Programování I. Martin Pergel,
|
|
- Zbyněk Procházka
- před 9 lety
- Počet zobrazení:
Transkript
1 30. září 2009
2 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě.
3 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu:
4 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!),
5 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce),
6 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících.
7 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících. Praktikum z programování:
8 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících. Praktikum z programování: Volitelný předmět,
9 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících. Praktikum z programování: Volitelný předmět, v rozvrhu letos maskováno jako druhé cvičení (zpravidla od 19:00 + Po 12:20 K11),
10 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících. Praktikum z programování: Volitelný předmět, v rozvrhu letos maskováno jako druhé cvičení (zpravidla od 19:00 + Po 12:20 K11), začne v listopadu,
11 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový test (praktický povinně v Pascalu!), zápočtový program (domácí práce), další dle požadavků cvičících. Praktikum z programování: Volitelný předmět, v rozvrhu letos maskováno jako druhé cvičení (zpravidla od 19:00 + Po 12:20 K11), začne v listopadu, během října cvičící vytipují zájemce.
12 Cíle předmětu: Ovládání prostředí Borland Pascal, Jednotlivé položky budou probírány paralelně!
13 Cíle předmětu: Ovládání prostředí Borland Pascal, jazyk Pascal, Jednotlivé položky budou probírány paralelně!
14 Cíle předmětu: Ovládání prostředí Borland Pascal, jazyk Pascal, algoritmy, Jednotlivé položky budou probírány paralelně!
15 Cíle předmětu: Ovládání prostředí Borland Pascal, jazyk Pascal, algoritmy, a teorie s nimi související. Jednotlivé položky budou probírány paralelně!
16 Proč Pascal: Mýtus: Pascal je zastaralý!
17 Proč Pascal: Mýtus: Pascal je zastaralý! Skutečnost: Pascal je osvědčený.
18 Proč Pascal: Mýtus: Pascal je zastaralý! Skutečnost: Pascal je osvědčený. Java, C#, Jazyk C... pěkné ale komplikované.
19 Proč Pascal: Mýtus: Pascal je zastaralý! Skutečnost: Pascal je osvědčený. Java, C#, Jazyk C... pěkné ale komplikované. Pascal: Nevýhoda: Věkovitost Výhoda: Jednoduchost.
20 Proč Pascal: Mýtus: Pascal je zastaralý! Skutečnost: Pascal je osvědčený. Java, C#, Jazyk C... pěkné ale komplikované. Pascal: Nevýhoda: Věkovitost Výhoda: Jednoduchost. My: Borland Pascal, Free Pascal, GNU Pascal, Delphi.
21 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm)
22 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm) Účty v příslušných počítačových učebnách (Karlín, Malá Strana)
23 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm) Účty v příslušných počítačových učebnách (Karlín, Malá Strana) Existují dvě paralelní přednášky, které jsou ekvivalentní, nikoliv totožné.
24 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm) Účty v příslušných počítačových učebnách (Karlín, Malá Strana) Existují dvě paralelní přednášky, které jsou ekvivalentní, nikoliv totožné. Pozor, programování je dovednost náročná na čas!
25 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm) Účty v příslušných počítačových učebnách (Karlín, Malá Strana) Existují dvě paralelní přednášky, které jsou ekvivalentní, nikoliv totožné. Pozor, programování je dovednost náročná na čas! Literatura: Pavel Töpfer: Algoritmy a programovací techniky, Pavel Satrapa: Pascal pro zelenáče, Niklaus Wirth: Algorithms + Data Structures = Programs (slovenský překlad Algoritmy a Štruktury údajov ) [poměrně věkovitější, zajímavější jsou v ní algoritmy než jazyk]
26 Organizační záležitosti Stroj CodEx (alias Code Examiner a účet na něm) Účty v příslušných počítačových učebnách (Karlín, Malá Strana) Existují dvě paralelní přednášky, které jsou ekvivalentní, nikoliv totožné. Pozor, programování je dovednost náročná na čas! Literatura: Pavel Töpfer: Algoritmy a programovací techniky, Pavel Satrapa: Pascal pro zelenáče, Niklaus Wirth: Algorithms + Data Structures = Programs (slovenský překlad Algoritmy a Štruktury údajov ) [poměrně věkovitější, zajímavější jsou v ní algoritmy než jazyk] Dotazy? [pokud ano, ptejte se ihned]
27 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém.
28 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém. Realizací algoritmu dojdeme od zadaných (vstupních) dat k požadovanému výsledku.
29 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém. Realizací algoritmu dojdeme od zadaných (vstupních) dat k požadovanému výsledku. Sestává z kroků zvaných příkazy (příklad - alg. sčítání čísel).
30 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém. Realizací algoritmu dojdeme od zadaných (vstupních) dat k požadovanému výsledku. Sestává z kroků zvaných příkazy (příklad - alg. sčítání čísel). Správný algoritmus musí být:
31 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém. Realizací algoritmu dojdeme od zadaných (vstupních) dat k požadovanému výsledku. Sestává z kroků zvaných příkazy (příklad - alg. sčítání čísel). Správný algoritmus musí být: konečný (pro každý vstup doběhne v konečném čase)
32 Algoritmy: Definition Algoritmy jsou přesně definované a záměrně vytvořené postupy. Algoritmus je postup, jak řešit určitý problém. Realizací algoritmu dojdeme od zadaných (vstupních) dat k požadovanému výsledku. Sestává z kroků zvaných příkazy (příklad - alg. sčítání čísel). Správný algoritmus musí být: konečný (pro každý vstup doběhne v konečném čase) a parciálně správný (pokud doběhne, odpoví správně).
33 Způsoby zápisu algoritmu Karel: krok krok vlevobok krok Jazyk C: while(i) { if(i%2) printf(1); else printf(0); i/=2; } Text: Načti hodnotu i. Dokud je i > 0: Je-li je i liché vypiš "1" jinak vypiš "0" Vývojové diagramy: Načti i Je i > 0? ne Konec ano Je i sudé? ne Vypiš 1 ano Vypiš 0 Od i odečti 1 i := i/2
34 Způsoby zápisu algoritmu Karel: krok krok vlevobok krok Jazyk C: while(i) { if(i%2) printf(1); else printf(0); i/=2; } Text: Načti hodnotu i. Dokud je i > 0: Je-li je i liché vypiš "1" jinak vypiš "0" Vyděl i dvojkou. Vývojové diagramy: Načti i Je i > 0? ne Konec ano Je i sudé? ne Vypiš 1 ano Vypiš 0 Od i odečti 1 i := i/2
35 Největší společný dělitel Možnosti hledání: Najít prvočíselné rozklady a porovnat,
36 Největší společný dělitel Možnosti hledání: Najít prvočíselné rozklady a porovnat, Eukleidův algoritmus.
37 Největší společný dělitel Možnosti hledání: Najít prvočíselné rozklady a porovnat, Eukleidův algoritmus. Pozorování: Jsou-li a b přirozená čísla dělitelná (rovněž přirozeným) číslem k, pak i a b je dělitelné k.
38 Eukleidův algoritmus: 1. varianta (s odčítáním) Načti a, b. 1: Pokud b > a, prohoď hodnoty a a b. Pokud b je nula, vypiš a a ukonči algoritmus. Od a odečti b. GOTO 1:
39 Eukleidův algoritmus: 1. varianta (s odčítáním) Načti a, b. read(a); read(b); 1: Pokud b > a, prohoď hodnoty a a b. Pokud b je nula, vypiš a if b=0 then write(a); a ukonči algoritmus. Od a odečti b. a:=a-b; GOTO 1:
40 Eukleidův algoritmus: 2. varianta (se zbytkem po dělení) Načti a, b. 1: Pokud b > a, prohoď a a b. Pokud b je nula, vypiš a a konec. Do a přiřaď zbytek po dělení hodnoty a hodnotou b. GOTO 1:
41 Magické čtverce lichého řádu Snadný algoritmus, leč důkaz správnosti je komplikovaný:
42 Magické čtverce lichého řádu Snadný algoritmus, leč důkaz správnosti je komplikovaný: Začneme uprostřed horního řádku Postupujeme šikmo doleva nahoru a vyplňujeme čísla v rostoucím pořadí. 3 Najedeme-li na vyplněné políčko, vrátíme se zpět a postoupíme o políčko dolů.
43 Stabilní párování Ne zcela triviální algoritmus, snadno lze dokázat konečnost, lze ovšem dokázat mnohem silnější tvrzení.
Programování I. Martin Pergel, 10. října Martin Pergel, Programování I
Programování I Martin Pergel, perm@kam.mff.cuni.cz 10. října 2011 Informace o přednášce, cvičeních a Praktiku z programování Kurz je zakončen zápočtem, zkouška bude v létě. Podmínky zápočtu: Zápočtový
Úvod do programování
Úvod do programování Základní literatura Töpfer, P.: Algoritmy a programovací techniky, Prometheus, Praha učebnice algoritmů, nikoli jazyka pokrývá velkou část probíraných algoritmů Satrapa, P.: Pascal
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: X01DML 29. října 2010: Základy elementární teorie čísel 1/14 Definice Řekneme, že přirozené číslo a dělí přirozené číslo b (značíme a b), pokud existuje přirozené
V každém kroku se a + b zmenší o min(a, b), tedy vždy alespoň o 1. Jestliže jsme na začátku dostali 2
Euklidův algoritmus Doprovodný materiál pro cvičení Programování I. NPRM044 Autor: Markéta Popelová Datum: 31.10.2010 Euklidův algoritmus verze 1.0 Zadání: Určete největšího společného dělitele dvou zadaných
Základy elementární teorie čísel
Základy elementární teorie čísel Jiří Velebil: A7B01MCS 3. října 2011: Základy elementární teorie čísel 1/15 Dělení se zbytkem v oboru celých čísel Ať a, b jsou libovolná celá čísla, b 0. Pak existují
Programování v C++ 1, 1. cvičení
Programování v C++ 1, 1. cvičení opakování látky ze základů programování 1 1 Fakulta jaderná a fyzikálně inženýrská České vysoké učení technické v Praze Zimní semestr 2018/2019 Přehled 1 2 Shrnutí procvičených
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
Algoritmizace. Cíle předmětu
Cíle předmětu Algoritmizace naučit se sestavovat algoritmy řešení jednoduchých problémů a zapisovat je v jazyku Java Organizace předmětu přednášky (učast nepovinná, ale doporučená) cvičení střídavě u tabule
Prvočísla a čísla složená
Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování /2 Z, Zk
NMIN101 Programování 1 2/2 Z --- NMIN102 Programování 2 --- 2/2 Z, Zk Pavel Töpfer Katedra software a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
Algoritmus pro generování normálních magických čtverců
1.1 Úvod Algoritmus pro generování normálních magických čtverců Naprogramoval jsem v Matlabu funkci, která dokáže vypočítat magický čtverec libovolného přípustného rozměru. Za pomocí tří algoritmů, které
2.1 Podmínka typu case Cykly Cyklus s podmínkou na začátku Cyklus s podmínkou na konci... 5
Obsah Obsah 1 Řídicí struktury 1 2 Podmínka 1 2.1 Podmínka typu case......................... 2 3 Příkaz skoku 3 4 Cykly 4 4.1 Cyklus s podmínkou na začátku................... 4 4.2 Cyklus s podmínkou
Největší společný dělitel
1..1 Největší společný dělitel Předpoklady: 01016 Číslo Číslo nsn Platí pravidlo "nsn získáme jako součin obou čísel"? = 1 = Násobící pravidlo platí. 1 = Násobící pravidlo platí. 1 = Násobící pravidlo
Testování prvočíselnosti
Dokumentace zápočtového programu z Programování II (NPRG031) Testování prvočíselnosti David Pěgřímek http://davpe.net Úvodem V různých oborech (například v kryptografii) je potřeba zjistit, zda je číslo
NPRG030 Programování I RNDr.Tomáš Holan, Ph.D. 4.patro, č
NPRG030 Programování I RNDr.Tomáš Holan, Ph.D. 4.patro, č.404 http://ksvi.mff.cuni.cz/~holan/ Tomas.Holan@mff.cuni.cz NPRG030 Programování I, 2014/15 1 / 37 6. 10. 2014 11:42:59 NPRG030 Programování I,
Programovací jazyky. imperativní (procedurální) neimperativní (neprocedurální) assembler (jazyk symbolických instrukcí)
Programovací jazyky Programovací jazyky nižší assembler (jazyk symbolických instrukcí) vyšší imperativní (procedurální) Pascal, C/C++, Java, Basic, Python, php neimperativní (neprocedurální) Lisp, Prolog
PB029 Elektronická příprava dokumentů
PB029 Elektronická příprava dokumentů 1. demopřednáška, seznámení se software Vít Novotný witiko@mail.muni.cz 20. září 2018 Obsah prezentace Informace pro podzim 2018 Seznámení s použitým software TEX
Principy indukce a rekursivní algoritmy
Principy indukce a rekursivní algoritmy Jiří Velebil: A7B01MCS 19. září 2011: Indukce 1/20 Příklad Místností rozměru n budeme rozumět šachovnici rozměru 2 n 2 n, ze které je jedno (libovolné) pole vyjmuto.
2. lekce Algoritmus, cyklus Miroslav Jílek
2. lekce Algoritmus, cyklus Miroslav Jílek 1/36 Algoritmus 2/36 Algoritmus je konečná posloupnost operací, která dává řešení skupiny problémů 3/36 Algoritmus je konečná posloupnost operací, která dává
Programování: základní konstrukce, příklady, aplikace. IB111 Programování a algoritmizace
Programování: základní konstrukce, příklady, aplikace IB111 Programování a algoritmizace 2011 Připomenutí z minule, ze cvičení proměnné, výrazy, operace řízení výpočtu: if, for, while funkce příklady:
3 Co je algoritmus? 2 3.1 Trocha historie... 2 3.2 Definice algoritmu... 3 3.3 Vlastnosti algoritmu... 3
Obsah Obsah 1 Program přednášek 1 2 Podmínky zápočtu 2 3 Co je algoritmus? 2 3.1 Trocha historie............................ 2 3.2 Definice algoritmu.......................... 3 3.3 Vlastnosti algoritmu.........................
Algoritmy a datové struktury
Algoritmy a datové struktury 1 / 34 Obsah přednášky Základní řídící struktury posloupnost příkazů podmínka cyklus s podmínkou na začátku cyklus s podmínkou na konci cyklus s pevným počtem opakování Jednoduchá
NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk
NPRG030 Programování I 3/2 Z --- NPRG031 Programování II --- 2/2 Z, Zk Pavel Töpfer Katedra softwaru a výuky informatiky MFF UK MFF Malostranské nám., 4. patro, pracovna 404 pavel.topfer@mff.cuni.cz http://ksvi.mff.cuni.cz/~topfer
Název předmětu: Školní rok: Forma studia: Studijní obory: Ročník: Semestr: Typ předmětu: Rozsah a zakončení předmětu:
Plán předmětu Název předmětu: Algoritmizace a programování (PAAPK) Školní rok: 2007/2008 Forma studia: Kombinovaná Studijní obory: DP, DI, PSDPI, OŽPD Ročník: I Semestr: II. (letní) Typ předmětu: povinný
Lekce 01 Úvod do algoritmizace
Počítačové laboratoře bez tajemství aneb naučme se učit algoritmizaci a programování s využitím robotů Lekce 01 Úvod do algoritmizace Tento projekt CZ.1.07/1.3.12/04.0006 je spolufinancován Evropským sociálním
C2110 Operační systém UNIX a základy programování
C2110 Operační systém UNIX a základy programování 5. lekce Petr Kulhánek kulhanek@chemi.muni.cz Národní centrum pro výzkum biomolekul, Masarykova univerzita, Kotlářská 2, CZ-61137 Brno C2110 Operační systém
Programovací jazyky. imperativní (procedurální) neimperativní (neprocedurální) assembler (jazyk symbolických instrukcí)
Programovací jazyky Programovací jazyky nižší assembler (jazyk symbolických instrukcí) vyšší imperativní (procedurální) Pascal, C/C++, Java, Basic, Python, php neimperativní (neprocedurální) Lisp, Prolog
Program a životní cyklus programu
Program a životní cyklus programu Program algoritmus zapsaný formálně, srozumitelně pro počítač program se skládá z elementárních kroků Elementární kroky mohou být: instrukce operačního kódu počítače příkazy
Základy algoritmizace a programování
Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 21. září 2009 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Organizace předmětu Přednášky 1. 5. Základní
Násobení pomocí sčítání
Neznalost zákonů neomlouvá Násobení pomocí sčítání Zadání problému: Vymyslete algoritmus, jak násobit dvě čísla, když operaci násobení neznáme. Upřesnění zadání: Známe čísla, známe operaci sčítání, odčítání.
MATEMATIKA 6. ROČNÍK. Sada pracovních listů CZ.1.07/1.1.16/
MATEMATIKA 6. ROČNÍK CZ.1.07/1.1.16/02.0079 Sada pracovních listů Resumé Sada pracovních listů zaměřená na opakování, procvičení a upevnění učiva 6. ročníku přirozená čísla a desetinná čísla. Může být
DSA, První krok: máme dokázat, že pro left = right vrátí volání f(array, elem, left, right)
Indukcí dokažte následující výrok: pokud lef t a right jsou parametry funkce f a platí left right, pak volání f(array, left, right) vrátí minimální hodnotu z hodnot všech prvků v poli array na indexech
Příklady: (y + (sin(2*x) + 1)*2)/ /2 * 5 = 8.5 (1+3)/2 * 5 = /(2 * 5) = 1.3. Pavel Töpfer, 2017 Programování 1-3 1
Výraz - syntaxe i sémantika podobné jako v matematice - obsahuje proměnné, konstanty, operátory, závorky, volání funkcí - všechny operátory nutno zapisovat (nelze např. vynechat znak násobení) - argumenty
Matematika. Vlastnosti početních operací s přirozenými čísly. Sčítání a odčítání dvojciferných čísel do 1 000, zpaměti i písemně.
1 Matematika Matematika Učivo Vlastnosti početních operací s přirozenými čísly Sčítání a odčítání dvojciferných čísel do 1 000, 1 000 000 zpaměti i písemně Násobení dvojciferných čísel jednociferným činitelem
Sada 1 - Základy programování
S třední škola stavební Jihlava Sada 1 - Základy programování 17. Řadící algoritmy Digitální učební materiál projektu: SŠS Jihlava šablony registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2
Binární soubory (datové, typované)
Binární soubory (datové, typované) - na rozdíl od textových souborů data uložena binárně (ve vnitřním tvaru jako v proměnných programu) není čitelné pro člověka - všechny záznamy téhož typu (může být i
Předměty. Algoritmizace a programování Seminář z programování. Verze pro akademický rok 2012/2013. Verze pro akademický rok 2012/2013
Předměty Algoritmizace a programování Seminář z programování Verze pro akademický rok 2012/2013 Verze pro akademický rok 2012/2013 1 Přednášky Jiřina Královcová MTI, přízemí budovy A Tel: 48 53 53 521
Algoritmizace a programování. Ak. rok 2012/2013 vbp 1. ze 44
Algoritmizace a programování Ak. rok 2012/2013 vbp 1. ze 44 Vladimír Beneš Petrovický K101 katedra matematiky, statistiky a informačních technologií vedoucí katedry E-mail: vbenes@bivs.cz Telefon: 251
Objektově orientované programování
10. října 2011 Pragmatické informace Volitelný předmět, zápočet: zápočtový program(s dokumentací), aktivní účast na cvičení(body v CodExu), praktický test, zkouška: zkoušková písemka na objektový návrh
Algoritmizace- úvod. Ing. Tomáš Otáhal
Algoritmizace- úvod Ing. Tomáš táhal Historie 9. století perský matematik a astronom Mohammed Al-Chorezím v latinském přepise příjmení= algoritmus Nejstarší algoritmus Euklides řecký matematik, 4. století
)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
ALGORITMIZACE A PROGRAMOVÁNÍ
Metodický list č. 1 Algoritmus a jeho implementace počítačovým programem Základním cílem tohoto tematického celku je vysvětlení pojmů algoritmus a programová implementace algoritmu. Dále je cílem seznámení
Programovací jazyk. - norma PASCAL (1974) - implementace Turbo Pascal, Borland Pascal FreePascal Object Pascal (Delphi)
Programovací jazyk - norma PASCAL (1974) - implementace Turbo Pascal, Borland Pascal FreePascal Object Pascal (Delphi) Odlišnosti implementace od normy - odchylky např.: nepovinná hlavička programu odlišná
Kód trezoru 1 je liché číslo.
1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden
Překladač a jeho struktura
Překladač a jeho struktura Překladače, přednáška č. 1 Šárka Vavrečková Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz http://fpf.slu.cz/ vav10ui Poslední aktualizace: 23. září 2008 Definice
Identifikátory označují objekty v programu používané (proměnné, typy, podprogramy).
JAZYK PASCAL ÚVOD materiály pro studenty Jiráskova gymnázia v Náchodě (verze 2005-10-28) RNDr Jan Preclík, PhD preclik@gymnachodcz Jazyk Pascal byl navržen profesorem curyšské univerzity Niklausem Wirthem
Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
BI-EP1 Efektivní programování 1
BI-EP1 Efektivní programování 1 ZS 2011/2012 Ing. Martin Kačer, Ph.D. 2010-11 Martin Kačer Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze Evropský
Školní kolo soutěže Mladý programátor 2015, kategorie A, B
Doporučené hodnocení školního kola: Hodnotit mohou buď učitelé školy, tým rodičů nebo si žáci, kteří se zúčastní soutěže, mohou ohodnotit úlohy navzájem sami (v tomto případě doporučujeme, aby si žáci
Historie matematiky a informatiky Cvičení 1
Historie matematiky a informatiky Cvičení 1 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Kapitola z teorie čísel Co
Algoritmy. BI-PA1 Programování a Algoritmizace I. Ladislav Vagner
Algoritmy BI-PA1 Programování a Algoritmizace I. Ladislav Vagner Katedra teoretické informatiky Fakulta informačních technologíı ČVUT v Praze xvagner@fit.cvut.cz 3. října 2016 a 4. října 2016 Kontakt místnost
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
ŘÍDÍCÍ STRUKTURY - PODMÍNKY
ŘÍDÍCÍ STRUKTURY - PODMÍNKY Pokusíme se rozvětvit sktipt v Bashi ŘÍDÍCÍ STRUKTURY - PODMÍNKY V této lekci budeme probírat podmínkové, tj., které nám pomohou rozvětvit skript a provádět určité pouze při
Magické čtverce. Tomáš Roskovec. Úvod
Magické čtverce Tomáš Roskovec Úvod Magické čtverce patří k dávným matematickým hrátkám, které i přes dvoutisíciletou historii dodnes nejsou zcela prozkoumány. Během přednášky se budeme zabývat nejprve
Cvičení Programování I. Stručné poznámky ke cvičení ze
Cvičení Programování I Cvičící: Pavel urynek, KIM, pavel.surynek@seznam.cz emestr: Zima 2005/2006 Kroužek: Matematika/59 Rozvrh: Pátek 10:40-12:10 (učebna K2) tručné poznámky ke cvičení ze 14.10.2005 1.
IB111 Úvod do programování skrze Python Přednáška 13
IB111 Úvod do programování skrze Python Přednáška 13 Programovací jazyky Nikola Beneš 14. prosinec 2016 IB111 přednáška 13: programovací jazyky 14. prosinec 2016 1 / 21 Osnova dnešní přednášky Programovací
VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
C# konzole Podíl dvou čísel, podmínka IF
C# konzole Podíl dvou čísel, podmínka IF Tematická oblast Datum vytvoření 2013 Ročník 3 Stručný obsah Způsob využití Autor Kód Internetové technologie, programování Výpočet podílu v konzolové aplikaci
10 Důkazové postupy pro algoritmy
10 Důkazové postupy pro algoritmy Nyní si ukážeme, jak formální deklarativní jazyk z Lekce 9 využít k formálně přesným induktivním důkazům vybraných algoritmů. Dá se říci, že tato lekce je vrcholem v naší
Algoritmizace a programování
Algoritmizace a programování Jazyk C řízení běhu programu České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Šest zákonů programování 1. V každém programu je alespoň jedna chyba
Seminář z Informatiky a výpočetní techniky. Slovanské gymnázium Olomouc 4. září 2014 Tomáš Kühr
Seminář z Informatiky a výpočetní techniky Slovanské gymnázium Olomouc 4. září 2014 Tomáš Kühr Tomáš Kühr Lektor na Katedře informatiky Přírodovědecké fakulty Univerzity Palackého v Olomouci Web: http://www.inf.upol.cz/lide/tomas-kuhr
Algoritmizace a programování
Algoritmizace a programování Jazyk C řízení běhu programu České vysoké učení technické Fakulta elektrotechnická Ver.1.10 J. Zděnek 2015 Šest zákonů programování 1. V každém programu je alespoň jedna chyba
Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013
Projekt podpořený Operačním programem Přeshraniční spolupráce Slovenská republika Česká republika 2007-2013 Informace a ukázka experimentálního programu Automatizace a robotika Projekt OBLOHA NA DLANI
Datové struktury. alg12 1
Datové struktury Jedna z klasických knih o programování (autor prof. Wirth) má název Algorithms + Data structures = Programs Datová struktura je množina dat (prvků, složek, datových objektů), pro kterou
Digitální učební materiál
Digitální učební materiál Číslo projektu: CZ.1.07/1.5.00/34.0548 Název školy: Gymnázium, Trutnov, Jiráskovo náměstí 325 Název materiálu: VY_32_INOVACE_142_IVT Autor: Ing. Pavel Bezděk Tematický okruh:
Riemannova hypotéza Martin Havlík 2. A
Riemannova hypotéza Martin Havlík 2. A Motivace: Motivace mého projektu je jednoduchá, pochopit matematiky označovaný nejtěžší a nejdůležitější problém současné matematiky. Cíle: Dokázání téhle hypotézy
Anotace. Dynamické programování, diskrétní simulace.
Anotace Dynamické programování, diskrétní simulace. Problémy, které byly Přednášející jde tentokrát do M1, počet platných uzávorkování pomocí n párů závorek, počet rozkladů přirozeného čísla na součet
- znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku
Znaky - standardní typ char var Z, W: char; - znakové konstanty v apostrofech, např. a, +, (znak mezera) - proměnná zabírá 1 byte, obsahuje kód příslušného znaku - v TP (často i jinde) se používá kódová
Řídicí struktury. alg3 1
Řídicí struktury Řídicí struktura je programová konstrukce, která se skládá z dílčích příkazů a předepisuje pro ně způsob provedení Tři druhy řídicích struktur: posloupnost, předepisující postupné provedení
1.8.5 Dělení mnohočlenů
185 Dělení mnohočlenů Předpoklady: 18 Mohou nastat dvě možnosti 1 Dělení mnohočlenů jednočlenem Jednoduché dělíme každý člen zvlášť Př 1: Vyděl mnohočleny ( 9x y 6x y + 1xy x : x Dělit znamená dát mnohočleny
Dijkstrův algoritmus
Dijkstrův algoritmus Hledání nejkratší cesty v nezáporně hranově ohodnoceném grafu Necht je dán orientovaný graf G = (V, H) a funkce, která každé hraně h = (u, v) H přiřadí nezáporné reálné číslo označované
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace
Masarykova střední škola zemědělská a Vyšší odborná škola, Opava, příspěvková organizace Číslo projektu Číslo materiálu Autor Průřezové téma Předmět CZ.1.07/1.5.00/34.0565 VY_32_INOVACE_284_Programovací_jazyky
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115
Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 1 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek:
(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m
. Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,
Matematika IV 10. týden Kódování
Matematika IV 10. týden Kódování Jan Slovák Masarykova univerzita Fakulta informatiky 22. 26. 4. 2013 Obsah přednášky 1 (n, k) kódy 2 Polynomiální kódy 3 Lineární kódy Kde je dobré číst? připravovaná učebnice
Svobodná chebská škola, základní škola a gymnázium s.r.o. Dělitelnost Rozklad na součin prvočísel. Dušan Astaloš
METODICKÝ LIST DA10 Název tématu: Autor: Předmět: Dělitelnost Rozklad na součin prvočísel Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti:
Školní kolo soutěže Baltík 2009, kategorie C
Úloha 1 Sídliště Počet bodů: 40 b Pracujte v 3D režimu s Baltíkem. a) Bílý a šedivý Baltík si postaví šachovnici o rozměru 6x6 políček následujícím způsobem. Předměty SGP21.sgpm a SGP22.sgpm upravte na
3. přednáška. Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti
Obsah: Řídící struktury sekvence, if-else, switch, for, while, do-while. Zpracování posloupnosti 3. přednáška nalezení největšího prvku, druhého nejvyššího prvku, algoritmus shozeného praporku. Algoritmizace
Řetězové zlomky. již čtenář obeznámen. Důraz bude kladen na implementační stránku, protože ta je ve
Faktorizace čísel pomocí řetězových zlomků Tento text se zabývá algoritmem CFRAC (continued fractions algorithm) pro rozkládání velkých čísel (typicky součinů dvou velkých prvočísel). Nebudeme se zde zabývat
Algoritmus. Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu.
Algoritmus Cílem kapitoly je seznámit žáky se základy algoritmu, s jeho tvorbou a způsoby zápisu. Klíčové pojmy: Algoritmus, vlastnosti algoritmu, tvorba algoritmu, vývojový diagram, strukturogram Algoritmus
Diskrétní matematika 1. týden
Diskrétní matematika 1. týden Elementární teorie čísel dělitelnost Jan Slovák Masarykova univerzita Fakulta informatiky jaro 2015 Obsah přednášky 1 Problémy teorie čísel 2 Dělitelnost 3 Společní dělitelé
Programovanie I. Úvod do programovania Mgr. Stanislav Horal, Katedra informatiky, FPV, UCM
Programovanie I 9.10.2007 Úvod do programovania Mgr. Stanislav Horal, Katedra informatiky, FPV, UCM Algoritmus (1) Existuje niekoľko definícií pojmu algoritmus Algoritmus je presná postupnosť krokov a
Čtvrtek 8. prosince. Pascal - opakování základů. Struktura programu:
Čtvrtek 8 prosince Pascal - opakování základů Struktura programu: 1 hlavička obsahuje název programu, použité programové jednotky (knihovny), definice konstant, deklarace proměnných, všechny použité procedury
Každé dítě bude mít 4 kuličky. Zkouška: (např. sečtením kuliček každého z dětí) = 20.
10. DĚLENÍ PŘIROZENÝCH ČÍSEL 10. 1. Pamětné dělení Dělení přirozených čísel je definováno jako inverzní operace k operaci násobení. Jestliže pro přirozená čísla a, b, c platí a. b = c pak pro a 0, b 0
VÝUKOVÝ MATERIÁL. Bratislavská 2166, Varnsdorf, IČO: tel Číslo projektu
VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška devátá Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 Obsah 1 Kombinatorika: princip inkluze a exkluze 2 Počítání
Matematika IV - 3. přednáška Rozklady grup
Matematika IV - 3. přednáška Rozklady grup Michal Bulant Masarykova univerzita Fakulta informatiky 3. 3. 2008 Obsah přednášky Rozklady podle podgrup ô Normální podgrupy Martin Panák, Jan Slovák, Drsná
Složitost Filip Hlásek
Složitost Filip Hlásek Abstrakt. Příspěvek popisuje dva základní koncepty teoretické informatiky, Turingovy stroje a složitost. Kromě definic důležitých pojmů uvádí také několik souvisejících tvrzení,
Volitelné semináře ve 3. ročníku
Volitelné semináře ve 3. ročníku Seminář českého jazyka a literatury (3. ročník) - dvouhodinový Výuka zahrnuje literární výchovu a jazykovou a komunikační výchovu, které se vzájemně doplňují a prolínají.
Hledání v textu algoritmem Boyer Moore
Zápočtová práce z Algoritmů a Datových Struktur II (NTIN061) Hledání v textu algoritmem Boyer Moore David Pěgřímek http://davpe.net Algoritmus Boyer Moore[1] slouží k vyhledání vzoru V v zadaném textu
Obecná informatika. Matematicko-fyzikální fakulta Univerzity Karlovy v Praze. Podzim 2012
Obecná informatika Přednášející Putovních přednášek Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Podzim 2012 Přednášející Putovních přednášek (MFF UK) Obecná informatika Podzim 2012 1 / 18
Poslední nenulová číslice faktoriálu
Poslední nenulová číslice faktoriálu Kateřina Bambušková BAM015, I206 Abstrakt V tomto článku je popsán a vyřešen problém s určením poslední nenulové číslice faktoriálu přirozeného čísla N. Celý princip
Základy algoritmizace a programování
Základy algoritmizace a programování Přednáška 1 Olga Majlingová Katedra matematiky, ČVUT v Praze 19. září 2011 Obsah Úvodní informace 1 Úvodní informace 2 3 4 Doporučená literatura web: http://marian.fsik.cvut.cz/zapg
ZŠ ÚnO, Bratří Čapků 1332
Úvodní obrazovka Menu Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 9-12 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu témat (horní
Implementace LL(1) překladů
Překladače, přednáška č. 6 Ústav informatiky, FPF SU Opava sarka.vavreckova@fpf.slu.cz Poslední aktualizace: 30. října 2007 Postup Programujeme syntaktickou analýzu: 1 Navrhneme vhodnou LL(1) gramatiku
Rekurze. Pavel Töpfer, 2017 Programování 1-8 1
Rekurze V programování ve dvou hladinách: - rekurzivní algoritmus (řešení úlohy je definováno pomocí řešení podúloh stejného charakteru) - rekurzivní volání procedury nebo funkce (volá sama sebe přímo
Standardní algoritmy vyhledávací.
Standardní algoritmy vyhledávací. Vyhledávací algoritmy v C++ nám umožňují vyhledávat prvky v datových kontejnerech podle různých kritérií. Také se podíváme na vyhledávání metodou půlením intervalu (binární
Seminář z IVT Algoritmizace. Slovanské gymnázium Olomouc Tomáš Kühr
Seminář z IVT Algoritmizace Slovanské gymnázium Olomouc Tomáš Kühr Algoritmizace - o čem to je? Zatím jsme se zabývali především tím, jak určitý postup zapsat v konkrétním programovacím jazyce (např. C#)
Programovani v Maplu Procedura
Programovani v Maplu Procedura Priklad: procedura, ktera scita 2 cisla: a + 2*b soucet := proc (a, b) local c; # lokalni promenna - existuje a meni se jenom uvnitr procedury c:=a+b; # globalni promenna
Micro:bit lekce 3. - Konstrukci If Then a If Then Else najdete v kategorii Logic - Podmínky od If (např. porovnání < >= atd.) najdete taktéž v Logic
Micro:bit lekce 3. Podmínky - Rozvětvení běhu programu podle splnění nějakých podmínek typu pravda / nepravda - splněno / nesplněno (výsledkem podmínky musí být vždy jen dvě možnosti) - Dva typy podmínek: