DSA, První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right)
|
|
- Eva Valentová
- před 5 lety
- Počet zobrazení:
Transkript
1 Indukcí dokažte následující výrok: pokud lef t a right jsou parametry funkce f a platí left right, pak volání f(array, left, right) vrátí minimální hodnotu z hodnot všech prvků v poli array na indexech left až right včetně a vždy skončí v konečném počtu kroků. int f(int[] array, int left, int right) { if (left == right) return array[left]; int l = f(array, left, (left + right) / ); // celociselne deleni, zaokrouhluje dolu int r = f(array, (left + right) / + 1, right); return (l < r)? l : r; Dlouhou vodorovnou čarou oddělte důkaz prvního a druhého indukčního kroku, u druhého indukčního kroku zřetelně napište, jak vypadá indukční předpoklad a co se z něj snažíte dokázat. První krok: máme dokázat, že pro left = right vrátí volání f(array, left, right) po konečném počtu kroků minimum z množiny array[lef t]. To zjevně platí: funkce se vrátí hned na prvním řádku (na kterém nejsou žádné cykly ani volání dalších funkcí) a vrátí array[lef t]. Indukční krok: předpokládáme, že volání f(array, left, (left + right)/) po konečném počtu kroků vrátí minimum z množiny L = {array[left],..., array[(left+ right)/], a že volání f(array, (left + right)/ + 1, right) po konečném počtu kroků vrátí minimum z množiny R = {array[(left+right)/+1],..., array[right]; chceme dokázat, že volání f(array, lef t, right) po konečném počtu kroků vrátí minimum z množiny A = {array[left],..., array[right]. Konečnost počtu kroků je zjevná: kromě rekurzivních volání (která podle indukčního předpokladu skončí v konečném počtu kroků) se vykoná ještě první a poslední řádek. Oba neobshují žádné cykly ani volání funkcí, proto skončí v konečném počtu kroků. Ad parciální správnost: platí A = L R, funkce f vrátí to menší z minim L a R, takže nutně musí vrátit minimum z A. Indukcí dokažte následující výrok: pokud lef t a right jsou parametry funkce f a platí left right a pokud pole array obsahuje hodnotu elem alespoň na jednom z indexů mezi left až right včetně, pak volání f(array, elem, left, right) v konečném počtu kroků vrátí hodnotu true, jinak f alse. boolean f(int[] array, int elem, int left, int right) { if (left == right) return array[left] == elem; boolean l = f(array, elem, left, (left + right) / ); // celociselne deleni, zaokrouhluje dolu boolean r = f(array, elem, (left + right) / + 1, right); return l r; Dlouhou vodorovnou čarou oddělte důkaz prvního a druhého indukčního kroku, u druhého indukčního kroku zřetelně napište, jak vypadá indukční předpoklad a co se z něj snažíte dokázat. První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right) po konečném počtu kroků jestli elem {array[lef t]. To zjevně platí: funkce
2 se vrátí hned na prvním řádku (na kterém nejsou žádné cykly ani volání dalších funkcí) a vrátí zda elem = array[left]. Indukční krok: předpokládáme, že volání f(array, left, (left + right)/) po konečném počtu kroků vrátí zda elem L, kde L = {array[left],..., array[(left+ right)/], a že volání f(array, (left + right)/ + 1, right) po konečném počtu kroků vrátí zda elem R, kde R = {array[(left+right)/+1],..., array[right]; chceme dokázat, že volání f(array, lef t, right) po konečném počtu kroků vrátí zda elem A, kde A = {array[left],..., array[right]. Zjevně platí A = L R, platí tedy elem A elem L elem R, což je přesně to, co funkce f vrací. Konečnost je taky zjevná: druhý a třetí řádek skončí v konečném čase podle indukčního předpokladu, první ani čtvrtý řádek neobsahují žádný cyklus ani volání funkce. Napište, jakou hodnotu vrací průměrně funkce r pro daná n a k. Napište zřetelně postup vašeho odvození. O typu double uvažujte jako o typu s neomezenou přesností. double r(int n, int k) { Random rnd = new Random(); double[] b = new double[n]; for (int i = 0; i < k; i++) b[rnd.nextint(n)] = 1.0; //nahodne cislo 0..n-1 double s = 0.0; for (int i = 0; i < n; i++) s += b[i]; return s; Nadefinujme si vektor náhodných veličin (indikátorů) tak, že B i = 1, pokud je po projití prvního for cyklu v b[i] jednička, a B i = 0 jinak. Pravděpodobnost, že v b[i] je nula (tzn. že B i = 0), je P r{b[i] = 0 = ( ) n 1 k. n Průměrná hodnota sumy všech prvků v poli je pak E [ n 1 ] n 1 n 1 B i = E[B i ] = (0 P r{b[i] = P r{b[i] = 1) = ( ( ) ) k n 1 = n 1 n Popište, co vytiskne funkce cp. Napište, kolik řádků vytiskne pro obecná n a k. Demonstrujte své závěry na příkladu volání cp(4, ). void cp(int n, int k) { cp(new int[n], k, 0); void cp(int[] n, int k, int i) { if (i == n.length) { for(int a: n)
3 System.out.print(a); System.out.println(); return; if(i < n.length-k) { n[i] = 0; cp(n, k, i + 1); if(k > 0) { n[i] = 1; cp(n, k-1, i + 1); //pokracuje na radce //konec radky Funkce vytiskne všechny nciferné řetězce složené z k jedniček a n k nul. Těch je stejně jako kprvkových podmnožin nprvkové množiny, tedy ( n k). Napište tvrzení, které bude platit pro návratovou hodnotu metody f, pokud tato metoda na vstupu obdrží celočíselné pole délky n, kde n je celé číslo větší než nula. int f(int[] array) { int i = 0; for (int j = 1; j < array.length; j++) if (array[i] > array[j]) i = j; return i; Funkce f vrátí index prvního minima v poli array. Funkce f vrátí i takové, že j {1,..., array.length 1 : array[i] < array[j] (array[i] = array[j] i j). Napište tvrzení, které bude platit pro návratovou hodnotu metody f, pokud tato metoda na vstupu obdrží celočíselné pole délky n, kde n je celé číslo větší než nula. int f(int[] array) { int i = 0; for (int j = 1; j < array.length; j++) if (array[i] < array[j]) i = j; return i; Funkce f vrátí index prvního maxima v poli array. Funkce f vrátí i takové, že j {1,..., array.length 1 : array[i] > array[j] (array[i] = array[j] i j). Čtvercová matice M o rozměru k k obsahuje kladné a záporné prvky. Prvek na pozici (i, j) je kladný, pokud číslo i + j je sudé, jinak je záporný. Algoritmus A
4 prochází po řádcích odshora dolů celou matici M. Pokud je prvek na pozici (i, j) kladný, provede s ním algoritmus A právě k + i specifických operací. Pokud je prvek na pozici (i, j) záporný, provede s ním algoritmus A pouze k specifických operací. Indexy řádků i sloupců začínají od 0. Napište odvození vztahu, který pro dané sudé k určí, kolik specifických operací algoritmus A provede v matici M o rozměru k k. Matice počtu prováděných operací vypadá takto: k + 0 k... k + 0 k k k k k k + (k ) k... k + (k ) k k k + (k 1)... k k + (k 1) Celkový počet operací na sudých sloupcích je k/ 1 k k + k + a = k a=0 + [k + (k + k )] k celkový počet operací na lichých sloupcích je k/ 1 k k + k + a + 1 = k a=0 + [k (k + k 1)] k = k 4 + 3k k 4 = 5k k, 4 = k 4 + 3k 4 = 5k 4. Sudých i lichých řádků je k, celkový počet operací na všech sloupcích je proto ( k 5k ) k + 5k = k3 1 4 k. Alternativně, sčítáno po řádcích: k 1 ( k k + k ) (k + i) = k k 1 (k + i) = k 3 + k = k 3 + k [0 + (k 1)]k k 1 i = = 4k3 4 + k3 k = k3 1 4 k. Když je procedura P zavolána s kladným celočíselným parametrem n, nejprve vytvoří (n 1) nových diskových souborů a nakonec zavolá sama sebe s parametrem (n 1). Pokud je P zavolána se záporným parametrem nebo s nulou, neprovede nic a skončí. Víme, že velikost každého nového diskového souboru je 00 B. Procedura P byla zavolána s neznámou hodnotou parametru n a po jejím skončení na disku ubylo Bytů volného místa. Určete hodnotu neznámého parametru n, napište, jak jste odvozovali přislušné vztahy. Podle zadání ubyde po volání P (n) n k=1 (k 1) 00 B volného místa. Tedy = n (0+n 1) n k=1 (k 1) 00 = 00 = (n n) 100, n n 650 = 0 a n = 6.
5 Funkce f zpracovává jednosměrný spojový seznam definovaný datovými typy LinkedList a Node. Popište jednou větou, co vrací funkce f, a implementujte ji znovu tak, aby pracovala co nejefektivněji. class Node { int value; //Hodnota ulozena v prvku spojoveho seznamu Node next; //Odkaz na nasledujici prvek v seznamu class LinkedList { Node head; //Odkaz na prvni prvek spojoveho seznamu int f(linkedlist l) { Node mark = l.head; int t = 0; while (mark!= null) { Node x = f1(l.head, mark); t = t + x.value; mark = x.next; return t; Node f1(node n, Node mark) { if (n == mark) return n; else return f1(n.next, mark); Funkce vrací součet prvků v zadaném spojovém seznamu. int f(linkedlist l) { int r = 0; for (Node t = l.head; t!= null; t = t.next) r += t.value; return r; Funkce f zpracovává obousměrný spojový seznam definovaný datovými typy DoubleLinkedList a Node. Popište jednou větou, co vrací funkce f, a implementujte ji znovu tak, aby pracovala co nejefektivněji. class Node { int value; //Hodnota ulozena v prvku spojoveho seznamu Node next; //Odkaz na nasledujici prvek v seznamu Node prev; //Odkaz na predchazejici prvek v seznamu class DoubleLinkedList {
6 Node head; //Odkaz na prvni prvek spojoveho seznamu Node tail; //Odkaz na posledni prvek spojoveho seznamu int f(doublelinkedlist l) { Node n = l.head; Node mark = l.tail; int t = 1; while (mark!= null) { Node x = f1(l.head, mark); t = t * x.value; mark = mark.prev; return t; Node f1(node n, Node mark) { if (n == mark) return n; else return f1(n.next, mark); Funkce vrací součin prvků v zadaném spojovém seznamu. int f(linkedlist l) { int r = 1; for (Node t = l.head; t!= null; t = t.next) r *= t.value; return r;
2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.
Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus
Úvod do programování - Java. Cvičení č.4
Úvod do programování - Java Cvičení č.4 1 Sekvence (posloupnost) Sekvence je tvořena posloupností jednoho nebo více příkazů, které se provádějí v pevně daném pořadí. Příkaz se začne provádět až po ukončení
Seznamy a iterátory. Kolekce obecně. Rozhraní kolekce. Procházení kolekcí
Kolekce obecně Seznamy a iterátory doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Kolekce ::= homogenní sada prvků
IAJCE Přednáška č. 8. double tprumer = (t1 + t2 + t3 + t4 + t5 + t6 + t7) / 7; Console.Write("\nPrumerna teplota je {0}", tprumer);
Pole (array) Motivace Častá úloha práce s větším množstvím dat stejného typu o Př.: průměrná teplota za týden a odchylka od průměru v jednotlivých dnech Console.Write("Zadej T pro.den: "); double t = Double.Parse(Console.ReadLine());
Poslední nenulová číslice faktoriálu
Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip
Spojová implementace lineárních datových struktur
Spojová implementace lineárních datových struktur doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB
Dynamické datové struktury III.
Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované
5 Rekurze a zásobník. Rekurzivní volání metody
5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení
Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy
Základní pojmy Stromy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Graf uzly hrany orientované / neorientované Souvislý
Základní datové struktury III: Stromy, haldy
Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní
Část I Spojové struktury
Část 1 Spojové struktury (seznamy) Spojové struktury Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 10 A0B36PR1 Programování 1 Spojové struktury Spojový
IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)
IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Programování v C++, 2. cvičení
Programování v C++, 2. cvičení 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 Operátory new a delete 2 3 Operátory new a delete minule
1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:
Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.
Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.
1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste
Spojové struktury. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 10 A0B36PR1 Programování 1
Spojové struktury Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 10 A0B36PR1 Programování 1 Jan Faigl, 2015 A0B36PR1 Přednáška 10: Spojové struktury
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Správa paměti. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016
Správa paměti Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016 Objektové modelování, B36OMO 10/2016, Lekce 2 https://cw.fel.cvut.cz/wiki/courses/xxb36omo/start
Kolekce, cyklus foreach
Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro
Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace
Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:
Stromy, haldy, prioritní fronty
Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)
ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel
Základní pojmy. Matice(řádky, sloupce) Matice(4,6) sloupce
Vektor a Matice Základní pojmy Matice(řádky, sloupce) Matice(4,6) sloupce řádky (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) (4,1) (4,2) (4,3)
Základy programování (IZP)
Základy programování (IZP) Osmé počítačové cvičení Brno University of Technology, Faculty of Information Technology Božetěchova 1/2, 612 66 Brno - Královo Pole Petr Veigend, iveigend@fit.vutbr.cz 20.11.2017,
EVROPSKÝ SOCIÁLNÍ FOND. Úvod do PHP PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI
EVROPSKÝ SOCIÁLNÍ FOND Úvod do PHP PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI Úvod do PHP PHP Personal Home Page Hypertext Preprocessor jazyk na tvorbu dokumentů přípona: *.php skript je součást HTML stránky!
8. lekce Úvod do jazyka C 3. část Základní příkazy jazyka C Miroslav Jílek
8. lekce Úvod do jazyka C 3. část Základní příkazy jazyka C Miroslav Jílek 1/41 Základní příkazy Všechny příkazy se píšou malými písmeny! Za většinou příkazů musí být středník (;)! 2/41 Základní příkazy
Stručný návod k programu Octave
Stručný návod k programu Octave Octave je interaktivní program vhodný pro technické výpočty. Je nápadně podobný programu MATLAB, na rozdíl od něho je zcela zadarmo. Jeho domovská vebová stránka je http://www.octave.org/,
1 Nejkratší cesta grafem
Bakalářské zkoušky (příklady otázek) podzim 2014 1 Nejkratší cesta grafem 1. Uvažujte graf s kladným ohodnocením hran (délka). Definujte formálně problém hledání nejkratší cesty mezi dvěma uzly tohoto
8 Třídy, objekty, metody, předávání argumentů metod
8 Třídy, objekty, metody, předávání argumentů metod Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně bude věnována pozornost třídám a objektům, instančním
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti
Výrazy a operátory. Operátory Unární - unární a unární + Např.: a +b
Výrazy a operátory i = 2 i = 2; to je výraz to je příkaz 4. Operátory Unární - unární a unární + Např.: +5-5 -8.345 -a +b - unární ++ - inkrement - zvýší hodnotu proměnné o 1 - unární -- - dekrement -
Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.
Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky
Hledání k-tého nejmenšího prvku
ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
333LP - lgoritmy a programování - Zkouška z předmětu 333LP Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8]
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Více o konstruktorech a destruktorech
Více o konstruktorech a destruktorech Více o konstruktorech a o přiřazení... inicializovat objekt lze i pomocí jiného objektu lze provést přiřazení mezi objekty v původním C nebylo možné provést přiřazení
B3B33ALP - Algoritmy a programování - Zkouška z předmětu B3B33ALP. Marek Boháč bohacm11
Jméno Příjmení Už. jméno Marek oháč bohacm11 Zkouškový test Otázka 1 Jaká je hodnota proměnné count po vykonání následujícího kódu: data=[4,4,5,5,6,6,6,7,7,7,7,8,8] count=0 for i in range(1,len(data)):
Středoškolská technika 2017 PROGRAM NA GENEROVÁNÍ PRVOČÍSEL
Středoškolská technika 2017 Setkání a prezentace prací středoškolských studentů na ČVUT PROGRAM NA GENEROVÁNÍ PRVOČÍSEL Vojtěch Pchálek Střední škola technická Kouřílkova 8, Přerov ANOTACE Bratr, který
Abstraktní datové typy
Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,
Pascal. Katedra aplikované kybernetiky. Ing. Miroslav Vavroušek. Verze 7
Pascal Katedra aplikované kybernetiky Ing. Miroslav Vavroušek Verze 7 Proměnné Proměnná uchovává nějakou informaci potřebnou pro práci programu. Má ve svém oboru platnosti unikátní jméno. (Připadne, musí
1. Téma 12 - Textové soubory a výjimky
1. Téma 12 - Textové soubory a výjimky Cíl látky Procvičit práci se soubory s využitím výjimek. 1.1. Úvod Program, aby byl programem, my mít nějaké výstupy a vstupy. Velmi častým případem je to, že se
ÚVODNÍ ZNALOSTI. datové struktury. správnost programů. analýza algoritmů
ÚVODNÍ ZNALOSTI datové struktury správnost programů analýza algoritmů Datové struktury základní, primitivní, jednoduché datové typy: int, char,... hodnoty: celá čísla, znaky, jednoduché proměnné: int i;
Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.
Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové
PŘIJÍMACÍ TEST z informatiky a matematiky pro navazující magisterské studium Fakulta informatiky a managementu Univerzity Hradec Králové Registrační číslo Hodnocení část A Hodnocení část B Hodnocení A+B
Konstruktory a destruktory
Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
Úvod do Matlabu. Praha & EU: Investujeme do vaší budoucnosti. 1 / 24 Úvod do Matlabu
Vytěžování dat, cvičení 1: Úvod do Matlabu Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Fakulta elektrotechnická, ČVUT 1 / 24 Úvod do Matlabu Proč proboha Matlab? Matlab je SW pro
PŘETĚŽOVÁNÍ OPERÁTORŮ
PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako
Dynamické datové struktury I.
Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
Správné vytvoření a otevření textového souboru pro čtení a zápis představuje
f1(&pole[4]); funkci f1 předáváme hodnotu 4. prvku adresu 4. prvku adresu 5. prvku hodnotu 5. prvku symbolická konstanta pro konec souboru je eof EOF FEOF feof Správné vytvoření a otevření textového souboru
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Řídicí struktury. alg3 1
Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení
Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy
Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou
4.4.2012. Obsah přednášky. Příkaz for neúplný. Příkaz for příklady. Cyklus for each (enhanced for loop) Příkaz for příklady
Základy programování (IZAPR, IZKPR) Přednáška 5 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 03 022, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky Příkazy cyklu -
Reprezentace dat v informačních systémech. Jaroslav Šmarda
Reprezentace dat v informačních systémech Jaroslav Šmarda Reprezentace dat v informačních systémech Reprezentace dat v počítači Datové typy Proměnná Uživatelské datové typy Datové struktury: pole, zásobník,
for (i = 0, j = 5; i < 10; i++) { // tělo cyklu }
5. Operátor čárka, - slouží k jistému určení pořadí vykonání dvou příkazů - oddělím-li čárkou dva příkazy, je jisté, že ten první bude vykonán dříve než příkaz druhý. Např.: i = 5; j = 8; - po překladu
Fronta (Queue) Úvod do programování. Fronta implementace. Fronta implementace pomocí pole 1/4. Fronta implementace pomocí pole 3/4
Fronta (Queue) Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Fronta uplatňuje mechanismus přístupu FIFO first
5 Přehled operátorů, příkazy, přetypování
5 Přehled operátorů, příkazy, přetypování Studijní cíl Tento studijní blok má za cíl pokračovat v základních prvcích jazyka Java. Konkrétně budou uvedeny detaily týkající se operátorů. Doba nutná k nastudování
ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094
10 ROZHODOVACÍ PROCEDURY A VERIFIKACE PAVEL SURYNEK, KTIML HTTP://KTIML.MFF.CUNI.CZ/~SURYNEK/NAIL094 Matematicko-fyzikální fakulta Univerzita Karlova v Praze 1 ROZHODOVÁNÍ TEORIÍ POMOCÍ SAT ŘEŠIČE (SMT)
Rekurzivní algoritmy
Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS
PODOBÁ SE JAZYKU C S NĚKTERÝMI OMEZENÍMI GLOBÁLNÍ PROMĚNNÉ. NSWI162: Sémantika programů 2
PI JE JEDNODUCHÝ IMPERATIVNÍ PROGRAMOVACÍ JAZYK OBSAHUJE PODPORU ANOTACÍ NEOBSAHUJE NĚKTERÉ TYPICKÉ KONSTRUKTY PROGRAMOVACÍCH JAZYKŮ JAKO JSOU REFERENCE, UKAZATELE, GLOBÁLNÍ PROMĚNNÉ PODOBÁ SE JAZYKU C
Implementace LL(1) překladů
Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku
TGH07 - Chytré stromové datové struktury
TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním
Programování v Javě I. Leden 2008
Seminář Java Programování v Javě I Radek Kočí Fakulta informačních technologií VUT Leden 2008 Radek Kočí Seminář Java Programování v Javě (1) 1/ 45 Téma přednášky Datové typy Deklarace třídy Modifikátory
Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků
typová konverze typová inference
Seminář Java Programování v Javě II Radek Kočí Fakulta informačních technologií VUT Únor 2008 Radek Kočí Seminář Java Programování v Javě (2) 1/ 36 Téma přednášky Rozhraní: použití, dědičnost Hierarchie
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody
Pokročilé programování v jazyce C pro chemiky (C3220) Operátory new a delete, virtuální metody Dynamická alokace paměti Jazyky C a C++ poskytují programu možnost vyžádat si část volné operační paměti pro
Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:
Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy
Teorie informace a kódování (KMI/TIK) Reed-Mullerovy kódy Lukáš Havrlant Univerzita Palackého 10. ledna 2014 Primární zdroj Jiří Adámek: Foundations of Coding. Strany 137 160. Na webu ke stažení, heslo:
IAJCE Přednáška č. 9. int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) { // nikoli 0 if (Pole[i] > max) {
Vyhledání extrému v poli použito v algoritmech řazení hledání maxima int[] pole = new int[pocet] int max = pole[0]; int id; for(int i =1; i< pole.length; i++) // nikoli 0 if (Pole[i] > max) max = pole[i];
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony Číslo didaktického materiálu Druh didaktického materiálu Autor Jazyk Téma sady didaktických materiálů Téma didaktického materiálu Vyučovací předmět Cílová skupina (ročník) Úroveň
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.
Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky popište stav paměti
Funkce pokročilé možnosti. Úvod do programování 2 Tomáš Kühr
Funkce pokročilé možnosti Úvod do programování 2 Tomáš Kühr Funkce co už víme u Nebo alespoň máme vědět... J u Co je to funkce? u Co jsou to parametry funkce? u Co je to deklarace a definice funkce? K
4. Kombinatorika a matice
4 Kombinatorika a matice 4 Princip inkluze a exkluze Předpokládejme, že chceme znát počet přirozených čísel menších než sto, která jsou dělitelná dvěma nebo třemi Označme N k množinu přirozených čísel
Programování I. Martin Pergel, perm@kam.mff.cuni.cz
30. září 2009 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem,
III/2 Inovace a zkvalitnění výuky prostřednictvím ICT
Číslo a název šablony III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Číslo didaktického materiálu EU-OPVK-VT-III/2-ŠR-303 Druh didaktického materiálu DUM Autor RNDr. Václava Šrůtková Jazyk čeština
Dynamické datové struktury IV.
Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra
OOPR_05. Případové studie
OOPR_05 Případové studie 1 Přehled probírané látky příklad skládání objektů - čára příklad skládání objektů kompozice a agregace přetížené konstruktory pole jako datový atribut 2 Grafický objekt - čára
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I
PROGRAMOVACÍ JAZYKY A PŘEKLADAČE REALIZACE PŘEKLADAČE I 2011 Jan Janoušek BI-PJP Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Programová realizace DKA typedef enum {q0, q1,... qn,
Algoritmizace a programování
Algoritmizace a programování Řídicí struktury, standardní metody Problematika načítání pomocí Scanner Některé poznámky k příkazům Psaní kódu programu Metody třídy Math Obalové třídy primitivních datových
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
ALGORITMIZACE A PROGRAMOVÁNÍ
Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení
Předmět: Algoritmizace praktické aplikace
Předmět: Algoritmizace praktické aplikace Vytvořil: Roman Vostrý Zadání: Vytvoření funkcí na stromech (reprezentace stromu haldou). Zadané funkce: 1. Počet vrcholů 2. Počet listů 3. Součet 4. Hloubka 5.
Algoritmy a datové struktury
Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu
Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole
Programování v jazyce C pro chemiky (C2160) 3. Příkaz switch, příkaz cyklu for, operátory ++ a --, pole Příkaz switch Příkaz switch provede příslušnou skupinu příkazů na základě hodnoty proměnné (celočíselné
IAJCE Přednáška č. 6. logický celek, řešící dílčí část problému Příklad velmi špatného zápisu programu na výpočet obsahu obdélníku
Podprogramy zásady: jednu věc programovat pouze jednou podprogram logický celek, řešící dílčí část problému Příklad velmi špatného zápisu programu na výpočet obsahu obdélníku // nacteni strany 1 double
14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.
Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání
Úvod do programovacích jazyků (Java)
Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2007/2008 c 2006 2008 Michal Krátký Úvod do programovacích
int t1, t2, t3, t4, t5, t6, t7, prumer; t1=sys.readint();... t7=sys.readint(); prume pru r = r = ( 1+t 1+t t3+ t3+ t4 t5+ t5+ +t7 +t7 )/ ;
Pole Příklad: přečíst teploty naměřené v jednotlivých dnech týdnu, vypočítat průměrnou teplotu a pro každý den vypsat odchylku od průměrné teploty Řešení s proměnnými typu int: int t1, t2, t3, t4, t5,
Kolekce ArrayList. Deklarace proměnných. Import. Vytvoření prázdné kolekce. napsal Pajclín
Kolekce ArrayList napsal Pajclín Tento článek jsem se rozhodl věnovat kolekci ArrayList, protože je to jedna z nejpoužívanějších. Tento článek není kompletním popisem třídy ArrayList, ale budu se snažit
Rekurze. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.
Rekurze doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Rekurze 161 / 344 Osnova přednášky
Zápis programu v jazyce C#
Zápis programu v jazyce C# Základní syntaktická pravidla C# = case sensitive jazyk rozlišuje velikost písmen Tzv. bílé znaky (Enter, mezera, tab ) ve ZK překladač ignoruje každý příkaz končí ; oddělovač
Basic256 - úvod do programování Příklady. ing. petr polách
Basic256 - úvod do programování Příklady ing. petr polách 1 Basic 256 input, print Př.: Vytvořte program pro součet dvou čísel: input "Zadej a: ", a input "Zadej b: ", b print a+b input "Zadej a: ", a
Výčtový typ strana 67
Výčtový typ strana 67 8. Výčtový typ V této kapitole si ukážeme, jak implementovat v Javě statické seznamy konstant (hodnot). Příkladem mohou být dny v týdnu, měsíce v roce, planety obíhající kolem slunce
Algoritmus pro hledání nejkratší cesty orientovaným grafem
1.1 Úvod Algoritmus pro hledání nejkratší cesty orientovaným grafem Naprogramoval jsem v Matlabu funkci, která dokáže určit nejkratší cestu v orientovaném grafu mezi libovolnými dvěma vrcholy. Nastudoval