmínky ICP-MS vzdálenost cívky od vstupu do MS 9,4 [mm] proud nosného plynu 1,3 [l/min] poloha plazmatu vůči vstupu do MS - H 0 [mm] výkon generátoru 1410 [W] poloha plazmatu vůči vstupu do MS - V 0 [mm] napětí na vstupu -26 [V] napětí na iontové čočce 1 4,7 [V] napětí na výstupu -44 [V] napětí na iontové čočce [V] detektor duální mód Výsledky a diskuse Pro nativní GE se dle separovaných látek volí příslušné podmínky, protože dochází k dělení látek nejen dle velikosti / tvaru ale i dle náboje. Při separaci proteinů s nižším pi (kyselé proteiny) bylo postupováno dle příslušného protokolu 7. Gel byl vizualizován barvícím činidlem CBB R-250 a Ag. Na obr.1. a obr.2. je znázorněna separace v nativním prostředí s rozdílnými molárními koncentracemi modelového analytu BSA od 10-4 mol.l -1 do 10-7 mol.l -1 s vizualizací CBB R-250 i Ag. Barevná zóna na gelu značí přítomnost modelového vzorku. BSA BSA Obr.1. BSA, Vizualizace CBB R-250 Obr.2. BSA, Vizualizace Ag Při separaci proteinů s vyšší hodnotou pi (zásadité proteiny) bylo postupováno dle návodu 7. Bylo používáno 10 minut pro zakoncentrování vzorku při 100 V a 45 minut trvala separace při 145 V. Nejprve se volilo vodící činidlo pro indikaci konce separace, protože se při separaci mění směr elektromigrace a bromfenolová modř nemigruje stejným směrem jako zásadité proteiny. Nejlepší vlastnosti vykazovala methylenová modř. Měnila se koncentrace indikátoru čela. Při 0,25% (W/W) byla viditelnost barvy nízká. Při 0,75% (W/W) docházelo k velkému rozmývání indikátoru čela separace. Nejvhodnější byla koncentrace 0,50 % (W/W) indikátoru čela. Při napětí 145 V po dobu separace 45 minut, zásadité proteiny vykazovaly nízký retenční faktor, proto se zvyšovalo napětí na 200 V, 250 V a 300 V a zkracovala se doba separace na 30 minut. Při napětí 250 V nedocházelo k velkému zahřívání aparatury jako při 300 V a migrační vzdálenost byla delší než při 200 V. Pro studium chování gelu při laserové ablaci se používaly gely o různém zesítění separačního gelu vizualizovaném Ag nebo CBB R-250 po nativní GE i po SDS GE. Ablatoval
4 se gel sušený po dobu 24, 48, 120 a 360 hodin. Zesítění separačního gelu (8 %, 12 %) nemělo vliv na průběh vzniku kráteru. Doba sušení gelu při LA ovlivňovala nejen manipulaci s gelem, ale i vznik kráteru. Průběh a vzniku kráteru se lišil podle toho, zda byl gel obarven nebo ne. Nejpravidelnější krátery byly získány při ablaci gelu obarveného stříbrem. Stav gelu, zda byl suchý či zmražený kapalným dusíkem, vykazoval při ablaci odlišné chování. Se zmraženým gelem se obtížně manipulovalo a záznam a průběh vzniku kráteru byl znesnadněn nadměrným vypařováním vody obsažené v gelu. Průběh ablace gelu získaného po GE v denaturujícím a nedenaturujícím prostředí se neměnil. Byl studován vliv hustoty zářivého výkonu na tvorbu kráteru a bylo zjištěno, že tento parametr průběh tvorby kráteru ovlivňuje nejvíce. Hustota zářivého výkonu byla měněna v rozmezí od 0,125 GW.cm -2 (Obr.3.) po 9,25 GW.cm -2 (Obr.4.). Pro průběh a vznik kráteru při ablaci gelu byla vybrána hustota zářivého výkonu 3 GW.cm -2. Tato hustota byla používaná při LA ICP-MS modelového vzorku BSA saturovaného Cu 2+ v poměru 1:1 ( mol.l -1 ) Obr.3. 0,125 GW.cm -2 Obr.4. 9,25 GW.cm -2 Gelová separace modelového vzorku BSA saturovaného Cu 2+ v poměru 1:1 ( mol.l -1 ) byla provedena v denaturujícím i v nedenaturujícím prostředí. V obou případech byl použit 4% koncentrační gel a 8% separační gel. Bylo použito 100 V pro zkoncentrování vzorku po dobu 10 minut a separace proběhla při napětí 200 V po dobu 30 minut. Gel byl vizualizován barvícím činidlem CBB R-250 i Ag a sušen mezi fóliemi 24 hodin. Při LA ICP-MS byl pozorován signál 63 Cu a 65 Cu ve vybarvené zóně (BSA s Cu 2+ ) a mimo tuto zónu na stejném gelu. Získané signály byly od sebe odečteny a byl získán výsledný signál (Obr.5.). Vyšší intenzitu má signál 63 Cu z důvodu vyššího izotopového zastoupení. Intenzita signálu získaná při LA ICP-MS na vybarvené zóně je 6x intenzivnější než mimo tuto zónu. Z výsledného signálu vyplývá, že v oblasti vybarvené zóny je vyšší obsah Cu 2+ než v jiné části gelu, což potvrzuje navázání Cu 2+ na BSA. Intenzita signálu ze zóny by měla být mnohem vyšší (až 100krát) než pozadí.
5 ICP-MS INNTENZITA [cps] 6,E+04 5,E+04 4,E+04 Cu63 63 Cu 3,E+04 Cu65 2,E Cu 1,E+04 0,E čas [s] Obr č.5. ICP-MS signál 63 Cu a 65 Cu získaný ablací gelu po nativní GE obarvený Ag Závěr Nejnižší koncentrace modelového vzorku BSA, kterou lze použít vzhledem k vizualizaci při nativní GE kyselých proteinů, je 10-6 mol.l -1. Pro separaci zásaditých proteinů v nativní GE je nejvhodnějším indikátorem čela separace methylenová modř o koncentraci 0,50% (W/W), dále zvýšené napětí na 250 V po dobu separace 30 minut. Pro LA ICP-MS modelový analyt BSA saturovaný Cu 2+ nelze použít z důvodu vysokého signálu Cu 2+ mimo jeho separační zónu. Pro další analýzy se musí modelový analyt BSA saturovat Co 2+, u kterého se předpokládají nižší izobarické interference a nižší hodnota pozadí ve srovnání s Cu 2+. Dalším úsilím naší práce bude uskutečnit separaci zásaditých proteinů odlišným postupem, v modré nativní gelové elektroforéze (BN PAGE) 8, optimalizovat podmínky LA ICP-MS ve spojení s GE a nakonec separace metaloproteinů a následná analýza získaných zón v gelu pomocí LA ICP-MS. Poděkování Práce na tomto příspěvku byla financována grantem MSM Literatura 1. J. S. Garcia, C. Schmidt de Magalhães, M. A. Zezzi Arruda, Talanta (2006), 69, Joanna Szpunar, The Analyst (2005), 130, J. L. Gómez-Ariza, T. García-Barrera, F. Lorenzo and Ana Arias, Inernational Journal of Environmental Analyrical Chemistry (2005), 85, J.L. Gómez-Ariza, T. García-Barrera, F. Lorenzo, V. Bernal, M.J. Villegas, V. Oliveira, Analytica Chimica Acta (2004), 524, Juan López-Barea and José Luis Gómez-Ariza, Proteomics (2006), 6, S51-S62 6. Ornstein, L. and Davis, B. J., Anal. NY Acad. Sci., 121, 321 (1964) 7. AAWOQCQBAT3SFEQ?sourceId=25&path=0%7C30%7C32%7C50&nodeId=50&i d=2164 ( ) 8. Veronika Reisinger and Lutz Andreas Eichacker, Practical Proteomics (2006), 1, 6-15
LASEROVÁ ABLACE S HMOTNOSTNÍ SPEKTROMETRIÍ V INDUKČNĚ VÁZANÉM PLAZMATU PRO 2D MAPOVÁNÍ MOČOVÝCH KAMENŮ
Chem. Listy 13, s193 s197 (29) Cena Merck 29 LASEROVÁ ABLACE S HMOTNOSTNÍ SPEKTROMETRIÍ V INDUKČNĚ VÁZANÉM PLAZMATU PRO 2D MAPOVÁNÍ MOČOVÝCH KAMENŮ MONIKA NOVÁČKOVÁ, MARKÉTA HOLÁ a VIKTOR KANICKÝ Oddělení
Hmotnostní spektrometrie
Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie
LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním
HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek
IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SELENU METODOU ICP-OES
Strana 1 STANOVENÍ OBSAHU SELENU METODOU ICP-OES 1 Rozsah a účel Postup specifikuje podmínky pro stanovení celkového obsahu selenu v minerálních krmivech a premixech metodou optické emisní spektrometrie
HANA OVADOVÁ-NEJEZCHLEBOVÁ a, TOMÁŠ VACULOVIČ b, PAUL EK c, JAN HAVLIŠ d,e a VIKTOR KANICKÝ a,b. Úvod
KRYOGENICKÁ POSTSEPARAČNÍ ÚPRAVA POLYAKRYLAMIDOVÝCH GELŮ PRO METALOPROTEOMICKÉ ANALÝZY KOMBINACÍ GELOVÉ ELEKTROFORÉZY, LASEROVÉ ABLACE A HMOTNOSTNÍ SPEKTRO- METRIE S IONIZACÍ INDUKČNĚ VÁZANÝM PLAZMATEM
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického
Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie
Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační
1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I
1. Příloha 1 Návod úlohy pro Pokročilé praktikum z biochemie I Vazba bromfenolové modři na sérový albumin Princip úlohy Albumin má unikátní vlastnost vázat menší molekuly mnoha typů. Díky struktuře, tvořené
SDS polyakrylamidová gelová elektroforéza (SDS PAGE)
SDS polyakrylamidová gelová elektroforéza (SDS PAGE) Princip SDS polyakrylamidová gelová elektroforéza slouží k separaci proteinů na základě jejich velikosti (molekulové hmotnosti). Zahřátím vzorku za
ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES
30074. Analýza extraktu podle Mehlicha 3 Strana ANALÝZA EXTRAKTU PODLE MEHLICHA 3 METODOU ICP-OES Účel a rozsah Postup je určen především pro stanovení obsahu základních živin vápníku, hořčíku, draslíku,
Optický emisní spektrometr Agilent 725 ICP-OES
Optický emisní spektrometr Agilent 725 ICP-OES Popis systému: Přístroj, včetně řídicího softwaru a počítače, určený pro plně simultánní stanovení prvků v širokém koncentračním rozmezí (ppm až %), v nejrůznějších
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS)
Stanovení 14 C s využitím urychlovačové hmotnostní spektrometrie (AMS) Fejgl 1,2, M., Černý 1,3, R., Světlík 1,2, I., Tomášková 1, L. 1 CRL ODZ ÚJF AV ČR, v.v.i., Na Truhlářce 39/64, 180 86 Praha 8 2 SÚRO,
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VÁPNÍKU, DRASLÍKU, HOŘČÍKU, SODÍKU A FOSFORU METODOU ICP-OES 1 Rozsah a účel Metoda je určena pro stanovení makroprvků vápník, fosfor, draslík, hořčík
nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL
Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální
Hmotnostní spektrometrie. Historie MS. Schéma MS
Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející
VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS
1 VYUŽITÍ TEPELNÉHO ZMLŽOVAČE V AAS JAN KNÁPEK Katedra analytické chemie, Přírodovědecká fakulta MU, Kotlářská 2, Brno 611 37 Obsah 1. Úvod 2. Tepelný zmlžovač 2.1 Princip 2.2 Konstrukce 2.3 Optimalizace
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE
ANORGANICKÁ HMOTNOSTNÍ SPEKTROMETRIE (c) David MILDE 2003-2010 Metody anorganické MS ICP-MS hmotnostní spektrometrie s indukčně vázaným plazmatem, GD-MS spojení doutnavého výboje s MS, SIMS hmotnostní
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII. Pavla Pekárková
KOMPLEXY EUROPIA(III) LUMINISCENČNÍ VLASTNOSTI A VYUŽITÍ V ANALYTICKÉ CHEMII Pavla Pekárková Katedra analytické chemie, Přírodovědecká fakulta, Masarykova univerzita, Kotlářská 2, 611 37 Brno E-mail: 78145@mail.muni.cz
Pokročilé biofyzikální metody v experimentální biologii
Pokročilé biofyzikální metody v experimentální biologii Ctirad Hofr 1/1 Proč biofyzikální metody? Biofyzikální metody využívají fyzikální principy ke studiu biologických systémů Poskytují kvantitativní
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE A MOŽNOSTI JEJÍHO SPOJENÍ SE SEPARAČNÍMI METODAMI SEPARACE chromatografie CGC, GC x GC HPLC, UPLC, UHPLC, CHIP-LC elektromigrační m. CZE, CITP INTERFACE SPOJENÍ x ROZHRANÍ GC vyhřívaná
Elektromigrační metody
Elektromigrační metody Princip: molekuly nesoucí náboj se pohybují ve stejnosměrném elektrickém Arne Tiselius rozdělil proteiny krevního séra na základě jejich rozdílných rychlostí pohybu v elektrickém
Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin
Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU KOBALTU METODOU ICP-MS 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení celkového obsahu kobaltu v krmivech metodou hmotnostní spektrometrie
Elektroforéza v přítomnosti SDS SDS PAGE
Elektroforéza v přítomnosti SDS SDS PAGE Elektroforéza v přítomnosti SDS SDS PAGE je jednoduchá, rychlá a reprodukovatelná metoda pro kvalifikovanou charakterizaci a srovnání bílkovin.tato metoda separuje
laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin
Aktivita KA 2340/4-8up Stanovení bílkovin v mléce pomocí SDS PAGE (elektroforéza na polyakrylamidovém gelu s přídavkem dodecyl sulfátu sodného) vypracovala: MVDr. Michaela Králová, Ph.D. Princip: Metoda
Metody práce s proteinovými komplexy
Metody práce s proteinovými komplexy Zora Nováková, Zdeněk Hodný Proteinové komplexy tvořeny dvěma a více proteiny spojenými nekovalentními vazbami Van der Waalsovy síly vodíkové můstky hydrofobní interakce
Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách
Určení koncentrace proteinu fluorescenční metodou v mikrotitračních destičkách Teorie Stanovení celkových proteinů Celkové množství proteinů lze stanovit pomocí několika metod; například: Hartree-Lowryho
Microfluidic systems, advantages and applications Monika Kremplová, Mgr.
Název: Školitel: Microfluidic systems, advantages and applications Monika Kremplová, Mgr. Datum: 21. 6. 2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název projektu: Mezinárodní spolupráce v oblasti "in
Struktura bílkovin očima elektronové mikroskopie
Struktura bílkovin očima elektronové mikroskopie Roman Kouřil Katedra Biofyziky (http://biofyzika.upol.cz) Centrum regionu Haná pro biotechnologický a zemědělský výzkum Přírodovědecká fakulta, Univerzita
OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI
Středoškolská technika 212 Setkání a prezentace prací středoškolských studentů na ČVUT OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI Eliška Marková
Průtokové metody (Kontinuální měření v proudu kapaliny)
Průtokové metody (Kontinuální měření v proudu kapaliny) 1. Přímé měření: analyzovaná kapalina většinou odvětvena + vhodný detektor 2. Kapalinová chromatografie (HPLC) Stanovení po předchozí separaci 3.
Studijní program: Analytická a forenzní chemie
Studijní program: Analytická a forenzní chemie Studijní program: Analytická a forenzní chemie První rok je studium společné a dělí se až od druhého roku na specializace Specializace 1: Analytická chemie,
HMOTNOSTNÍ SPEKTROMETRIE
HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie
Metody separace. přírodních látek
Metody separace přírodních látek (5) Chromatografie; základní definice a klasifikace ruzných metod; kapalinová chromatografie, plynová chromatografie, přístrojová technika. Chromatografie «F(+)d» 1897
10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita
Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová
Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod
Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY ZLATÝCH A STŘÍBRNÝCH KELTSKÝCH MINCÍ Z BRATISLAVSKÉHO HRADU METODOU SEM-EDX. ZPRACOVAL Martin Hložek
/ 1 ZPRACOVAL Martin Hložek TMB MCK, 2011 ZADAVATEL PhDr. Margaréta Musilová Mestský ústav ochrany pamiatok Uršulínska 9 811 01 Bratislava OBSAH Úvod Skanovací elektronová mikroskopie (SEM) Energiově-disperzní
Ultrastopová laboratoř České geologické služby
Ultrastopová laboratoř České geologické služby Jitka Míková Česká geologická služba Praha - Barrandov Laboratorní koloběh Zadavatel TIMS Analýza vzorku Vojtěch Erban Jakub Trubač Lukáš Ackerman Jitka Míková
MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN. Jakub Hraníček
MINIATURIZACE PRŮTOKOVÝCH ELEKTROCHEMICKÝCH CEL PRO GENEROVÁNÍ TĚKAVÝCH SLOUČENIN Jakub Hraníček Katedra analytické chemie, Přírodovědecká fakulta, Univerzita Karlova, Albertov 6, 128 43 Praha 2 E-mail:
Renáta Kenšová. Název: Školitel: Datum: 24. 10. 2014
Název: Školitel: Sledování distribuce zinečnatých iontů v kuřecím zárodku za využití moderních technik Monitoring the distribution of zinc ions in chicken embryo using modern techniques Renáta Kenšová
ANALYTICKÝ PRŮZKUM / 1 CHEMICKÉ ANALÝZY DROBNÝCH KOVOVÝCH OZDOB Z HROBU KULTURY SE ZVONCOVÝMI POHÁRY Z HODONIC METODOU SEM-EDX
/ 1 ZPRACOVAL Mgr. Martin Hložek TMB MCK, 2011 ZADAVATEL David Humpola Ústav archeologické památkové péče v Brně Pobočka Znojmo Vídeňská 23 669 02 Znojmo OBSAH Úvod Skanovací elektronová mikroskopie (SEM)
Úvod do spektrálních metod pro analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz
Spojení hmotové spektrometrie se separačními metodami
Spojení hmotové spektrometrie se separačními metodami RNDr. Radomír Čabala, Dr. Katedra analytické chemie Přírodovědecká fakulta Univerzita Karlova Praha Spojení hmotové spektrometrie se separačními metodami
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ
SHRNUTÍ A ZÁKLADNÍ POJMY chemie 8.ročník ZŠ 1. ČÍM SE ZABÝVÁ CHEMIE VLASTNOSTI LÁTEK, POKUSY - chemie přírodní věda, která studuje vlastnosti a přeměny látek pomocí pozorování, měření a pokusu - látka
Modulace a šum signálu
Modulace a šum signálu PATRIK KANIA a ŠTĚPÁN URBAN Nejlepší laboratoř molekulové spektroskopie vysokého rozlišení Ústav analytické chemie, VŠCHT Praha kaniap@vscht.cz a urbans@vscht.cz http://www.vscht.cz/anl/lmsvr
Aplikace AAS ACH/APAS. David MILDE, Úvod
Aplikace AAS ACH/APAS David MILDE, 2017 Úvod AAS: v podstatě 4atomizační techniky: plamenová atomizace (FA), elektrotermická atomizace (ETA), generování těkavých hydridů (HG), určené pro stanovení As,
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU ARSENU METODOU ICP-MS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU ARSENU METODOU ICP-MS 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení obsahu arsenu v krmivech metodou hmotnostní spektrometrie s indukčně
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU ARSENU, KOBALTU, CHROMU A NIKLU METODOU ICP-OES
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU ARSENU, KOBALTU, CHROMU A NIKLU METODOU ICP-OES 1 Rozsah a účel Metoda je určena pro stanovení uvedených prvků (As, Co, Cr, Ni) v krmivech metodou
Porovnání metod atomové spektrometrie
Porovnání metod atomové spektrometrie ACH/APAS David MILDE, 2017 Úvod Metody našeho zájmu: plamenová atomizace v AAS (FA-AAS) elektrotermická atomizace v AAS (ETA-AAS, GF-AAS) ICP-OES ICP-MS Výhody a nevýhody
STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE
STANOVENÍ ETHANOLU V ALKOHOLICKÉM NÁPOJI POMOCÍ NIR SPEKTROMETRIE Úvod Infračervená spektrometrie v blízké oblasti (Near-Infrared Spectrometry NIR spectrometry) je metoda molekulové spektrometrie, která
Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS
Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS 1 Rozsah a účel Postup je určen pro stanovení obsahu melaminu a kyseliny kyanurové v krmivech. 2 Princip
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie
Pokročilé cvičení z fyzikální chemie KFC/POK2 Vibrační spektroskopie Vibrace molekul mohou být měřeny buď pomocí absorpce infračerveného záření, nebo pomocí neelastického rozptylu záření, tzn. Ramanova
Western blotting. 10% APS 20,28 µl 40,56 µl 81,12 µl 20,28 µl 40,56 µl 81,12 µl
Western blotting 1. Příprava gelu složení aparatury hustotu gelu volit podle velikosti proteinů příprava rozdělovacího gelu: 10% 12% počet gelů 1 2 4 1 2 4 objem 6 ml 12 ml 24 ml 6 ml 12 ml 24 ml 40% akrylamid
10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie
10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých
Tento rámcový přehled je určen všem studentům zajímajícím se o aktivní vědeckou práci.
Tento rámcový přehled je určen všem studentům zajímajícím se o aktivní vědeckou práci. Konkrétní témata bakalářských a diplomových prací se odvíjejí od jednotlivých projektů uvedených dále. Ústav analytické
STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková organizace
Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: Označení materiálu: Typ materiálu: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 28. října 2707, příspěvková
Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy,
Laboratoř Metalomiky a Nanotechnologií Hmotnostní detekce biologicky významných sloučenin pro biotechnologie část 3 - Provedení štěpení proteinů a následné analýzy, vyhodnocení výsledků, diskuse Anotace
Zajištění správnosti výsledků analýzy kotininu a kreatininu
Zajištění správnosti výsledků analýzy kotininu a kreatininu Š.Dušková, I.Šperlingová, L. Dabrowská, M. Tvrdíková, M. Šubrtová duskova@szu.cz sperling@szu.cz Oddělení pro hodnocení expozice chemickým látkám
Gelová permeační chromatografie
Gelová permeační chromatografie (Gel Permeation Chromatography - GPC) - separační a čisticí metoda - umožňuje separaci skupin sloučenin s podobnou molekulovou hmotností (frakcionace) - analyty jsou po
Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms)
Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms) Teorie: Desorpční elektrosprej (DESI) byl popsán v roce 2004 Zoltánem Takátsem. Jedná se o
ÚSTAV CHEMIE A ANALÝZY POTRAVIN
VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ
Moderní nástroje v analýze biomolekul
Moderní nástroje v analýze biomolekul Definice Hmotnostní spektrometrie (zkratka MS z anglického Mass spectrometry) je fyzikálně chemická metoda. Metoda umožňující určit molekulovou hmotnost chemických
MASARYKOVA UNIVERZITA
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Bc. Veronika MOŽNÁ Studium laserové ablace ocelí ve spojení s ICP-OES a ICP-MS Diplomová práce Vedoucí práce: Mgr. Markéta Holá, Ph. D. Brno, 2006 1 Prohlašuji,
Hmotnostní spektrometrie - Mass Spectrometry (MS)
Hmotnostní spektrometrie - Mass Spectrometry (MS) Další pojem: Hmotnostně spektrometrický (selektivní) detektor - Mass spectrometric (selective) detector (MSD) Spektrometrie - metoda založená na interakci
Úvod do strukturní analýzy farmaceutických látek
Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem
Kalibrace a testování spektrometrů
Kalibrace a testování spektrometrů Viktor Kanický 5.3.014 1 Kalibrace ICP-OES V ICP-OES je lineární závislost intenzity emise na koncentraci analytu v rozsahu 4 až 6 řádů. V analytické praxi se obvykle
OPTICKÁ EMISNÍ SPEKTROMETRIE
OPTICKÁ EMISNÍ SPEKTROMETRIE Optical Emission Spectrometry (OES) ATOMOVÁ EMISNÍ SPEKTROMETRIE (AES) (c) -2010 OES je založena na registrování fotonů vzniklých přechody valenčních e - z vyšších energetických
Spektra 1 H NMR. Velmi zjednodušeně! Bohumil Dolenský
Spektra 1 MR Velmi zjednodušeně! Bohumil Dolenský Spektra 1 MR... Počet signálů C 17 18 2 O 2 MeO Počet signálů = počet neekvivalentních skupin OMe = informace o symetrii molekuly Spektrum 1 MR... Počet
Separační metody v analytické chemii. Plynová chromatografie (GC) - princip
Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné
13. Spektroskopie základní pojmy
základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
První testový úkol aminokyseliny a jejich vlastnosti
První testový úkol aminokyseliny a jejich vlastnosti Vysvětlete co znamená pojem α-aminokyselina Jaký je rozdíl mezi D a L řadou aminokyselin Kolik je základních stavebních aminokyselin a z čeho jsou odvozeny
INTERPRETACE HMOTNOSTNÍCH SPEKTER
INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS
GENEROVÁNÍ TĚKAVÝCH SLOUČENIN V AAS Pro generování těkavých sloučenin se používá: generování těkavých hydridů: As, Se, Bi, Ge, Sn, Te, In, generování málo těkavých hydridů: In, Tl, Cd, Zn, metoda studených
Imunochemické metody. na principu vazby antigenu a protilátky
Imunochemické metody na principu vazby antigenu a protilátky ANTIGEN (Ag) specifická látka (struktura) vyvolávající imunitní reakci a schopná vazby na protilátku PROTILÁTKA (Ab antibody) molekula bílkoviny
VYUŽITÍ BEZKONTAKTNÍ VODIVOSTNÍ DETEKCE PRO HPLC SEPARACI POLYKARBOXYLÁTOVÝCH DERIVÁTŮ CYKLENU. Anna Hamplová
VYUŽITÍ BEZKOTAKTÍ VODIVOSTÍ DETEKCE PRO HPLC SEPARACI POLYKARBOXYLÁTOVÝCH DERIVÁTŮ CYKLEU Anna Hamplová Univerzita Karlova v Praze, Přírodovědecká fakulta, Katedra analytické chemie Albertov 6, 128 43
Hmotnostní detekce biologicky významných sloučenin pro biotechnologie
Název: Školitelé: Hmotnostní detekce biologicky významných sloučenin pro biotechnologie MSc. Miguel Angel Merlos Rodrigo, Mgr. Ondřej Zítka, Ph.D. Datum: 17.5.2013 Reg.č.projektu: CZ.1.07/2.3.00/20.0148
Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4.
Vyučovací předmět - Chemie Vzdělávací obor - Člověk a příroda Gymnázium, Milevsko, Masarykova 183 Školní vzdělávací program (ŠVP) pro vyšší stupeň osmiletého studia a čtyřleté studium 4. ročník - seminář
Molekulová spektroskopie 1. Chemická vazba, UV/VIS
Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická
Dynamické procesy & Pokročilé aplikace NMR. chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů
Dynamické procesy & Pokročilé aplikace NMR chemická výměna, translační difuze, gradientní pulsy, potlačení rozpouštědla, NMR proteinů Chemická výměna jakýkoli proces při kterém dané jádro mění svůj stav
AUTOMATICKÁ EMISNÍ SPEKTROMETRIE
AUTOMATICKÁ EMISNÍ SPEKTROMETRIE SPEKTROGRAFIE Jako budící zdroj slouží plazma elektrického výboje, kdy se výkon generátoru mění v plazmatu na teplo, ionizační a budící práci a zářivou E. V praxi se spektrografie
Identifikace a stanovení chininu v toniku pomocí CE-MS
Identifikace a stanovení chininu v toniku pomocí CE-MS Úkol: Stanovte množství chininu v nealkoholickém nápoji (tonik) pomocí kapilární zónové elektroforézy ve spojení s hmotnostní spektrometrií Teoretická
Základním praktikum z laserové techniky
Úloha: Základním praktikum z laserové techniky FJFI ČVUT v Praze #6 Nelineární transmise saturovatelných absorbérů Jméno: Ondřej Finke Datum měření: 30.3.016 Spolupracoval: Obor / Skupina: 1. Úvod Alexandr
Agilent 5110 ICP-OES vždy o krok napřed
analytická instrumentace, PC, periferie, služby, poradenství, servis Agilent 5110 ICP-OES vždy o krok napřed IntelliQuant Jedinečný nástroj pro rychlé a snadné semi-kvantitativní analýzy. V rámci rutinních
Hmotnostní spektrometrie ve spojení se separačními metodami
Pražské analytické centrum inovací Projekt CZ.04.3.07/4.2.01.1/0002 spolufinancovaný ESF a Státním rozpočtem ČR Hmotnostní spektrometrie ve spojení se separačními metodami Ivan Jelínek PřF UK Praha Definice:
Fakulta životního prostředí v Ústí nad Labem. Pokročilé metody studia speciace polutantů. (prozatímní učební text, srpen 2012)
Fakulta životního prostředí v Ústí nad Labem Pokročilé metody studia speciace polutantů (prozatímní učební text, srpen 2012) Obsah kurzu: 1. Obecné strategie speciační analýzy. a. Úvod do problematiky
Fluorescence (luminiscence)
Fluorescence (luminiscence) Patří mezi luminiscenční metody fotoluminiscence. Luminiscence efekt, kdy excitované molekuly či atomy vyzařují světlo při přechodu z excitovaného do základního stavu. Podle
Hmotnostní spektrometrie
Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů
CHEMIE. Pracovní list č. 10 - žákovská verze Téma: Bílkoviny. Mgr. Lenka Horutová
www.projektsako.cz CHEMIE Pracovní list č. 10 - žákovská verze Téma: Bílkoviny Lektor: Mgr. Lenka Horutová Projekt: Student a konkurenceschopnost Reg. číslo: CZ.1.07/1.1.07/03.0075 Teorie: Název proteiny
MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL. Miloslav Šanda
MENÍ A INTERPRETACE SPEKTER BIOMOLEKUL Miloslav Šanda Ionizaní techniky využívané k analýze biomolekul (biopolymer) MALDI : proteiny, peptidy, oligonukleotidy, sacharidy ESI : proteiny, peptidy, oligonukleotidy,
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV)
VÝBĚROVÁ ŘÍZENÍ CENTRUM REGIONU HANÁ PROJEKT EXCELENTNÍ VÝZKUM (OP VVV) Oddělení biofyziky - absolvování magisterského studia v oboru biofyzika, biochemie nebo v biologickém oboru - prezenční Ph.D. studium
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY
ABSORPČNÍ A EMISNÍ SPEKTRÁLNÍ METODY 1 Fyzikální základy spektrálních metod Monochromatický zářivý tok 0 (W, rozměr m 2.kg.s -3 ): Absorbován ABS Propuštěn Odražen zpět r Rozptýlen s Bilance toků 0 = +
Analýza skleněných střepů
Analýza skleněných střepů Sklo se vyrábí z anorganických oxidů. Hlavní složkou je oxid křemičitý SiO 2. Specifické vlasnosti skla závisí na obsahu a zastoupení oxidů ve směsi. Např. Na 2 O.CaO.SiO 2 -
VIBRAČNÍ SPEKTROMETRIE
VIBRAČNÍ SPEKTROMETRIE (c) -2012 RAMANOVA SPEKTROMETRIE 1 PRINCIP METODY Měří se rozptýlené záření, které vzniká interakcí monochromatického záření z viditelné oblasti s molekulami vzorku za současné změny