Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
|
|
- Kamila Bednářová
- před 5 lety
- Počet zobrazení:
Transkript
1 Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti. Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc
2 Zpracovávaná data jsou výstupem z výrobních procesů při výrobě pigmentu TiO. - -
3 Obsah Metoda hlavních komponent (Principal Components Analysis).... Zadání.... Naměřená data.... Indexový graf úpatí vlastních čísel.... Graf komponentních vah....5 Rozptylový diagram komponentního skóre....6 Dvojný graf (Biplot) Numerické výpočty pro neredukované proměnné Graf komponentních vah po první redukci Rozptylový diagram komponentního skóre po první redukci Numerické výpočty po první redukci Graf komponentních vah po druhé redukci Rozptylový diagram komponentního skóre po druhé redukci Numerické výpočty po druhé redukci Závěr... 9 Faktorová analýza.... Vypočtené parametry.... Grafické zobrazení.... Závěr:... Hierarchické klastrování.... Grafické zobrazení.... Závěr:... Přílohy
4 Metoda hlavních komponent (Principal Components Analysis). Zadání Pigment TiO je vyráběn kontinuálním procesem, přesto dochází při výrobě ke změně některých podmínek (změna vstupní suroviny, odchýlení technologických parametrů atd.), které mohou ovlivnit výsledné vlastnosti výrobku. Proto je pigment expedován po výrobních šaržích, které vzhledem k velikosti ( tun) zaručují stejnou kvalitu. V průběhu delšího období se však mohou tyto šarže u jednoho typu výrobku lišit, přestože stanovení sledovaných parametrů (vzhledem k jejich počtu a vzájemných vazeb) toto neodhalíné. Posuďte u typu R00M vzájemné vztahy mezi stanovovanými parametry a pokuste se najít takové charakteristiky, které by pomohly včas odhalit případné odchýlení, aniž by bylo nutno pracně analyzovat celou škálu parametrů. Zjistěte, zdali ve sledovaném období byly šarže R00M shodné. K dispozici je 66 šarží.. Naměřená data U 66 šarží R00M bylo sledováno 0 parametrů (viz. příloha ). Tabulka I: Sledované parametry označení parametr TiO_% obsah TiO tek_lat těkavé látky mer_vod měrná vodivost ph_vyluh ph výluhu zb_b zbytek B Sp_olej spotřeba oleje Ba barvivost Podton podtón L_pasta L* v bílé pastě b_pasta b* v bílé pastě HEMP_85 dispergace HEMP_85 rutil obsah rutilu C_% obcah C d 50 velikost částic (d 50) AlO_% obsah Al O PO5_% obsah P O 5 KO_% obsah K O NbO5_% obsah Nb O 5 S_% obsah S ZrO_% obsah ZrO Data byla zpracována v programu CSAN. pomocí algoritmu NIPALS. - -
5 . Indexový graf úpatí vlastních čísel Vlastní čísla (Eigenvalues) slouží k určení počtu hlavních komponent (Components). NIPALS Eigenvalue (Scree) Plot 5 eigenvalues components Obrázek : Indexový graf úpatí vlastních čísel Na indexovém grafu vlastních čísel (velikost vlastních čísel proti stoupající hodnotě indexu) vidíme užitečné hlavní komponenty odděleny zlomem. Význam mají nanejvýš tři.. Graf komponentních vah NIPALS Loading Plot 0.5 Sp_olej second component S_% d 50 mer_vod AlO_% ph_vyluh rutil ZrO_% Ba C_% b_pasta KO_% TiO_% HEMP_85 tek_lat zb_b NbO5_% Podton L_pasta PO5_% first component Obrázek : Graf komponentních vah pro 66 objektů a 0 proměnných Porovnáním vzdáleností a úhlů mezi jednotlivými průvodiči (úhel je nepřímo úměrný velikosti korelace mezi proměnnými) určíme společné nebo velmi podobné vlastnosti..5 Rozptylový diagram komponentního skóre Tento diagram ukazuje celou strukturu objektů (shluky, izolované objekty, odlehlé objekty). - -
6 NIPALS Score Plot second component first component.6 Dvojný graf (Biplot) Obrázek : Rozptylový diagram komponentního skóre pro 66 objektů a 0 proměnných. Tento graf je kombinací dvou předchozích a zobrazuje současně objekty a průvodiče proměnných. Je-li některý objekt umístěn ve dvojném grafu na místě (nebo poblíž) proměnné, je s ní v interakci. NIPALS Biplot second component Sp_olej S_% AlO_% d 50 C_% b_pasta mer_vod ph_vyluh 8 KO_% ZrO_% Ba rutil TiO_% HEMP_85 L_pasta tek_lat NbO5_% Podton PO5_% zb_b first component Obrázek : Dvojný graf pro 66 objektů a 0 proměnných. Z grafů jsou je vidět, v souboru jsou čtyři odlehlé objekty (0,, 6, 7), které jsou mimo dva hlavní shluky..7 Numerické výpočty pro neredukované proměnné Tabulka II: Sledované parametry - 5 -
7 Hlavní Hlavní Eigenvalue Proporčně Kumulativně komponenta komponenta Eigenvalue Proporčně Kumulativně První tři latentní proměnné vysvětlují 55. % variability. Vysoké korelace a tedy i podobné vlastnosti v tomto souboru mají: Podtón a obsah Nb O 5 L* v bílé pastě a obsah P O 5 Zbytek B a Hempl_85 Barvivost a Rutil Měrná vodivost, ph výluhu a obsah Al O d 50 a obsah S b* v bílé pastě a obsah uhlíku Na základě vyšetření grafu komponentních vah a znalosti problematiky stanovení analytických parametrů bylo rozhodnuto o vypuštění následujících parametrů: Podtón L* v bílé pastě Zbytek B Barvivost Rutil Měrná vodivost, ph výluhu b* v bílé pastě.8 Graf komponentních vah po první redukci NIPALS Loading Plot C_% Sp_olej
8 .9 Rozptylový diagram komponentního skóre po první redukci NIPALS Score Plot second component first component Obrázek 6: Rozptylový diagram komponentního skóre pro proměnných. Z grafů je vidět, že po první redukci proměnných se shluky změnily na tři. Stále je mimo šarže 0 (odlehlý bod)..0 Numerické výpočty po první redukci Tabulka III: Sledované parametry Hlavní Eigenvalue Proporčně Kumulativně komponenta Hlavní komponenta Eigenvalue Proporčně Kumulativně - 7 -
9 Po první redukci proměnných došlo ke zvýšení vysvětlené variability z 55. % na 67. %.. Graf komponentních vah po druhé redukci NIPALS Loading Plot 0. C_% Sp_olej second component AlO_% ZrO_% S_% TiO_% tek_lat NbO5_% PO5_% first component 0.5 Obrázek 7: Graf komponentních vah pro 8 proměnných. Na grafu je vidět že proměnné se rozdělily v prostoru a mají přibližně stejnou míru informace. Teoreticky by se daly nahradit (zaměnit mezi sebou) proměnné AlO_% a TiO_%. Leží proti sobě a jsou přibližně stejně vzdáleny od počátku.. Rozptylový diagram komponentního skóre po druhé redukci NIPALS Score Plot nent
10 Po druhé redukci se shluky ještě výrazněji oddělily, Šarže 0 zůstává jako odlehlý objekt.. Numerické výpočty po druhé redukci Tabulka IV: Sledované parametry Hlavní Hlavní Eigenvalue Proporčně Kumulativně komponenta komponenta Eigenvalue Proporčně Kumulativně Závěr Jak se ukazuje z porovnání tabulek, podařilo se druhou redukcí zvýšit vysvětlenou variabilitu pro tři latentní proměnné o 0. % (z 55. % na 75. %). Pro dvě latentní proměnné y a y je zvýšení o 9.7 % (z 5.5 na 6. %). Latentní proměnné mají následující tvar: y = 0.8*TiO_% - 0.0*tek_latky *Sp_olej 0.8*C_% - 0.8*AlO + 0.*PO *NbO5 0.5*S% y = 0.0*TiO_% - 0.*tek_latky + 0.*Sp_olej *C_% *AlO *PO5-0.90*NbO *S% Na rozptylovém grafu jsou patrné dva shluky, které jsou mimo hlavní mrak bodů. Tyto šarže jsou odlišné od ostatních. Tuto skutečnost lze odhalit u tohoto materiálu již při stanovení devíti parametrů (místo původních dvaceti). Výhodou je, že stanovení prvkového pozadí (obsahu Al O, P O 5, Nb O 5, S) lze provést při jednom měření pomocí rentgenové fluorescenční spektrometrie
11 Tato analýza vícerozměrných dat slouží jako podklad pro bližší zkoumání podmínek, při kterých došlo k odchýlení od standardní produkce u některých šarží. Latentní proměnné nelze jednoznačně pojmenovat, obě mají vazbu na fyzikální i chemické vlastnosti zkoumaného pigmentu
12 Faktorová analýza Při faktorové analýze byly vypočteny komunality při použití 5 faktorů. Pro rotaci bylo využito metody EQUIMAX (při rotaci je minimalizován rozptyl čtverců faktorových vah a současně je maximalizován součet čtvrtých mocnin faktorových zátěží).. Vypočtené parametry Tabulka V: Komunality a vysvětlený rozptyl pro zvolený počet faktorů Proměnná Komunalita pro zvolený počet faktorů 5 TiO_% tek_latky Sp_olej C_% AlO_% PO5_% NbO_% S_% Vysvětlený rozptyl Grafické zobrazení Factor Analysis Score Plot Unrotated Factors Rotated Factors.5.5 second factor second factor first factor - 0 first factor 5 6 Obrázek 9: Graf pro dva faktory před a po rotaci - -
13 . Závěr: Pro popis souboru je možné použít dvou (65 % variability), popřípadě tří faktorů (77.9 % variability). Po rotaci EQUIMAX byly získány následující komponentní váhy. Tabulka VI: Komponentní váhy po rotaci Proměnná Faktor Faktor Faktor Faktor Faktor TiO_% tek_latky Sp_olej C_% AlO_% PO5_% NbO_% S_%
14 Hierarchické klastrování. Grafické zobrazení Bylo použito klastrování podle Eukleidovské vzdálenosti. Jde o grafické zobrazení závislosti veličin pomocí dendrogramů. Similarity 0.00 Dendrogram Observations Obrázek 0: Dendrogram Eukleidovská vzdálenost V dalším hodnocení bylo použito průměru a Eukleidovské vzdálenosti. Similarity.0 Dendrogram Observations Obrázek : Průměr a Eukleidovská vzdálenost. Závěr: Objekty je možné klasifikovat různými způsoby. Dendrogramy dokreslují PCA i FA. Objekty jsou seřaditelné do několika skupin podle podobnosti. - -
15 Přílohy Použitá data Výstup z programu SCAN. - -
Vyhodnocení průměrných denních analýz kalcinátu ananasového typu. ( Metoda hlavních komponent )
Vyhodnocení průměrných denních analýz kalcinátu ananasového typu. ( Metoda hlavních komponent ) Zadání : Titanová běloba (TiO ) se vyrábí ve dvou základních krystalových modifikacích - rutilové a anatasové.
VíceFakulta chemicko technologická Katedra analytické chemie
Fakulta chemicko technologická Katedra analytické chemie Licenční studium statistické zpracování dat Analýza vícerozměrných dat Ing. Pavel Valášek Školní rok OBSAH ÚVOD DATA EDA EXPLORATORÍ AALÝZA 4 PCA
VíceSEMESTRÁLNÍ PRÁCE. Určení vnitřní struktury analýzou vícerozměrných dat. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Určení vnitřní struktury analýzou vícerozměrných dat Ing. Pavel Bouchalík 1. ZADÁNÍ Tato semestrální práce je písemným vypracováním zkouškových otázek z okruhu Určení vnitřní struktury
VícePočítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd
Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Prof. RNDr. Milan Meloun, DrSc. (Univerzita Pardubice, Pardubice) 20.-24. června 2011 Tato prezentace je spolufinancována
VíceFakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat při managementu jakosti. Semestrální práce:
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat při managementu jakosti Semestrální práce: METODY S LATENTNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ
VícePříklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy
Příklad 2: Určení cihlářských surovin na základě chemické silikátové analýzy Zadání: Deponie nadložních jílových sedimentů SHP byla testována za účelem využití v cihlářské výrobě. Z deponie bylo odebráno
Více3.4 Určení vnitřní struktury analýzou vícerozměrných dat
3. Určení vnitřní struktury analýzou vícerozměrných dat. Metoda hlavních komponent PCA Zadání: Byly provedeny analýzy chladící vody pro odběrové místa. Byly stanoveny parametry - ph, vodivost, celková
VíceUniverzita Pardubice 8. licenční studium chemometrie
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Metody s latentními proměnnými a klasifikační metody Ing. Jan Balcárek, Ph.D. vedoucí
VíceÚvod do vícerozměrných metod. Statistické metody a zpracování dat. Faktorová a komponentní analýza (Úvod do vícerozměrných metod)
Úvod do vícerozměrných metod Statistické metody a zpracování dat Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný O řadě jevů či procesů máme k dispozici ne jeden statistický
VíceStatistické metody a zpracování dat. IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný
Statistické metody a zpracování dat IX Faktorová a komponentní analýza (Úvod do vícerozměrných metod) Petr Dobrovolný Úvod do vícerozměrných metod O řadě jevů či procesů máme k dispozici ne jeden statistický
VícePříklad 2: Obsah PCB v játrech zemřelých lidí. Zadání: Data: Program:
Příklad 2: Obsah PCB v játrech zemřelých lidí Zadání: V rámci Monitoringu zdraví byly měřeny koncentrace polychlorovaných bifenylů vjátrech lidí zemřelých náhodnou smrtí ve věku 40 let a více. Sedm vybraných
VíceAproximace a vyhlazování křivek
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Přednášející: Prof. Ing. Jiří Militký, Csc 1. SLEDOVÁNÍ ZÁVISLOSTI HODNOTY SFM2 NA BARVIVOSTI
VíceFakulta chemicko-technologická Katedra analytické chemie. 3.2 Metody s latentními proměnnými a klasifikační metody
Fakulta chemicko-technologická Katedra analytické chemie 3.2 Metody s latentními proměnnými a klasifikační metody Vypracoval: Ing. Tomáš Nekola Studium: licenční Datum: 21. 1. 2008 Otázka 1. Vypočtěte
VíceProfilování vzorků heroinu s využitím vícerozměrné statistické analýzy
Profilování vzorků heroinu s využitím vícerozměrné statistické analýzy Autor práce : RNDr. Ivo Beroun,CSc. Vedoucí práce: prof. RNDr. Milan Meloun, DrSc. PROFILOVÁNÍ Profilování = klasifikace a rozlišování
VíceUniverzita Pardubice. Fakulta chemicko-technologická. Katedra analytické chemie. Semestrální práce. Licenční studium
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Semestrální práce Licenční studium Statistické zpracování dat při kontrole a řízení jakosti předmět 3.1. Matematické principy
VíceUniverzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie
Univerzita Pardubice Chemicko-technologická fakulta Katedra analytické chemie 12. licenční studium PYTHAGORAS Statistické zpracování dat 3.1 Matematické principy vícerozměrných metod statistické analýzy
VíceOdhalení skryté struktury a vnitřních vazeb dat metodami vícerozměrné statistické analýzy
Odhalení skryté struktury a vnitřních vazeb dat metodami vícerozměrné statistické analýzy Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan. meloun@upce.
VíceFaktorová analýza příklad. Obrázek 1 Ukázka části vstupních dat
Faktorová analýza příklad Obrázek 1 Ukázka části vstupních dat Maticový graf vybraných proměnných: Fueltank Passengers Length Wheelbase Width U Turn Space Rear seat Luggage Weight Horsepower Engine Size
VíceUniverzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 3.3 v analýze dat Autor práce: Přednášející: Prof. RNDr. Milan Meloun, DrSc Pro
VíceAVDAT Mnohorozměrné metody metody redukce dimenze
AVDAT Mnohorozměrné metody metody redukce dimenze Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování vlastní čísla a vlastní vektory A je čtvercová matice řádu n. Pak
VícePlánování experimentu
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Autor: Ing. Radek Růčka Přednášející: Prof. Ing. Jiří Militký, CSc. 1. LEPTÁNÍ PLAZMOU 1.1 Zadání Proces
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. Semestrální práce ANOVA 2015
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce ANOVA 2015
VíceS E M E S T R Á L N Í
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie S E M E S T R Á L N Í P R Á C E Licenční studium Statistické zpracování dat při managementu jakosti Předmět Určení vnitřní
Vícevzorek1 0.0033390 0.0047277 0.0062653 0.0077811 0.0090141... vzorek 30 0.0056775 0.0058778 0.0066916 0.0076192 0.0087291
Vzorová úloha 4.16 Postup vícerozměrné kalibrace Postup vícerozměrné kalibrace ukážeme na úloze C4.10 Vícerozměrný kalibrační model kvality bezolovnatého benzinu. Dle následujících kroků na základě naměřených
VíceZávěrečná práce Ing. Jiří Pokorný
Závěrečná práce Ing. Jiří Pokorný Téma: Využití statistické analýzy vícerozměrných dat k hodnocení vlivu faktorů ovlivňujících prodejnost dětské školní fotografie Vedoucí práce: prof. RNDr. Milan Meloun,
VíceKVALITA GELU HYDRATOVANÉHO OXIDU TITANIČITÉHO Z HLEDISKA KALCINAČNÍHO CHOVÁNÍ
UNIVERZITA PARDUBICE Školní rok 1999/2000 Fakulta chemicko-technologická, Katedra analytické chemie LICENČNÍ STUDIUM STATISTICKÉ ZPRACOVÁNÍ DAT PŘI MANAGEMENTU JAKOSTI PŘEDMĚT: 2.4 Faktory ovlivňující
VícePočítačová analýza vícerozměrných dat
Seminární práce Vypracoval: Ing.Jiří Raška Obsah: Zadání 3 Průzkumová analýza 5 Symbolové grafy 8 Odhalení struktury ve znacích a objektech 11 Metoda hlavních komponent 16 Shluková analýza 22 Závěr 27
VíceFaktorová analýza (FACT)
Faktorová analýza (FAC) Podobně jako metoda hlavních komponent patří také faktorová analýza mezi metody redukce počtu původních proměnných. Ve faktorové analýze předpokládáme, že každou vstupující proměnnou
VícePŘÍKLAD 4.5 Chromatografická analýza farmakologických sloučenin Byly měřeny hodnoty R F pro 20 sloučenin s 18 eluenty. Žádné eluční činidlo však nepro
PŘÍKLAD 4.5 Chromatografická analýza farmakologických sloučenin Byly měřeny hodnoty R F pro 20 sloučenin s 18 eluenty. Žádné eluční činidlo však neprovedlo úplné rozdělení. Cílem je nalézt minimální výběr
VíceSemestrální práce. 3.1 Matematické principy analýzy vícerozměrných dat
Semestrální práce 3.1 Matematické principy analýzy vícerozměrných dat RNDr.Raimund HEDBÁVNÝ Bioveta, a.s. Komenského 212, 683 23 Ivanovice na Hané 2007 3.1 Matematické principy analýzy vícerozměrných dat
VíceTvorba lineárních regresních modelů při analýze dat
Fakulta chemicko technologická Katedra analytické chemie licenční studium Management systému jakosti Tvorba lineárních regresních modelů při analýze dat Autor: Přednášející: Prof. RNDr. Milan Meloun, DrS
VíceSEMESTRÁ LNÍ PRÁ CE. Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI. Předmě t POČ ÍTAČ OVÁ ANALÝ ZA VÍCEROZMĚ RNÝ CH DAT
SEMESTRÁ LNÍ PRÁ CE Licenč ní studium STATISTICKÉZPRACOVÁ NÍ DAT PŘ I KONTROLE A Ř ÍZENÍ JAKOSTI Předmě t POČ ÍTAČ OVÁ ANALÝ ZA VÍCEROZMĚ RNÝ CH DAT Ú stav experimentá lní biofarmacie, Hradec Krá lové
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce KLASIFIKACE
VíceZX510 Pokročilé statistické metody geografického výzkumu
ZX510 Pokročilé statistické metody geografického výzkumu Téma: Explorační faktorová analýza (analýza hlavních komponent) Smysl a princip faktorové analýzy v explorační verzi není faktorová analýza určena
VíceOptimalizace parametrů hmotnostního detektoru (MS/MS) s využitím vícerozměrných statistických analýz
Optimalizace parametrů hmotnostního detektoru (MS/MS) s využitím vícerozměrných statistických analýz Kamil Šťastný říjen 2020 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Univerzita
VíceSEMESTRÁLNÍ PRÁCE 3.5 Klasifikace analýzou vícerozměrných dat
UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ KATEDRA ANALYTICKÉ CHEMIE LICENČNÍ STUDIUM - STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Ing. Věra Fialová BIOPHARM VÝZKUMNÝ ÚSTAV BIOFARMACIE A VETERINÁRNÍCH
VíceUniverzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
VíceAnalýzy regionálního trhu práce v České republice Analysis of regional labour market in Czech Republic
2 nd Central European Conference in Regional Science CERS, 2007 862 Analýzy regionálního trhu práce v České republice Analysis of regional labour market in Czech Republic PETR ŘEHOŘ, DARJA HOLÁTOVÁ Jihočeská
VícePočet světlo-absorbujících částic v rovnovážné směsi faktorovou analýzou spekter
Počet světlo-absorbujících částic v rovnovážné směsi faktorovou analýzou spekter Ing. Zuzana Ferenčíková a prof. RNDr. Milan Meloun. DrSc., Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice
VíceLEKCE 11 FAKTOROVÁ ANALÝZA
LEKCE 11 FAKTOROVÁ ANALÝZA Představuje způsob REDUKCE DAT: Jde o přeměnu souboru vzájemně korelovaných proměnných (matice jejich korelací) na menší soubor nekorelovaných faktorů, tento původní soubor reprezentující
VíceSEMESTRÁLNÍ PRÁCE UNIVERZITA PARDUBICE. Fakulta chemicko - technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko - technologická Katedra analytické chemie Licenční studium chemometrie: Počítačové zpracování dat při kontrole a řízení jakosti SEMESTRÁLNÍ PRÁCE Předmět: Aproximace
VíceVícerozměrné statistické metody
Vícerozměrné statistické metody Ordinační analýzy principy redukce dimenzionality Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Ordinační analýza a její cíle Cíle ordinační analýzy
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA. Semestrální práce
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2015 Doc. Mgr. Jan Muselík, Ph.D.
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce ANALÝZA
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce ze 6. soustředění Předmět: 3.3 Tvorba nelineárních
VíceUniverzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat ANOVA Zdravotní ústav se sídlem v Ostravě Odbor hygienických laboratoří
VíceUniverzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium Management systému jakosti 2.1 Tvorba lineárních regresních modelů při analýze dat Autor práce: Přednášející:
VíceOdhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody
Odhalení skryté struktury a vnitřních vazeb dat vícerozměrnou statistickou analýzou pitné vody Prof. RNDr. Milan Meloun, DrSc, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, milan.
VíceVícerozm rná analýza dat metodou hlavních komponent a shluk
Vícerozm rná analýza dat metodou hlavních komponent a shluk Prof. RNDr. Milan Meloun, DrSc. Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice, nám. s. Legií 565, 532 10 Pardubice,
VíceTVORBA GRAFŮ A DIAGRAMŮ V ORIGIN. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie TVORBA GRAFŮ A DIAGRAMŮ V ORIGIN Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 01 Ing.
VíceKalibrace a limity její přesnosti
Univerzita Pardubice Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie Statistické zpracování dat Kalibrace a limity její přesnosti Zdravotní ústav se sídlem v Ostravě
VíceUNIVERZITA PARDUBICE. Semestrální práce z 5. soustředění
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium chemometrie na téma Statistické zpracování dat Semestrální práce z 5. soustředění Předmět: 3.5 Klasifikace
VíceFaktorová analýza. PSY252 Statistická analýza dat v psychologii II
Faktorová analýza PSY252 Statistická analýza dat v psychologii II 8.12.2010 Latentní a manifestní proměnné Perspektiva CTT: (pro)jevy, které spolu nějakým způsobem souvisejí, mají stejnou podstatu, jsou
VíceUniverzita Pardubice. Fakulta chemicko-technologická Katedra analytické chemie. Licenční studium Statistické zpracování dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Statistické zpracování dat Semestrální práce Interpolace, aproximace a spline 2007 Jindřich Freisleben Obsah
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Tvorba nelineárních regresních modelů v analýze dat Vedoucí licenčního studia Prof. RNDr.
VíceIdentifikace zdrojů znečištění ovzduší měření a postupy
Identifikace zdrojů znečištění ovzduší měření a postupy Autor: Jiří Huzlík, CDV, WP5 Příspěvek byl zpracován za podpory programu Centra kompetence Technologické agentury České republiky (TAČR) v rámci
VícePočítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Počítačová analýza vícerozměrných dat v oborech přírodních, technických a společenských věd Učební texty ke kurzu Autoři: Prof. RNDr. Milan Meloun, DrSc. (Univerzita Pardubice,
VíceVýstupy z výukové jednotky. 2. Princip faktorové analýzy
Faktorová analýza Faktorová analýza je vícerozměrná statistická metoda, jejíž podstatou je rozbor struktury vzájemných závislostí proměnných na základě předpokladu, že jsou tyto závislosti důsledkem působení
VícePředmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc.
Předmět: 1.1 Využití tabulkového procesu jako laboratorního deníku Přednášející: Doc. Ing. Stanislava Šimonová, Ph.D., Doc. Ing. Milan Javůrek, CSc. Zadání: Do příštího soustředění předložte ke klasifikaci
VíceStatistika. Regresní a korelační analýza Úvod do problému. Roman Biskup
Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009
VíceStátnice odborné č. 20
Státnice odborné č. 20 Shlukování dat Shlukování dat. Metoda k-středů, hierarchické (aglomerativní) shlukování, Kohonenova mapa SOM Shlukování dat Shluková analýza je snaha o seskupení objektů do skupin
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, Pardubice
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 10. licenční studium chemometrie STATISTICKÉ ZPRACOVÁNÍ DAT Semestrální práce STATISTICKÁ
VíceExplorační faktorová analýza - analýza hlavních komponent
Explorační faktorová analýza - analýza hlavních komponent Faktorová analýza (FA) - ve své explorační verzi není primárně určena k meritorní analýze, to je neslouží k testování hypotéz ani k měření souvislostí
VíceUNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
Více(n, m) (n, p) (p, m) (n, m)
48 Vícerozměrná kalibrace Podobně jako jednorozměrná kalibrace i vícerozměrná kalibrace se používá především v analytické chemii Bude vysvětlena na příkladu spektroskopie: cílem je popis závislosti mezi
VíceVícerozměrné metody. PSY117/454 Statistická analýza dat v psychologii Přednáška 12. Schematický úvod
PSY117/454 Statistická analýza dat v psychologii Přednáška 12 Vícerozměrné metody Schematický úvod Co je na slově statistika tak divného, že jeho vyslovení tak často způsobuje napjaté ticho? William Kruskal
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Vedoucí studia a odborný garant: Prof. RNDr. Milan Meloun, DrSc. Vyučující: Prof. RNDr. Milan Meloun, DrSc. Autor práce: ANDRII
VícePartial Least Squares regrese (PLS-R)
Partial Least Squares regrese (PLS-R) Menu: QCExpert Prediktivní metody Partial Least Squares Modul PLS regrese poskytuje uživateli jednu z nejvýkonnějších současných výpočetních nástrojů pro vyhodnocování
VíceUNIVERZITA PARDUBICE
UNIVERZITA PARDUBICE Fakulta chemicko technologická Katedra analytické chemie Licenční studium chemometrie na téma Využití tabulkového procesoru jako laboratorního deníku Vedoucí licenčního studia Prof.
VíceInternal bounds and hidden structure of the metallurgic data with the use of Multivariate Data Analysis MDA
Odhalení skryté struktury a vnitřních vazeb dat metodami PCA, FA a CLU vícerozměrné statistické analýzy Internal bounds and hidden structure of the metallurgic data with the use of Multivariate Data Analysis
VíceVnitřní vazby a skrytá struktura v hutnických datech vícerozměrnou statistickou analýzou
Vnitřní vazby a skrytá struktura v hutnických datech vícerozměrnou statistickou analýzou Milan Meloun 1, Roman Lisztwan 2 1 Katedra analytické chemie, Chemickotechnologická fakulta, Univerzita Pardubice,
VíceVícerozměrné statistické metody
Vícerozměrné statistické metody Ordinační analýzy přehled metod Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Analýza hlavních komponent jako příklad výpočtu redukce dimenzionality
VíceTvorba grafů v programu ORIGIN
LICENČNÍ STUDIUM GALILEO STATISTICKÉ ZPRACOVÁNÍ DAT SEMESTRÁLNÍ PRÁCE Tvorba grafů v programu ORIGIN doc.dr.ing.vladimír Pata Univerzita Tomáše Bati ve Zlíně Fakulta technologická Ústav výrobních technologií
VíceTvorba nelineárních regresních modelů v analýze dat
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba nelineárních regresních modelů v analýze dat Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza
VíceAnalýza hlavních komponent
Analýza hlavních komponent Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz J. Neubauer, J. Michálek (Katedra ekonometrie UO) Analýza
VícePYTHAGORAS Statistické zpracování experimentálních dat
UNIVERZITA PARDUBICE Fakulta chemicko-technologická, Katedra analytické chemie SEMESTRÁLNÍ PRÁCE Květen 2008 Licenční studium PYTHAGORAS Statistické zpracování experimentálních dat Předmět 1.4 ANOVA a
VíceUniverzita Pardubice
Univerzita Pardubice 8. licenční studium chemometrie Statistické zpracování dat při managementu jakosti Semestrální práce Lineární regrese Ing. Jan Balcárek, Ph.D. vedoucí Centrálních laboratoří Precheza
VíceVícerozměrné statistické metody
Vícerozměrné statistické metody Shluková analýza Jiří Jarkovský, Simona Littnerová FSTA: Pokročilé statistické metody Typy shlukových analýz Shluková analýza: cíle a postupy Shluková analýza se snaží o
VíceTvorba grafů a diagramů v ORIGIN
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie Tvorba grafů a diagramů v ORIGIN Semestrální práce Licenční studium GALILEO Interaktivní statistická analýza dat Brno, 2016
VíceStatistické zpracování naměřených experimentálních dat za rok 2012
Statistické zpracování naměřených experimentálních dat za rok 2012 Popis dat: Experimentální data byla získána ze tří měřících sloupů označených pro jednoduchost názvy ZELENA, BILA a RUDA. Tyto měřící
VícePCA BIPLOT ŠKÁLOVÁNÍ OS (1)
PCA BIPLOT ŠKÁLOVÁNÍ OS (1) 1 (sites) o zaměření na odlišnosti mezi lokalitami zachovány euklidovské vzdálenosti mezi vzorky úhly mezi šipkami neodpovídají kovariancím (korelacím) proměnných variance skóre
VíceČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace
VíceInovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz
http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Sedm základních nástrojů řízení kvality Doc. RNDr. Jiří Šimek,
VíceUNIVERZITA PARDUBICE FAKULTA EKONOMICKO SPRÁVNÍ BAKALÁŘSKÁ PRÁCE 2008 PETR ŠIMER
UNIVERZITA PARDUBICE FAKULTA EKONOMICKO SPRÁVNÍ BAKALÁŘSKÁ PRÁCE 2008 PETR ŠIMER Univerzita Pardubice Fakulta ekonomicko-správní Předzpracování ekonomických dat pomocí analýzy hlavních komponent Petr Šimer
VíceCronbachův koeficient α nová adaptovaná metoda uvedení vlastností položkové analýzy deskriptivní induktivní parametrické
Československá psychologie 0009-062X Metodologické požadavky na výzkumné studie METODOLOGICKÉ POŽADAVKY NA VÝZKUMNÉ STUDIE Výzkumné studie mají přinášet nová konkrétní zjištění získaná specifickými výzkumnými
VíceUniverzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT
Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie STATISTICKÉ ZPRACOVÁNÍ EXPERIMENTÁLNÍCH DAT STATISTICKÁ ANALÝZA JEDNOROZMĚRNÝCH DAT Seminární práce 1 Brno, 2002 Ing. Pavel
Více11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 11.Metody molekulové spektrometrie pro kvantitativní analýzu léčiv Vadym Prokopec Vadym.Prokopec@vscht.cz 11.Metody molekulové spektrometrie
VíceDISPARITY KRAJŮ ČR. Pavla Jindrová Univerzita Pardubice, Fakulta ekonomicko-správní, Ústav matematiky
DISPARITY KRAJŮ ČR Pavla Jindrová Univerzita Pardubice, Fakulta ekonomicko-správní, Ústav matematiky Abstract: The Czech Republic is structured among 14 regions (NUTS3). The comparison among regions of
VíceANOVA. Semestrální práce UNIVERZITA PARDUBICE. Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie ANOVA Semestrální práce Licenční studium Galileo Interaktivní statistická analýza dat Brno 2015 Ing. Petra Hlaváčková, Ph.D.
VíceThermodynamické disociační konstanty antidepresiva Vortioxetinu
Thermodynamické disociační konstanty antidepresiva Vortioxetinu Aneta Čápová, Bc Katedra analytické chemie, Chemicko-technologická fakulta, Univerzita Pardubice, CZ 532 10 Pardubice, Česká republika st38457@student.upce.cz
VíceStatistika (KMI/PSTAT)
Statistika (KMI/PSTAT) Cvičení dvanácté aneb Regrese a korelace Statistika (KMI/PSTAT) 1 / 18 V souboru 25 jedinců jsme měřili jejich výšku a hmotnost. Výsledky jsou v tabulce a grafu. Statistika (KMI/PSTAT)
VíceRegresní analýza 1. Regresní analýza
Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému
Vícemagnetizace M(t) potom, co těsně po rychlé změně získal vzorek magnetizaci M 0. T 1, (2)
1 Pracovní úkoly Pulsní metoda MR (část základní) 1. astavení optimálních excitačních podmínek signálu FID 1 H ve vzorku pryže 2. Měření závislosti amplitudy signálu FID 1 H ve vzorku pryže na délce excitačního
VíceSEMESTRÁLNÍ PRÁCE. Klasifikace analýzou vícerozměrných dat. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Klasifikace analýzou vícerozměrných dat Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce je písemným vypracováním zkouškových otázek z okruhu Klasifikace analýzou vícerozměrných dat.
VíceStatistika pro geografy
Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015 Osnova 1 2 3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických
VíceÚvodem Dříve les než stromy 3 Operace s maticemi
Obsah 1 Úvodem 13 2 Dříve les než stromy 17 2.1 Nejednoznačnost terminologie 17 2.2 Volba metody analýzy dat 23 2.3 Přehled vybraných vícerozměrných metod 25 2.3.1 Metoda hlavních komponent 26 2.3.2 Faktorová
VíceTECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
VíceStatistická analýza jednorozměrných dat
Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem
VíceProtonační rovnováhy léčiv faktorovou analýzou a nelineární regresí absorbanční responzní plochy
Protonační rovnováhy léčiv faktorovou analýzou a nelineární regresí absorbanční responzní plochy Ing. Sylva Bordovská, Katedra analytické chemie, Univerzita Pardubice, 532 10 Pardubice, sylva.bordovska@seznam.cz
VíceVI. česko-slovenská konference Doprava, zdraví a životní prostředí Brno
Doprava, zdraví a životní prostředí 10. 11. 11. 11. 2012 Brno RNDr. Jiří Huzlík Metodika kvantifikace emisí statistickými metodami Úvod Východiska pro tvorbu metodiky výsledky měření chemického složení
Více