Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol.

Rozměr: px
Začít zobrazení ze stránky:

Download "Stromy. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol."

Transkript

1 Stromy Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta a kol., 2018, B6B36DSA 01/2018, Lekce 9 B6B36DSA, 2018, Lekce 9, 1/62

2 Připomenutí: QUICKSORT Ukázka průběhu pivot = = první v úseku B6B36DSA, 2018, Lekce 9, 2/62

3 Motivace: QUICKSORT Schéma rekurzivního volání Quick sortu má podobu binárního kořenového stromu. B6B36DSA, 2018, Lekce 9, 3/62

4 Strom uzel, vrchol node, vertex strom tree hrana edge vnitřní uzel internal node list leaf B6B36DSA, 2018, Lekce 9, 4/62

5 Orientované a neorientované grafy B6B36DSA, 2018, Lekce 9, 5/62

6 Definice stromu (volného stromu) B6B36DSA, 2018, Lekce 9, 6/62

7 Vlastnosti volných stromů B6B36DSA, 2018, Lekce 9, 7/62

8 Kořenové stromy kořenový strom rooted tree k l kořen root R h g i j m a b R n f c d e a m j i k l h g n b c e d f předchůdce, rodič predecessor, parent j i následník, potomek successor, child B6B36DSA, 2018, Lekce 9, 8/62

9 Definice kořenového stromu B6B36DSA, 2018, Lekce 9, 9/62

10 Hloubka kořenového stromu R 0 a b c 1 m j i n d 2 k l h e f 3 g 4 4 hloubka uzlu node depth hloubka stromu tree depth B6B36DSA, 2018, Lekce 9, 10/62

11 Binární kořenové stromy binární (kořenový!!) strom 0, 1 nebo 2 následníci binary (rooted!!) tree 0, 1 or 2 successors x podstrom uzlu x... levý subtree of node x... left... pravý right B6B36DSA, 2018, Lekce 9, 11/62

12 Pravidelné a vyvážené stromy pravidelný binární strom 0 nebo 2 následníci regular binary tree 0 or 2 successors vyvážený strom balanced tree Hloubky všech listů jsou (víceméně) stejné. All leaf depths are (more or less) equal. B6B36DSA, 2018, Lekce 9, 12/62

13 Hloubka vyváženého stromu hloubka uzlů (2 (hloubka stromu)+1 1) ~ uzlů hloubka stromu ~ log 2 (uzlů+1) - 1 k 2 k 2 k+1-1 vyvážený strom: hloubka ~ log 2 (uzlů) B6B36DSA, 2018, Lekce 9, 13/62

14 Hloubka nevyváženého stromu hloubka k-1 k uzlů k+1 2(hloubka)+1 ~ uzlů hloubka ~ (uzlů 1)/2 extrémně nevyvážený pravidelný strom: hloubka ~ (uzlů 1)/2 B6B36DSA, 2018, Lekce 9, 14/62

15 Souhrn velikosti hloubka pravidelného stromu = (počet uzlů) obvykle hloubka pravidelného stromu = (log 2 (počet uzlů)) B6B36DSA, 2018, Lekce 9, 15/62

16 Jednoduchý příklad rekurze pravítko void ruler(int val) { if (val < 1) return; } ruler(val-1); print(val); ruler(val-1); rysky pravítka délky rysek kód vypisující délky rysek pravítka Call: ruler(4); B6B36DSA, 2018, Lekce 9, 16/62

17 Jednoduchý příklad rekurze (pokr.) ruler(2); print(3); ruler(2); ruler(3); print(4); ruler(3); 4 if (val < 1) return; ruler(val-1); print(val); ruler(val-1); Start ruler(1); print(2); ruler(1); ruler(0); print(1); ruler(0); return; B6B36DSA, 2018, Lekce 9, 17/62

18 Jednoduchý příklad rekurze (pokr.) 4 if (val < 1) return; ruler(val-1); print(val); ruler(val-1); B6B36DSA, 2018, Lekce 9, 18/62

19 Implementace binárního stromu C key left right typedef struct node { int key; struct node *left; struct node *right; } NODE; B6B36DSA, 2018, Lekce 9, 19/62

20 Implementace binárního stromu Java public class Node { public Node left; public Node right; public int key; public Node(int k) { key = k; left = null; right = null; } } public class Tree { public Node root; public Tree() { root = null; } } B6B36DSA, 2018, Lekce 9, 20/62

21 Vybudování náhodného binárního stromu v C NODE *randtree(int depth) { NODE *pnode; if ((depth <= 0) (random(10) > 7)) return (NULL); //stop recursion pnode = (NODE *) malloc(sizeof(node)); // create node if (pnode == NULL) { printf("%s", "No memory."); return NULL; } pnode->left = randtree(depth-1); // make left subtree pnode->key = random(100); // some value pnode->right = randtree(depth-1); // make right subtree return pnode; // all done } NODE *root; root = randtree(4); B6B36DSA, 2018, Lekce 9, 21/62

22 Vybudování náhodného binárního stromu v Javě public Node randtree(int depth) { Node node; if ((depth <= 0) ((int) Math.random()*10 > 7) return null; // create node with a key value node = new Node((int)(Math.random()*100)); } node.left = randtree(depth-1); // make left subtree node.right = randtree(depth-1); // make right subtree return node; // all done Node root; root = randtree(4); B6B36DSA, 2018, Lekce 9, 22/62

23 Náhodný binární strom strom reprezentace stromu B6B36DSA, 2018, Lekce 9, 23/62

24 Průchod stromem v pořadí Inorder 13 Strom Průchod stromem v pořadí INORDER void listinorder( NODE *ptr) { if (ptr == NULL) return; listinorder(ptr->left); printf("%d ", ptr->key); listinorder(ptr->right); } Výstup B6B36DSA, 2018, Lekce 9, 24/62

25 Rekurzivní pohyb v průchodu Inorder A listinorder(ptr->left); printf("%d ", ptr->key); listinorder(ptr->right); B C D E F G H I J K L M N O H D I B J E K A L F M C N G O B6B36DSA, 2018, Lekce 9, 25/62

26 Průchod stromem v pořadí Preorder 13 Strom Průchod stromem v pořadí PREORDER void listpreorder( NODE *ptr) { if (ptr == NULL) return; printf("%d ", ptr->key); listpreorder(ptr->left); listpreorder(ptr->right); } Výstup B6B36DSA, 2018, Lekce 9, 26/62

27 Rekurzivní pohyb v průchodu Preorder printf("%d ", ptr->key); listpreorder(ptr->left); listpreorder(ptr->right); A B C D E F G H I J K L M N O A B D H I E J K C F L M G N O B6B36DSA, 2018, Lekce 9, 27/62

28 Průchod stromem v pořadí Postorder 13 Strom Průchod stromem v pořadí POSTORDER void listpostorder( NODE *ptr) { if (ptr == NULL) return; listpostorder(ptr->left); listpostorder(ptr->right); printf("%d ", ptr->key); } Výstup B6B36DSA, 2018, Lekce 9, 28/62

29 Rekurzivní pohyb v průchodu Postorder listpostorder(ptr->left); listpostorder(ptr->right); printf("%d ", ptr->key); A B C D E F G H I J K L M N O H I D J K E B L M F N O G C A B6B36DSA, 2018, Lekce 9, 29/62

30 Velikost stromu rekurzivně m nodes n nodes m+n+1 nodes int count(node *ptr) { if (ptr == NULL) return (0); return (count(ptr->left) + count(ptr->right)+1); } B6B36DSA, 2018, Lekce 9, 30/62

31 Hloubka stromu rekurzivně m n n+1 = max(m,n)+1 int depth(node *ptr) { if (ptr == NULL) return (-1); return ( max(depth(ptr->left), depth(ptr->right) )+1 ); } B6B36DSA, 2018, Lekce 9, 31/62

32 Zásobník implementuje rekurzi Uzel A navštíven 1x Uzel A navštíven 0x 1 A Pravítko bez rekurze Uzel A navštíven 2x B6B36DSA, 2018, Lekce 9, 32/62

33 Zásobník implementuje rekurzi zásobník dno 0 1 A A 0/1/2 hodnota počet návštěv vrchol B6B36DSA, 2018, Lekce 9, 33/62

34 Zásobník implementuje rekurzi Standardní strategie Při používání zásobníku: Je-li to možné, zpracovávej jen data ze zásobníku. Standardní postup Ulož první uzel (první zpracovávaný prvek) do zásobníku. Každý další uzel (zpracovávaný prvek) ulož také na zásobník. Zpracovávej vždy pouze uzel na vrcholu zásobníku. Když jsi s uzlem (prvkem) hotov, ze zásobníku ho odstraň. Skonči, když je zásobník prázdný. B6B36DSA, 2018, Lekce 9, 34/62

35 Zásobník implementuje rekurzi Každý záběr v následující sekvenci předvádí situaci PŘED zpracováním uzlu. Start: Vstup do kořene 4 zásobník hodnota návštěv 4 0 push(4,0) Výstup B6B36DSA, 2018, Lekce 9, 35/62

36 Zásobník implementuje rekurzi zásobník Opouštíme 4 a blížíme se k 3 4 hodnota návštěv 4 1 push(3,0) Výstup B6B36DSA, 2018, Lekce 9, 36/62

37 Zásobník implementuje rekurzi hodnota zásobník návštěv Opouštíme 3 a blížíme se k push(2,0) Výstup B6B36DSA, 2018, Lekce 9, 37/62

38 Zásobník implementuje rekurzi Opouštíme 2 a blížíme 3 se k zásobník hodnota návštěv push(1,0) Výstup B6B36DSA, 2018, Lekce 9, 38/62

39 Zásobník implementuje rekurzi Opouštíme 1 a blížíme 3 se k zásobník hodnota návštěv push(0,0) Výstup B6B36DSA, 2018, Lekce 9, 39/62

40 Zásobník implementuje rekurzi Opouštíme 0 a blížíme 3 se k zásobník hodnota návštěv pop() Výstup B6B36DSA, 2018, Lekce 9, 40/62

41 Zásobník implementuje rekurzi Opouštíme 1 a blížíme 3 se k zásobník hodnota návštěv push(0,0) 1 Výstup B6B36DSA, 2018, Lekce 9, 41/62

42 Zásobník implementuje rekurzi Opouštíme 0 a blížíme 3 se k zásobník hodnota návštěv pop() 1 Výstup B6B36DSA, 2018, Lekce 9, 42/62

43 Zásobník implementuje rekurzi Opouštíme 1 a blížíme 3 se k zásobník hodnota návštěv pop() 1 Výstup B6B36DSA, 2018, Lekce 9, 43/62

44 Zásobník implementuje rekurzi 4 zásobník hodnota návštěv 4 1 Opouštíme 2 a blížíme 3 se k push(1,0) atd 1 2 Výstup B6B36DSA, 2018, Lekce 9, 44/62

45 po chvíli Zásobník implementuje rekurzi zásobník hodnota návštěv Opouštíme 2 a blížíme se k pop() Výstup B6B36DSA, 2018, Lekce 9, 45/62

46 Zásobník implementuje rekurzi hodnota zásobník návštěv Opouštíme 3 a blížíme se k push(2,0) Výstup atd B6B36DSA, 2018, Lekce 9, 46/62

47 a je hotovo Zásobník implementuje rekurzi Konec 4 zásobník hodnota návštěv 4 2 (empty == true) pop() Výstup B6B36DSA, 2018, Lekce 9, 47/62

48 Zásobník implementuje rekurzi // Rekurzivní pravítko bez rekurzivníhop volání // Pseudokód (skoro kód :-)) while (stack.empty() == false) { if (stack.top.hodnota == 0) stack.pop(); if (stack.top.navstev == 0) { stack.top.navstev++; stack.push(stack.top.hodnota-1,0); } if (stack.top.navstev == 1) { print(stack.top.hodnota); stack.top.navstev++; stack.push(stack.top.hodnota-1,0); } if (stack.top.navstev==2) stack.pop(); } B6B36DSA, 2018, Lekce 9, 48/62

49 Zásobník implementuje rekurzi int zashodn[10]; int zasnavst[10]; int SP; // SP = Stack Pointer void ruler2() { while (SP >= 0) { if (zashodn[sp] == 0) SP--; // pop if (zasnavst[sp] == 0) { // první návštěva zasnavst[sp]++; SP++; zashodn[sp] = zashodn[sp-1]-1; // jdi doleva zasnavst[sp] = 0; } if (zasnavst[sp] == 1) { // druhá návštěva printf("%d%s", zashodn[sp], " ");// zpracuj uzel zasnavst[sp]++; SP++; zashodn[sp] = zashodn[sp-1]-1; // jdi dopreva zasnavst[sp] = 0; } if (zasnavst[sp] == 2) SP --; // pop: uzel hotov } } B6B36DSA, 2018, Lekce 9, 49/62

50 B6B36DSA, 2018, Lekce 9, 50/62

51 B6B36DSA, 2018, Lekce 9, 51/62

52 B6B36DSA, 2018, Lekce 9, 52/62

53 Rekurzivně definovaný terén B6B36DSA, 2018, Lekce 9, 53/62

54 Rekurzivně definovaný terén B6B36DSA, 2018, Lekce 9, 54/62

55 Karel Richta a kol. (ČVUT FEL) B6B36DSA, 2018, Lekce 9, 55/62 Stromy x y y x Problém osmi dam na šachovnici Snadné prohledávání s návratem (backtrack)

56 Snadné prohledávání s návratem (backtrack) B6B36DSA, 2018, Lekce 9, 56/62

57 Snadné prohledávání s návratem (backtrack) B6B36DSA, 2018, Lekce 9, 57/62

58 Snadné prohledávání s návratem (backtrack) Stop! B6B36DSA, 2018, Lekce 9, 58/62

59 Snadné prohledávání s návratem (backtrack) N Počet řešení Počet testovaných pozic dámy Hrubá síla (N N ) Backtrack Zrychlení Tab.: Rychlosti řešení problému osmi dam B6B36DSA, 2018, Lekce 9, 59/62

60 Snadné prohledávání s návratem (backtrack) bool posok( int x, int y) { int i; for (i = 0; i < x; i++) if ((xposarr[i] == y) // stejná řada (abs(x-i) == abs(xposarr[i]-y) )) // nebo diagonála return false; return true; } void tryputcolumn(int y) { int x; if (y >= N ) print_yposarr(); else for (x = 0; x < N; x++) if (posok(y, x) == true) { xposarr[y] = x; tryputcolumn(y + 1); } } Call: tryputcolumn(0); // řešení // testuj sloupce // když je volno, // dej tam dámu // a volej rekurzi B6B36DSA, 2018, Lekce 9, 60/62

61 Salvador Dalí Tvář války ( ) B6B36DSA, 2018, Lekce 9, 61/62

62 The End B6B36DSA, 2018, Lekce 9, 62/62

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel

Více

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK)

ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) ALGORITMIZACE 2010/03 STROMY, BINÁRNÍ STROMY VZTAH STROMŮ A REKURZE ZÁSOBNÍK IMPLEMENTUJE REKURZI PROHLEDÁVÁNÍ S NÁVRATEM (BACKTRACK) Strom / tree uzel, vrchol / node, vertex hrana / edge vnitřní uzel

Více

Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy

Stromy. Příklady. Rekurzivní datové struktury. Základní pojmy Základní pojmy Stromy doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Graf uzly hrany orientované / neorientované Souvislý

Více

Rekurzivní algoritmy

Rekurzivní algoritmy Rekurzivní algoritmy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní algoritmy (BI-EFA) ZS

Více

ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky

ALG 04. Zásobník Fronta Operace Enqueue, Dequeue, Front, Empty... Cyklická implementace fronty. Průchod stromem do šířky LG 04 Zásobník Fronta Operace nqueue, equeue, Front, mpty... yklická implementace fronty Průchod stromem do šířky Grafy průchod grafem do šířky průchod grafem do hloubky Ořezávání a heuristiky 1 Zásobník

Více

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy

Stromy. Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Stromy úvod Stromy Strom: souvislý graf bez kružnic využití: počítačová grafika seznam objektů efektivní vyhledávání výpočetní stromy rozhodovací stromy Neorientovaný strom Orientovaný strom Kořenový orientovaný

Více

5 Rekurze a zásobník. Rekurzivní volání metody

5 Rekurze a zásobník. Rekurzivní volání metody 5 Rekurze a zásobník Při volání metody z metody main() se do zásobníku uloží aktivační záznam obsahující - parametry - návratovou adresu, tedy adresu, kde bude program pokračovat v metodě main () po skončení

Více

Stromy, haldy, prioritní fronty

Stromy, haldy, prioritní fronty Stromy, haldy, prioritní fronty prof. Ing. Pavel Tvrdík CSc. Katedra počítačů FEL České vysoké učení technické DSA, ZS 2008/9, Přednáška 6 http://service.felk.cvut.cz/courses/x36dsa/ prof. Pavel Tvrdík

Více

Rozptylování, stromy - zákl. vlastnosti

Rozptylování, stromy - zákl. vlastnosti Karel Müller, Josef Vogel (ČVUT FIT) Rozptylování, stromy - zákl. vlastnosti BI-PA2, 2011, Přednáška 12 1/55 Rozptylování, stromy - zákl. vlastnosti Ing. Josef Vogel, CSc Katedra softwarového inženýrství

Více

Algoritmy a datové struktury

Algoritmy a datové struktury Algoritmy a datové struktury Stromy 1 / 32 Obsah přednášky Pole a seznamy Stromy Procházení stromů Binární stromy Procházení BS Binární vyhledávací stromy 2 / 32 Pole Hledání v poli metodou půlení intervalu

Více

Základní datové struktury III: Stromy, haldy

Základní datové struktury III: Stromy, haldy Základní datové struktury III: Stromy, haldy prof. Ing. Pavel Tvrdík CSc. Katedra počítačových systémů Fakulta informačních technologií České vysoké učení technické v Praze c Pavel Tvrdík, 2010 Efektivní

Více

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39 Základy algoritmizace Michal Krátký 1, Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Základy algoritmizace, 2006/2007 Základy algoritmizace c2005, 2007 Michal Krátký, Jiří Dvorský1/39

Více

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy

Volné stromy. Úvod do programování. Kořenové stromy a seřazené stromy. Volné stromy Volné stromy Úvod do programování Souvislý, acyklický, neorientovaný graf nazýváme volným stromem (free tree). Často vynecháváme adjektivum volný, a říkáme jen, že daný graf je strom. Michal Krátký 1,Jiří

Více

Programování v C++ 1, 16. cvičení

Programování v C++ 1, 16. cvičení Programování v C++ 1, 16. cvičení binární vyhledávací strom 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí minule procvičené

Více

Dynamické datové struktury II.

Dynamické datové struktury II. Dynamické datové struktury II. Stromy. Binární vyhledávací strom. DFS. BFS. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 20. září 2016 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

BINARY SEARCH TREE

BINARY SEARCH TREE ---------------------------------------- BINARY SEARCH TREE --------------------------------------------------- Je dán BVS s n uzly. Máme za úkol spočítat hodnotu součtu všech klíčů v tomto stromě. Když

Více

R zné algoritmy mají r znou složitost

R zné algoritmy mají r znou složitost / / zné algoritmy mají r znou složitost Dynamické programování / / Definice funkce Otázka Program f(x,y) = (x = ) (y = ) f(x, y-) + f(x-,y) (x > ) && (y > ) f(,) =? int f(int x, int y) { if ( (x == ) (y

Více

RECURSION

RECURSION Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

BINARY SEARCH TREE

BINARY SEARCH TREE Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1

Rekurze a zásobník. Jak se vypočítá rekurzivní program? volání metody. vyšší adresy. main(){... fa(); //push ret1... } ret1 Rekurze a zásobník Jak se vypočítá rekurzivní program? volání metody vyšší adresy ret1 main(){... fa(); //push ret1... PC ret2 void fa(){... fb(); //push ret2... return //pop void fb(){... return //pop

Více

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort.

A4B33ALG 2010/05 ALG 07. Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated. Quicksort. A4B33ALG 2010/05 ALG 07 Selection sort (Select sort) Insertion sort (Insert sort) Bubble sort deprecated Quicksort Stabilita řazení 1 Selection sort Neseřazeno Seřazeno Start T O U B J R M A K D Z E min

Více

Stromy. Jan Kybic.

Stromy. Jan Kybic. Stromy Jan Kybic http://cmp.felk.cvut.cz/~kybic kybic@fel.cvut.cz 2016 1 / 44 Stromy Binární vyhledávací stromy Množiny a mapy 2 / 44 Strom (Tree) Strom skládá se s uzlů (nodes) spojených hranami (edges).

Více

Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi

Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi primitivními a obalovými typy 4. Třídy odkazující sama na

Více

bfs, dfs, fronta, zásobník, prioritní fronta, halda

bfs, dfs, fronta, zásobník, prioritní fronta, halda bfs, dfs, fronta, zásobník, prioritní fronta, halda Petr Ryšavý 19. září 2017 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší

Více

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu.

2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus pro vyhledání položky v binárním stromu. Informatika 10. 9. 2013 Jméno a příjmení Rodné číslo 1) Napište algoritmus pro rychlé třídění (quicksort). 2) Napište algoritmus pro vložení položky na konec dvousměrného seznamu. 3) Napište algoritmus

Více

Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi

Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi OOPR_11 1 Datové struktury obsah přednášky 1. Úvod 2. Třídy Type-wrapper (obalový typ) pro primitivní typy automatické převody 3. Automatické převody mezi primitivními a obalovými typy 4. Třídy odkazující

Více

prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

prohled av an ı graf u Karel Hor ak, Petr Ryˇsav y 16. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT prohledávání grafů Karel Horák, Petr Ryšavý 16. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Nad frontou (queue) byly provedeny následující operace: push(1) push(2) print(poll()) print(peek()) print(peek())

Více

Dynamické datové struktury III.

Dynamické datové struktury III. Dynamické datové struktury III. Halda. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra aplikované

Více

Dynamické datové struktury IV.

Dynamické datové struktury IV. Dynamické datové struktury IV. Prioritní fronta. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz (Katedra

Více

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz

Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz Reprezentace aritmetického výrazu - binární strom reprezentující aritmetický výraz (2 + 5) * (13-4) * + - 2 5 13 4 - listy stromu obsahují operandy (čísla) - vnitřní uzly obsahují operátory (znaménka)

Více

Hledání k-tého nejmenšího prvku

Hledání k-tého nejmenšího prvku ALG 14 Hledání k-tého nejmenšího prvku Randomized select CLRS varianta Partition v Quicksortu 0 Hledání k-tého nejmenšího prvku 1. 2. 3. Seřaď seznam/pole a vyber k-tý nejmenší, složitost (N*log(N)). Nevýhodou

Více

Dynamické programování. Optimální binární vyhledávací strom

Dynamické programování. Optimální binární vyhledávací strom The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamické programování Optimální binární vyhledávací strom Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The

Více

Abstraktní datové typy

Abstraktní datové typy Karel Müller, Josef Vogel (ČVUT FIT) Abstraktní datové typy BI-PA2, 2011, Přednáška 10 1/27 Abstraktní datové typy Ing. Josef Vogel, CSc Katedra softwarového inženýrství Katedra teoretické informatiky,

Více

Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.

Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti

Více

Správa paměti. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016

Správa paměti. Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016 Správa paměti Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2016 Objektové modelování, B36OMO 10/2016, Lekce 2 https://cw.fel.cvut.cz/wiki/courses/xxb36omo/start

Více

Dynamické programování

Dynamické programování ALG 0 Dynamické programování zkratka: DP Zdroje, přehledy, ukázky viz https://cw.fel.cvut.cz/wiki/courses/a4balg/literatura_odkazy 0 Dynamické programování Charakteristika Neřeší jeden konkrétní typ úlohy,

Více

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015

Programování 3. hodina. RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Programování 3. hodina RNDr. Jan Lánský, Ph.D. Katedra informatiky a matematiky Fakulta ekonomických studií Vysoká škola finanční a správní 2015 Umíme z minulé hodiny Implementace zásobníku a fronty pomocí

Více

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů:

1 2 3 4 5 6 součet cvičení celkem. známka. Úloha č.: max. bodů: skut. bodů: Úloha č.: max. bodů: skut. bodů: 1 2 3 4 5 6 součet cvičení celkem 20 12 20 20 14 14 100 známka UPOZORNĚNÍ : a) Písemná zkouška obsahuje 6 úloh, jejichž řešení musí být vepsáno do připraveného formuláře.

Více

Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat.

Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. Pokud zadání nerozumíte nebo se vám zdá nejednoznačné, zeptejte se. Pište čitelně, nečitelná řešení nebudeme uznávat. 1. Odkrokujte následující program a s použitím notace z přednášky sledujte stav paměti

Více

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky

2 Datové struktury. Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky Pole Seznam Zásobník Fronty FIFO Haldy a prioritní fronty Stromy Hash tabulky Slovníky 25 Pole Datová struktura kolekce elementů (hodnot či proměnných), identifikovaných jedním nebo více indexy, ze kterých

Více

Dynamické datové struktury I.

Dynamické datové struktury I. Dynamické datové struktury I. Seznam. Fronta. Zásobník. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz

Více

Základy řazení. Karel Richta a kol.

Základy řazení. Karel Richta a kol. Základy řazení Karel Richta a kol. Přednášky byly připraveny s pomocí materiálů, které vyrobili Marko Berezovský, Petr Felkel, Josef Kolář, Michal Píše a Pavel Tvrdík Katedra počítačů Fakulta elektrotechnická

Více

Dynamické struktury a Abstraktní Datový Typy (ADT)

Dynamické struktury a Abstraktní Datový Typy (ADT) Dynamické struktury a Abstraktní Datový Typy (ADT) Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 11 A0B36PR1 Programování 1 Jan Faigl, 2015 A0B36PR1

Více

Část 1 Spojové struktury (stromy) Dynamické struktury a Abstraktní Datový Typy (ADT) Část 2 Abstraktní datový typ. Část 3 Příklad ADT Prioritní fronta

Část 1 Spojové struktury (stromy) Dynamické struktury a Abstraktní Datový Typy (ADT) Část 2 Abstraktní datový typ. Část 3 Příklad ADT Prioritní fronta Část 1 Spojové struktury (stromy) Dynamické struktury a Abstraktní Datový Typy (ADT) Stromy Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 11 A0B36PR1

Více

STACK

STACK Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

PROHLEDÁVÁNÍ GRAFŮ. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze PROHLEDÁVÁNÍ GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 4 Evropský sociální fond Praha & EU: Investujeme do

Více

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10

1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 Úlohy- 2.cvičení 1. Převeďte dané číslo do dvojkové, osmičkové a šestnáctkové soustavy: a) 759 10 b) 2578 10 2. Převeďte dané desetinné číslo do dvojkové soustavy (DEC -> BIN): a) 0,8125 10 b) 0,35 10

Více

Programování v C++ 2, 4. cvičení

Programování v C++ 2, 4. cvičení Programování v C++ 2, 4. cvičení statické atributy a metody, konstruktory 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled Přístupová práva

Více

Stromy. Jan Hnilica Počítačové modelování 14

Stromy. Jan Hnilica Počítačové modelování 14 Stromy Jan Hnilica Počítačové modelování 14 1 Základní pojmy strom = dynamická datová struktura, složená z vrcholů (uzlů, prvků) propojených hranami hrany chápeme jako orientované, tzn. vedou z uzlu A

Více

PŘETĚŽOVÁNÍ OPERÁTORŮ

PŘETĚŽOVÁNÍ OPERÁTORŮ PŘETĚŽOVÁNÍ OPERÁTORŮ Jazyk C# podobně jako jazyk C++ umožňuje přetěžovat operátory, tj. rozšířit definice některých standardních operátorů na uživatelem definované typy (třídy a struktury). Stejně jako

Více

pak celou úlohu. ani Jako obvykle je static int M, N; [] key, L, R; NIL = -1; cost; roota, rootb; throws IOExceptio // tree roots on { static void

pak celou úlohu. ani Jako obvykle je static int M, N; [] key, L, R; NIL = -1; cost; roota, rootb; throws IOExceptio // tree roots on { static void Úloha nevžaduje žádnou zvláštníí manipulacii se stromy nebo jejich uzly, kroměě jediné neustále opakované operace Insert, proto bude vhodné volitt reprezentaci pokud možno úsporně. Nejprve ukáže me řešení

Více

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3

DobSort. Úvod do programování. DobSort Implementace 1/3. DobSort Implementace 2/3. DobSort - Příklad. DobSort Implementace 3/3 DobSort Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 V roce 1980 navrhl Dobosiewicz variantu (tzv. DobSort),

Více

Dynamicky vázané metody. Pozdní vazba, virtuální metody

Dynamicky vázané metody. Pozdní vazba, virtuální metody Dynamicky vázané metody Pozdní vazba, virtuální metody Motivace... class TBod protected: float x,y; public: int vrat_pocet_bodu() return 1; ; od třídy TBod odvodíme: class TUsecka: public TBod protected:

Více

Binární vyhledávací stromy II

Binární vyhledávací stromy II Binární vyhledávací stromy II doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 19. března 2019 Jiří Dvorský (VŠB TUO) Binární vyhledávací

Více

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy

Základní pojmy. Úvod do programování. Základní pojmy. Zápis algoritmu. Výraz. Základní pojmy Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Procesor Procesorem je objekt, který vykonává algoritmem popisovanou

Více

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání

Select sort: krok 1: krok 2: krok 3: atd. celkem porovnání. výběr nejmenšího klíče z n prvků vyžaduje 1 porovnání Select sort: krok 1: výběr klíče z n prvků vyžaduje 1 porovnání krok 2: výběr klíče z 1 prvků vyžaduje 2 porovnání krok 3: výběr klíče z 2 prvků vyžaduje 3 porovnání atd. celkem porovnání Zlepšení = použít

Více

Základní datové struktury

Základní datové struktury Základní datové struktury Martin Trnečka Katedra informatiky, Přírodovědecká fakulta Univerzita Palackého v Olomouci 4. listopadu 2013 Martin Trnečka (UPOL) Algoritmická matematika 1 4. listopadu 2013

Více

Stromy. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 10 B0B36PRP Procedurální programování

Stromy. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 10 B0B36PRP Procedurální programování Stromy Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 10 B0B36PRP Procedurální programování Jan Faigl, 2018 B0B36PRP Přednáška 10: Stromy 1 / 50 Přehled

Více

Stromy. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 10 B0B36PRP Procedurální programování

Stromy. Jan Faigl. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze. Přednáška 10 B0B36PRP Procedurální programování Stromy Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 10 B0B36PRP Procedurální programování Jan Faigl, 2017 B0B36PRP Přednáška 10: Stromy 1 / 50 Přehled

Více

2. Mřížky / Záplavové vyplňování

2. Mřížky / Záplavové vyplňování 2. Mřížky / Záplavové vyplňování BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

STROMY A KOSTRY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 6

STROMY A KOSTRY. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze. BI-GRA, LS 2010/2011, Lekce 6 STROMY A KOSTRY Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 010/011, Lekce 6 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

Kolekce, cyklus foreach

Kolekce, cyklus foreach Kolekce, cyklus foreach Jen informativně Kolekce = seskupení prvků (objektů) Jednu již známe pole (Array) Kolekce v C# = třída, která implementuje IEnumerable (ICollection) Cyklus foreach ArrayList pro

Více

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615)

IB108 Sada 1, Příklad 1 Vypracovali: Tomáš Krajča (255676), Martin Milata (256615) IB108 Sada 1, Příklad 1 ( ) Složitost třídícího algoritmu 1/-Sort je v O n log O (n.71 ). Necht n = j i (velikost pole, které je vstupním parametrem funkce 1/-Sort). Lehce spočítáme, že velikost pole předávaná

Více

Abstraktní datové typy: zásobník

Abstraktní datové typy: zásobník Abstraktní datové typy: zásobník doc. Ing. Miroslav Beneš, Ph.D. katedra informatiky FEI VŠB-TUO A-1007 / 597 324 213 http://www.cs.vsb.cz/benes Miroslav.Benes@vsb.cz Abstraktní datové typy omezené rozhraní

Více

Dynamic programming. Optimal binary search tree

Dynamic programming. Optimal binary search tree The complexity of different algorithms varies: O(n), Ω(n ), Θ(n log (n)), Dynamic programming Optimal binary search tree Různé algoritmy mají různou složitost: O(n), Ω(n ), Θ(n log (n)), The complexity

Více

Část 2 Příklad načítání grafu, kompilace a projekt s více soubory. Část 3 Zadání 9. domácího úkolu (HW09)

Část 2 Příklad načítání grafu, kompilace a projekt s více soubory. Část 3 Zadání 9. domácího úkolu (HW09) Přehled témat Stromy Jan Faigl Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Přednáška 10 B0B36PRP Procedurální programování Část 1 Stromy Stromy Binární strom Příklad

Více

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze

NEJKRATŠÍ CESTY I. Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze NEJKRATŠÍ CESTY I Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2010/2011, Lekce 7 Evropský sociální fond Praha & EU: Investujeme do vaší

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 5. dubna 2017 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

Spojové struktury. Spojová struktura (linked structure):

Spojové struktury. Spojová struktura (linked structure): Spojová struktura (linked structure): Spojové struktury množina objektů propojených pomocí spojů (odkazů, referencí, ukazatelů) Spoj často vyjadřuje vztah předchůdce následník Lineární spojové struktury

Více

6. Tahy / Kostry / Nejkratší cesty

6. Tahy / Kostry / Nejkratší cesty 6. Tahy / Kostry / Nejkratší cesty BI-EP2 Efektivní programování 2 LS 2017/2018 Ing. Martin Kačer, Ph.D. 2011-18 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké

Více

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer

4. Rekurze. BI-EP1 Efektivní programování Martin Kačer 4. Rekurze BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze

Více

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT

bin arn ı vyhled av an ı a bst Karel Hor ak, Petr Ryˇsav y 23. bˇrezna 2016 Katedra poˇ c ıtaˇ c u, FEL, ˇ CVUT binární vyhledávání a bst Karel Horák, Petr Ryšavý 23. března 2016 Katedra počítačů, FEL, ČVUT Příklad 1 Naimplementujte binární vyhledávání. Upravte metodu BinarySearch::binarySearch. 1 Příklad 2 Mysĺım

Více

Datové struktury. alg12 1

Datové struktury. alg12 1 Datové struktury Jedna z klasických knih o programování (autor prof. Wirth) má název Algorithms + Data structures = Programs Datová struktura je množina dat (prvků, složek, datových objektů), pro kterou

Více

TGH07 - Chytré stromové datové struktury

TGH07 - Chytré stromové datové struktury TGH07 - Chytré stromové datové struktury Jan Březina Technical University of Liberec 1. dubna 2014 Prioritní fronta Datová struktura s operacemi: Odeber Minum (AccessMin, DeleteMin) - vrat prvek s minimálním

Více

bfs, dfs, fronta, zásobník

bfs, dfs, fronta, zásobník bfs, dfs, fronta, zásobník Petr Ryšavý 25. září 2018 Katedra počítačů, FEL, ČVUT prohledávání grafů Proč prohledávání grafů Zkontrolovat, zda je sít spojitá. Hledání nejkratší cesty, plánování cest. Prohledávání

Více

Implementace LL(1) překladů

Implementace LL(1) překladů Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku

Více

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2.

Zdůvodněte, proč funkce n lg(n) roste alespoň stejně rychle nebo rychleji než než funkce lg(n!). Symbolem lg značíme logaritmus o základu 2. 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 1 3 4 5 6 7 8 9 30 31 3 Zdůvodněte, proč funkce f(n) = n log(n) 1 n 1/ roste rychleji než funkce g(n) = n. Zdůvodněte, proč funkce f(n) = n 3/ log(n) roste

Více

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod.

14.4.2010. Obsah přednášky 7. Základy programování (IZAPR) Přednáška 7. Parametry metod. Parametry, argumenty. Parametry metod. Základy programování (IZAPR) Přednáška 7 Ing. Michael Bažant, Ph.D. Katedra softwarových technologií Kancelář č. 229, Náměstí Čs. legií Michael.Bazant@upce.cz Obsah přednášky 7 Parametry metod, předávání

Více

Konstruktory a destruktory

Konstruktory a destruktory Konstruktory a destruktory Nedostatek atributy po vytvoření objektu nejsou automaticky inicializovány hodnota atributů je náhodná vytvoření metody pro inicializaci, kterou musí programátor explicitně zavolat,

Více

Bubble sort. příklad. Shaker sort

Bubble sort. příklad. Shaker sort Bubble sort pseudokód function bubblesort(array a) for i in 1 -> a.length - 1 do for j in 1 -> a.length - i - 1 do if a[j] < a[j+1] prohoď(a[j], a[j+1]); //razeni od nejvyssiho function bubblesort(int[]

Více

Techniky návrhu algoritmů

Techniky návrhu algoritmů Techniky návrhu algoritmů Karel Richta a kol. Katedra počítačů Fakulta elektrotechnická České vysoké učení technické v Praze Karel Richta, 2018 Datové struktury a algoritmy, B6B36DSA 01/2018, Lekce 2 https://cw.fel.cvut.cz/wiki/courses/b6b36dsa/start

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 21. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 21. září 2018 Jiří Dvorský (VŠB TUO) Vyhledávání 242 / 433 Osnova přednášky

Více

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12.

Vyhledávání. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 12. Vyhledávání doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 12. září 2016 Jiří Dvorský (VŠB TUO) Vyhledávání 201 / 344 Osnova přednášky

Více

Implementace binárního stromu směrníky

Implementace binárního stromu směrníky Téma: Vypracoval: Zdeněk Alčer Implementace binárního stromu směrníky 1. Teorie stromu: Pojem strom je datová struktura, která je v teorii grafů formálně definována jako zvláštní případ grafu bez cyklů.

Více

Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007

Michal Krátký. Úvod do programovacích jazyků (Java), 2006/2007 Úvod do programovacích jazyků (Java) Michal Krátký Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programovacích jazyků (Java), 2006/2007 c 2006 Michal Krátký Úvod do programovacích jazyků

Více

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C

Řešení: PŘENESVĚŽ (N, A, B, C) = přenes N disků z A na B pomocí C Hanojské věže - 3 kolíky A, B, C - na A je N disků různé velikosti, seřazené od největšího (dole) k nejmenšímu (nahoře) - kolíky B a C jsou prázdné - úkol: přenést všechny disky z A na B, mohou se odkládat

Více

Datové struktury Úvod

Datové struktury Úvod Datové struktury Úvod Navrhněte co nejjednodušší datovou strukturu, která podporuje následující operace: 1. Insert a Delete v O(n), Search v O(log n); Datové struktury Úvod Navrhněte co nejjednodušší datovou

Více

DSA, První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right)

DSA, První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right) Indukcí dokažte následující výrok: pokud lef t a right jsou parametry funkce f a platí left right, pak volání f(array, left, right) vrátí minimální hodnotu z hodnot všech prvků v poli array na indexech

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová

Více

Jméno:... St. Sk.:. Cvičící:.. Bodů ze cv.: (Tučná čísla indikují počet neuspěvších (z 50) v jednotlivých otázkách) 1.

Jméno:... St. Sk.:. Cvičící:.. Bodů ze cv.: (Tučná čísla indikují počet neuspěvších (z 50) v jednotlivých otázkách) 1. Jméno:... St. Sk.:. Cvičící:.. Bodů ze cv.: (Tučná čísla indikují počet neuspěvších (z 50) v jednotlivých otázkách) 1. 36 Heap sort a) není stabilní, protože halda (=heap) není stabilní datová struktura

Více

PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa

PostGIS Topology. Topologická správa vektorových dat v geodatabázi PostGIS. Martin Landa Přednáška 5 Topologická správa vektorových dat v geodatabázi PostGIS 155UZPD Úvod do zpracování prostorových dat, zimní semestr 2018-2019 Martin Landa martin.landa@fsv.cvut.cz Fakulta stavební ČVUT v Praze

Více

STACK

STACK Níže uvedené úlohy představují přehled otázek, které se vyskytly v tomto nebo v minulých semestrech ve cvičení nebo v minulých semestrech u zkoušky. Mezi otázkami semestrovými a zkouškovými není žádný

Více

Protože pi každém volání funkce ff se zavolá funkce abc() práv jednou, je poet volání funkce abc() práv 7. Platí varianta d).

Protože pi každém volání funkce ff se zavolá funkce abc() práv jednou, je poet volání funkce abc() práv 7. Platí varianta d). 1. void ff(int x) { if (x > 0) ff(x 1) ; abc(x); if (x > 0) ff(x 1) ; Daná funkce ff je volána s parametrem 2: ff(2);. Funkce abc(x) je tedy celkem volána a) 1 krát b) 3 krát c) 5 krát d) 7 krát e) 8 krát

Více

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace

Red Black strom (Red Black Tree) Úvod do programování. Rotace. Red Black strom. Rotace. Rotace Úvod do programování Michal Krátký 1,Jiří Dvorský 1 1 Katedra informatiky VŠB Technická univerzita Ostrava Úvod do programování, 2004/2005 Red Black strom je binární strom s jedním dvouhodnotovým příznakem

Více

Programovanie v jazyku C stromy

Programovanie v jazyku C stromy CVIČENIE 10/13 (S7) Programovanie v jazyku C stromy Binarne stromy: - zlozene z nula alebo viac prvkov - kazdy prvok obsahuje o nejaku hodnotu (data) o smernik na laveho potomka o smernik na praveho potomka

Více

Rekurze. IB111 Úvod do programování skrze Python

Rekurze. IB111 Úvod do programování skrze Python Rekurze IB111 Úvod do programování skrze Python 2015 1 / 64 XKCD: Tabletop Roleplaying https://xkcd.com/244/ 2 / 64 To iterate is human, to recurse divine. (L. Peter Deutsch) 3 / 64 Rekurze použití funkce

Více

Algoritmy na ohodnoceném grafu

Algoritmy na ohodnoceném grafu Algoritmy na ohodnoceném grafu Dvě základní optimalizační úlohy: Jak najít nejkratší cestu mezi dvěma vrcholy? Dijkstrův algoritmus s t Jak najít minimální kostru grafu? Jarníkův a Kruskalův algoritmus

Více

TGH05 - Problém za milion dolarů.

TGH05 - Problém za milion dolarů. TGH05 - Problém za milion dolarů. Jan Březina Technical University of Liberec 20. března 2012 Časová složitost algoritmu Závislost doby běhu programu T na velikosti vstupních dat n. O(n) notace, standardní

Více

Algoritmizace prostorových úloh

Algoritmizace prostorových úloh INOVACE BAKALÁŘSKÝCH A MAGISTERSKÝCH STUDIJNÍCH OBORŮ NA HORNICKO-GEOLOGICKÉ FAKULTĚ VYSOKÉ ŠKOLY BÁŇSKÉ - TECHNICKÉ UNIVERZITY OSTRAVA Algoritmizace prostorových úloh Datové struktury Daniela Szturcová

Více