Statistika pro geografy
|
|
- Iva Šmídová
- před 6 lety
- Počet zobrazení:
Transkript
1 Statistika pro geografy 2. Popisná statistika Mgr. David Fiedor 23. února 2015
2 Osnova 1 2 3
3 Pojmy - Bodové rozdělení četností Absolutní četnost Absolutní četností hodnoty x j znaku x rozumíme počet statistických jednotek daného statistického souboru, které mají stejnou hodnotu x j znaku x a značíme n j. Relativní četnost Relativní četností v j hodnoty x j znaku x rozumíme podíl absolutní četnosti hodnoty x j a rozsahu celého statistického souboru, tj. v j = n j n. Součet relativních četností všech různých hodnot daného znaku je roven jedné (resp. 100 %).
4 Pojmy - Bodové rozdělení četností Absolutní kumulativní četnost Absolutní kumulativní četností N j rozumíme součet prvních j absolutních četností. N j = n n j Relativní kumulativní četnost Relativní kumulativní četností V j rozumíme součet prvních j relativních četností. V j = N j n = v v j
5 Příklad 1,2,3,4,2,3,1,3,4,2,2,1,3,4,4,1,2,2,1,3,4,4,4,1,1 Řešení Hodnota znaku n j N j v j V j ,28 0, ,24 0, ,20 0, ,28 1,00
6 Pojmy - Skupinové (intervalové) rozdělení četností pro spojité znaky - udáváme počet prvků s hodnotami znaku patřících do daného intervalu (třídy) používáme při velkém počtu různých variant hodnot znaku šířku intervalu určuje rozdíl horní a dolní hranice (meze) a je konstantní pro všechny třídy střed intervalu je určen jako aritmetický průměr dolní a horní meze daného intervalu
7 Určení počtu tříd Sturgesovo pravidlo k - počet tříd k. = 1 + 3, 3 log n počet variant znaku počet třídicích intervalů Popisná statistika Statistika pro geografy
8 Příklad U obcí Moravskoslezského kraje s počtem obyvatel větším než tisíc a menších než deset tisíc byl zjištěn počet narozených dětí za rok Výsledky jsou následující: 28, 28, 23, 51, 21, 25, 9, 6, 30, 18, 16, 15, 65, 14, 9, 40, 16, 23, 12, 21, 10, 10, 40, 38, 10, 21, 31, 48, 19, 17, 16, 16, 11, 11, 27, 19, 20, 46. Pomocí Sturgesova pravidla určete počet třídicích intervalů, vytvořte tabulku skupinového rozdělení četností a relativních četností.
9 Řešení Nejdříve zjistíme počet všech hodnot zkoumaného znaku, abychom pomocí Sturgesova pravidla určili počet třídicích intervalů. Uspořádejme si všechny hodnoty do řady od nejmenších po největší: 6, 9, 9, 10, 10, 10, 11, 11, 12, 14, 15, 16, 16, 16, 17, 18, 19, 19, 20, 21, 21, 21, 23, 23, 25, 27, 28, 28, 30, 31, 38, 40, 40, 46, 48, 51, 65. Rozsah souboru je 37, odkud jsme dosazením do vzorce Sturgesova pravidla dostali, že počet třídicích intervalů je roven šesti. Nejmenší, resp. největší hodnota statistického znaku tohoto souboru je rovna 6, resp. 65. Délka jednoho intervalu se proto bude rovnat deseti. Sestrojme nyní tabulku skupinového rozdělení četností a relativních četností.
10 intervaly znaku x n j N j v j V j
11 Polygon četností typ spojnicového grafu slouží k znázornění četností kvantitativních znaků používá se pro intervalové i bodové rozdělení četností propojuje všechny body v pravoúhlé soustavě, kde osa x vyjadřuje hodnotu znaku a osa y znázorňuje odpovídající četnost
12 Histogram typ sloupcového diagramu slouží k znázornění četností kvantitativních znaků převážně se používá pro intervalové rozdělení četností graf je tvořen pravidelnými rovnoběžníky, jejichž základny mají délku zvolených intervalů a jejichž výšky mají velikost příslušných intervalových četností
13 Vztah histogramu a polygonu četností
14 Kruhový diagram slouží k znázornění četností kvalitativních znaků obsahy kruhových výsečí znázorňující jednotlivé hodnoty statistického znaku jsou přímo úměrné relativním četnostem v procentech
15 Součtová čára grafické znázornění relativních kumulativních četností
16 Typy statistických znaků Typy statistických znaků podle stupně kvantifikace: kvalitativní nominální znaky ordinální znaky kvantitativní intervalové znaky poměrové znaky
17 1 (úrovně) střední hodnoty, míry polohy, míry centrální tendence charakterizují obecnou velikost hodnot statistického znaku 2 směrodatná odchylka, rozptyl, variační koeficient popisují stupeň proměnlivosti hodnot daného znaku 3 koeficient asymetrie (šikmosti) umožňuje objektivně posoudit tvary histogramů - rozdělení četností hodnot daného znaku 4 koeficient špičatosti vyjadřuje koncentraci hodnot kolem určité hodnoty - rozdělení špičaté x ploché
18 Aritmetický průměr Aritmetický průměr x hodnot x 1, x 2,..., x n znaku x je definován jako podíl součtu hodnot znaku a jejich počtu (rozsahu souboru) n, tj. je určen vzorcem: x = x 1 + x x n n = 1 n n x i. i=1 vhodný pouze pro znaky intervalového a poměrového typu měl by být typickou hodnotou daného znaku - ostatní hodnoty by se neměly příliš lišit a měl by se blížit také nejčetnější hodnotě
19 Vlastnosti aritmetického průměru a) Součet všech rozdílů x i x jednotlivých hodnot znaku x i a jejich aritmetického průměru x se rovná nule: n i=1 (x i x) = 0. b) Přičteme-li ke všem hodnotám znaku konstantu, aritmetický průměr se také zvětší právě o danou konstantu. c) Vynásobíme-li všechny hodnoty znaku konstantou k, aritmetický průměr se k-krát zvětší. d) Průměr součtu dvou proměnných se rovná součtu obou průměrů. e) Aritmetický průměr si lze geometricky představit jako těžiště.
20 Příklad Na meteorologické stanici Brno-Tuřany (241 m n.m.) byly za rok 2008 naměřeny a stanoveny průměrné měsíční teploty vzduchu ( C). Bez ohledu na počet dní v jednotlivých měsících stanovte z těchto teplot průměrnou roční teplotu vzduchu ( C). Měsíc Teploty 1,7 3,1 4,6 10,1 15,5 19,9 Měsíc Teploty 20,3 19,9 14,4 9,9 6,5 2,1
21 Řešení x = x 1 + x x n n = 1, 7 + 3, , 1 12 = 10, 7
22 Vážený aritmetický průměr každé hodnotě zkoumaného znaku přiřazujeme váhu, tedy důležitost jako váhu lze vnímat i absolutní četnosti hodnot datového souboru x = n 1x 1 + n 2 x n k x k n = 1 n k n i x i, i=1 přičemž n 1, n 2,..., n k značí váhy příslušných hodnot statistických znaků x 1, x 2,..., x k a platí: n 1 + n n k = n.
23 Příklad Vypočtěte průměrnou denní teplotu vzduchu, jestliže znáte teploty: t 7 = 5 C, t 14 = 15 C, t 21 = 8 C. Řešení t = t 7 + t t 21 = Průměrná denní teplota je 9 C. = 9
24 Harmonický průměr Harmonickým průměrem x H hodnot znaku x 1, x 2,..., x n rozumíme podíl rozsahu souboru a součtu převrácených hodnot znaku, tj. platí: x H = n = n : x 1 x 2 x n n 1. x i=1 i vhodný pouze pro znaky intervalového a poměrového typu používá se pro charakterizování průměrné rychlosti změny - k popisu intenzitních ukazatelů
25 Příklad Vzhledem k rozdílné dopravní propustnosti se na jednotlivých stejně dlouhých úsecích cesty do centra výrazně mění průměrná rychlost vozidla. Tyto úseky jsme při pokusu postupně zvládli překonat za 20 minut, 30 minut a poslední za pouhých 6 minut. Vypočítejte průměrný čas nutný k překonání jednoho úseku. Řešení x H = n = x 1 x 2 x n = 12
26 Geometrický průměr Geometrickým průměrem x G hodnot zkoumaného znaku x 1, x 2,..., x n rozumíme n tou odmocninu ze součinu hodnot x 1, x 2,..., x n, proto: x G = n x 1 x 2... x n. vhodný pouze pro znaky poměrového typu slouží zpravidla pouze k určení průměrného tempa růstu za jedno období (v časových řadách)
27 Příklad Průměrné koeficienty růstu produkce určitého podniku za období posledních pěti let byly postupně: 4 %; 3,5 %; 7 %; 5 %, 2,7 %. Určete průměrný koeficient růstu produkce za dané období. Řešení x G = n x 1 x 2... x n = 5 4 3, , 7 = = 4, 21
28 Modus Modus znaku x je jeho hodnota, která má největší četnost. Modus značíme symbolem Mod(x). vhodný pro znaky jakéhokoliv typu - tedy nominálního, ordinálního, intervalového i poměrového typu slouží k určení dominantní třídy
29 Medián Jsou-li hodnoty x 1, x 2,..., x n uspořádány podle velikosti (x 1 x 2 x n ), pak mediánem znaku x rozumíme hodnotu znaku x, pro kterou platí: { x n+1 je-li n liché, Med(x) = (x n + x 2 n 2 +1) je-li n sudé. vhodný pro znaky takové, které lze uspořádat do pořadí - ordinální, intervalové a poměrové používá se v situacích, kdy je nevhodné použít aritmetický průměr
30
31 Kvantily Kvantilem rozumíme hodnotu statistického znaku x ϑ, která rozděluje uspořádaná data na dva úseky dolní a horní, přičemž dolní úsek obsahuje alespoň podíl ϑ všech dat a horní úsek alespoň podíl 1 ϑ všech dat: 1 ϑ {}}{ x 1 x 2... x c x }{{ ϑ x } c+1... x n ϑ vhodný pro znaky takové, které lze uspořádat do pořadí - ordinální, intervalové a poměrové vhodné především pro znaky mající velký počet možných variant
32 Kvantily medián je speciální případ kvantilu (x 0,50 = Med(x)) x 0,25 - dolní kvartil x 0,75 - horní kvartil x 0,01, x 0,02,..., x 0,98, x 0,99 - percentily Korektní určení kvantilů x ϑ = (x (c) +x (c+1) ) x (c) 2 je-li součin nϑ celé číslo, je-li součin nϑ necelé číslo, zaokrouhlujeme nahoru na nejbližší celé číslo c
33
34 Shrnutí charakteristik polohy Aritmetický průměr aspoň data intervalového typu symetrické rozdělení (symetrický tvar histogramu) užití ve statistických testech Medián aspoň data ordinálního typu chceme-li znát střed - vhodný i pro nesymetrická rozdělení (zešikmená) mohou obsahovat odlehlé hodnoty Modus data jakéhokoliv typu vícevrcholové rozdělení
35 popis stupně proměnlivosti znaku vypovídají i o vhodnosti použití charakteristiky polohy
36 Variační rozpětí R = x max x min není to ukazatel založený na všech hodnotách, proto nebere v úvahu rozdělení hodnot zkoumaného znaku
37 Rozptyl Rozptylem s 2 hodnot znaku x rozumíme aritmetický průměr druhých mocnin odchylek hodnot znaku od aritmetického průměru, tj.: s 2 = 1 n n i=1 (x i x) 2. vhodný pro znaky intervalové a poměrové měří velikost proměnlivosti v jednotkách čtverců odchylek
38 Směrodatná odchylka Směrodatná odchylka s x je definována jako druhá odmocnina z rozptylu, tj.: n 1 s x = (x i x) n 2. i=1 vhodná pro znaky intervalové a poměrové absolutní míra variability - vyjádřena v jednotkách původních dat
39 Vlastnosti rozptylu a směrodatné odchylky Již ze vzorců pro výpočet obou charakteristik plyne následující: přidáním konstanty k jednotlivým znakům souboru se ani jedna z těchto charakteristik nezmění vynásobením jednotlivých znaků konstantou se jejich směrodatná odchylka i rozptyl změní a to tak, že směrodatná odchylka je násobkem původní hodnoty a rozptyl je vynásoben druhou mocninou této konstanty
40 Variační koeficient Variační koeficient v x je definován jako podíl směrodatné odchylky a aritmetického průměru sledovaného znaku x, přičemž je často udáván v procentech: v x = s x x 100 % vhodný pouze pro poměrová data, přičemž hodnoty by neměly být záporné nejpoužívanější relativní míra variability souboru v praxi slouží k porovnání variability více souborů
41 Příklad Charakteristiky naměřené na dvou objektech (viz tabulka) mají stejnou směrodatnou odchylku, avšak výrazně se liší jejich aritmetické průměry a také variační koeficienty: Charakteristiky Objekt 1 Objekt 2 X X X X X X Aritmetický průměr 11,67 61,67 Směrodatná odchylka 4,23 4,23 Variační koeficient 39,5 7,5
42 Mezikvartilová odchylka Mezikvartilovou odchylkou znaku x rozumíme hodnotu q, pro kterou platí: q = (x 0,75 x 0,25 ). 2 vhodný pro intervalová a poměrová data (na rozdíl od kvantilů musí mít význam i rozdíl)
43 Koeficient šikmosti 1 n α 3 = n i=1 (x i x) 3 s 3 je-li rozdělení dat symetrické, pak α 3 = 0 má-li prodloužený pravý konec, mluvíme o kladně zešikmeném rozdělení má-li prodloužený levý konec, mluvíme o záporně zešikmeném rozdělení
44 Koeficient špičatosti 1 n ɛ = n i=1 (x i x) 4 s 4 3 popisuje koncentraci prvků souboru kolem určité hodnoty znaku - průměru špičatost (plochost) rozdělení je tím větší, čím více se hodnota ɛ odlišuje od nuly
45 kladně zaspičatělé (špičaté) pro ɛ > 0 normálně zaspičatělé pro ɛ = 0 záporně zaspičatělé (ploché) pro ɛ < 0
46 Děkuji za pozornost...
Základní statistické charakteristiky
Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické
veličin, deskriptivní statistika Ing. Michael Rost, Ph.D.
Vybraná rozdělení spojitých náhodných veličin, deskriptivní statistika Ing. Michael Rost, Ph.D. Třídění Základním zpracováním dat je jejich třídění. Jde o uspořádání získaných dat, kde volba třídícího
Matematika III. 27. listopadu Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 27. listopadu 2017 Typy statistických znaků (proměnných) Typy proměnných: Kvalitativní proměnná (kategoriální, slovní,... ) Kvantitativní proměnná (numerická,
Renáta Bednárová STATISTIKA PRO EKONOMY
Renáta Bednárová STATISTIKA PRO EKONOMY ZÁKLADNÍ STATISTICKÉ POJMY Statistika Statistický soubor Statistická jednotky Statistický znak STATISTIKA Vědní obor, který se zabývá hromadnými jevy Hromadné jevy
Statistika. Diskrétní data. Spojitá data. Charakteristiky polohy. Charakteristiky variability
I Přednáška Statistika Diskrétní data Spojitá data Charakteristiky polohy Charakteristiky variability Statistika deskriptivní statistika ˆ induktivní statistika populace (základní soubor) ˆ výběr parametry
Základy popisné statistiky. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
Základy popisné statistiky Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi, výhodami, nevýhodami a vlastní sadou využitelných statistických metod -od binárních
Číselné charakteristiky
. Číselné charakteristiky statistických dat Průměrný statistik se během svého života ožení s 1,75 ženami, které se ho snaží vytáhnout večer do společnosti,5 x týdně, ale pouze s 50% úspěchem. W. F. Miksch
Číselné charakteristiky a jejich výpočet
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky
Statistické metody. Martin Schindler KAP, tel , budova G. naposledy upraveno: 9.
Statistické metody Matematika pro přírodní vědy přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 9. ledna 2015,
Úloha č. 2 - Kvantil a typická hodnota. (bodově tříděná data): (intervalově tříděná data): Zadání úlohy: Zadání úlohy:
Úloha č. 1 - Kvantily a typická hodnota (bodově tříděná data): Určete typickou hodnotu, 40% a 80% kvantil. Tabulka hodnot: Varianta Četnost 0 4 1 14 2 17 3 37 4 20 5 14 6 7 7 11 8 20 Typická hodnota je
3. Základní statistické charakteristiky. KGG/STG Zimní semestr Základní statistické charakteristiky 1
3. charakteristiky charakteristiky 1 charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme charakteristiky 2 charakteristiky Dva hlavní
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Zpracování náhodného výběru popisná statistika Ing. Michal Dorda, Ph.D. Základní pojmy Úkolem statistiky je na základě vlastností výběrového souboru usuzovat o vlastnostech celé populace. Populace(základní
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická
Výrobní produkce divizí Ice Cream Po lo ha plane t Rozložený výse ový 3D graf Bublinový graf Histogram t s tn e ídy
Výrobní produkce divizí Ice Cream Polo ha planet Rozložený výsečový 3D graf Bublinový graf Ice Cream 1 15% Ice Cream 2 12% Ice Cream 3 18% Ice Cream 4 20% Statistika 40 30 20 Ice Cream 6 19% Ice Cream
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Popisná statistika. Statistika pro sociology
Popisná statistika Jitka Kühnová Statistika pro sociology 24. září 2014 Jitka Kühnová (GSTAT) Popisná statistika 24. září 2014 1 / 31 Outline 1 Základní pojmy 2 Typy statistických dat 3 Výběrové charakteristiky
Popisná statistika kvantitativní veličiny
StatSoft Popisná statistika kvantitativní veličiny Protože nám surová data obvykle žádnou smysluplnou informaci neposkytnou, je žádoucí vyjádřit tyto ve zhuštěnější formě. V předchozím dílu jsme začali
marek.pomp@vsb.cz http://homel.vsb.cz/~pom68
Statistika B (151-0303) Marek Pomp ZS 2014 marek.pomp@vsb.cz http://homel.vsb.cz/~pom68 Cvičení: Pavlína Kuráňová & Marek Pomp Podmínky pro úspěšné ukončení zápočet 45 bodů, min. 23 bodů, dvě zápočtové
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Metodologie pro ISK II
Metodologie pro ISK II Všechny hodnoty z daného intervalu Zjišťujeme: Centrální míry Variabilitu Šikmost, špičatost Percentily (decily, kvantily ) Zobrazení: histogram MODUS je hodnota, která se v datech
ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY
zhanel@fsps.muni.cz ZÁKLADNÍ STATISTICKÉ CHARAKTERISTIKY METODY DESKRIPTIVNÍ STATISTIKY 1. URČENÍ TYPU ŠKÁLY (nominální, ordinální, metrické) a) nominální + ordinální neparametrické stat. metody b) metrické
STATISTICKÉ CHARAKTERISTIKY
STATISTICKÉ CHARAKTERISTIKY 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Náhodná proměnná. Náhodná proměnná může mít rozdělení diskrétní (x 1. , x 2. ; x 2. spojité (<x 1
Náhodná proměnná Náhodná proměnná může mít rozdělení diskrétní (x 1, x 2,,x n ) spojité () Poznámky: 1. Fyzikální veličiny jsou zpravidla spojité, ale změřené hodnoty jsou diskrétní. 2. Pokud
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Analýza dat na PC I.
CENTRUM BIOSTATISTIKY A ANALÝZ Lékařská a Přírodovědecká fakulta, Masarykova univerzita Analýza dat na PC I. Popisná analýza v programu Statistica IBA výuka Základní popisná statistika Popisná statistika
23. Matematická statistika
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 23. Matematická statistika Statistika je věda, která se snaží zkoumat reálná data a s pomocí teorii pravděpodobnosti
Popisná statistika. Jaroslav MAREK. Univerzita Palackého
Popisná statistika Jaroslav MAREK Univerzita Palackého Přírodovědecká fakulta Katedra matematické analýzy a aplikací matematiky Tomkova 40, 779 00 Olomouc Hejčín tel. 585634606 marek@inf.upol.cz pondělí
MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci
MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým
Mnohorozměrná statistická data
Mnohorozměrná statistická data Ekonometrie Jiří Neubauer Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra ekonometrie UO Brno) Mnohorozměrná
Mnohorozměrná statistická data
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistický znak, statistický soubor Jednotlivé objekty nebo subjekty, které jsou při statistickém
Základy popisné statistiky
Základy popisné statistiky Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 8. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 26 Obsah 1 Základy statistického zpracování dat 2
Matematika III. 29. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 29. října 2018 Statistika Statistika Statistika je jako bikini. Co odhaluje, je zajímavé, co skrývá, je podstatné. Aaron Levenstein Statistika Statistika
Obsah. Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku
Obsah Statistika Zpracování informací ze statistického šetření Charakteristiky úrovně, variability a koncentrace kvantitativního znaku Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v
Informační technologie a statistika 1
Informační technologie a statistika 1 přednášející: konzul. hodiny: e-mail: Martin Schindler KAP, tel. 48 535 2836, budova G po dohodě martin.schindler@tul.cz naposledy upraveno: 21. září 2015, 1/33 Požadavek
Praktická statistika. Petr Ponížil Eva Kutálková
Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni
Statistické vyhodnocování ankety pilotního projektu Kvalita výuky na Západočeské univerzitě v Plzni Kvantifikace dat Pro potřeby statistického zpracování byly odpovědi převedeny na kardinální intervalovou
Popisná statistika. úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy
Popisná statistika úvod rozdělení hodnot míry centrální tendence míry variability míry šikmosti a špičatosti grafy Úvod užívá se k popisu základních vlastností dat poskytuje jednoduché shrnutí hodnot proměnných
Aplikovaná statistika v R
Aplikovaná statistika v R Filip Děchtěrenko Matematicko-fyzikální fakulta filip.dechterenko@gmail.com 15.5.2014 Filip Děchtěrenko (MFF UK) Aplikovaná statistika v R 15.5.2014 1 / 15 Co bude náplní našich
TEST Z TEORIE EXPLORAČNÍ ANALÝZA DAT
EXPLORAČNÍ ANALÝZA DAT TEST Z TEORIE 1. Test ze Statistiky píše velké množství studentů. Představte si, že každý z nich odpoví správně přesně na polovinu otázek. V tomto případě bude směrodatná odchylka
TECHNICKÁ UNIVERZITA V LIBERCI SEMESTRÁLNÍ PRÁCE
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Studentská 2 461 17 Liberec 1 SEMESTRÁLNÍ PRÁCE STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÝCH ŠETŘENÍ Gabriela Dlasková, Veronika Bukovinská Sára Kroupová, Dagmar
MATEMATIKA III V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 8 Statistický soubor s jedním argumentem Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka Vysoká škola
STATISTIKA 1. Adam Čabla Katedra statistiky a pravděpodobnosti VŠE
STATISTIKA 1 Adam Čabla Katedra statistiky a pravděpodobnosti VŠE KONTAKTY WWW: sites.google.com/site/adamcabla E-mail: adam.cabla@vse.cz Telefon: 777 701 783 NB367 na VŠE, konzultační hodiny: Pondělí
Statistika pro gymnázia
Statistika pro gymnázia Pracovní verze učebního textu ZÁKLADNÍ POJMY Statistika zkoumá jevy (společenské, přírodní, technické) ve velkých statistických souborech. Prvky statistických souborů se nazývají
EXPLORATORNÍ ANALÝZA DAT. 7. cvičení
EXPLORATORNÍ ANALÝZA DAT 7. cvičení Teorie pravděpodobnosti x Statistika Teorie pravděpodobnosti popisuje zákonitosti týkající se náhodných jevů, používá se k modelování náhodností a neurčitostí, které
Masarykova univerzita
Masarykova univerzita Přírodovědecká fakulta BAKALÁŘSKÁ PRÁCE David Fiedor Statistika na střední škole Vedoucí práce: RNDr. Marie Budíková, Dr. Studijní program: Matematika Studijní obor: Matematika se
Základní statistické pojmy
POPISNÁ STATISTIKA Základní statistické pojmy Jev hromadný Hromadná pozorování výsledek hromadný jev soustředění se na určitou vlastnost(i) ukáže po více pokusech Zjistit souvislosti v prostoru a čase
Statistika. zpracování statistického souboru
Statistika zpracování statistického souboru statistický soubor zkoumaná skupina znaky zkoumané informace 1 vyjádřen číslem a jednotkou = kvantitativní znak 2 není = kvalitativní znak statistická jednotka
Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 2. POPISNÉ STATISTIKY Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz CO SE SKRÝVÁ V DATECH data sbíráme proto, abychom porozuměli
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě
31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty
mezi studenty. Dále bychom rádi posoudili, zda dobrý výsledek v prvním testu bývá doprovázen dobrým výsledkem i v druhém testu.
Popisná statistika Slovní popis problému Naším cílem v této úloze bude stručně a přehledně charakterizovat rozsáhlý soubor dat - v našem případě počty bodů z prvního a druhého zápočtového testu z matematiky.
Předmět studia: Ekonomická statistika a analytické metody I, II
Předmět studia: Ekonomická statistika a analytické metody I, II Typ a zařazení předmětu: povinný předmět bakalářského studia, 1. ročník Rozsah předmětu: 2 semestry, celkem 24/0 hodin v kombinované formě
Popisná statistika. Komentované řešení pomocí MS Excel
Popisná statistika Komentované řešení pomocí MS Excel Vstupní data Máme k dispozici data o počtech bodů z 1. a 2. zápočtového testu z Matematiky I v zimním semestru 2015/2016 a to za všech 762 studentů,
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica
POPISNÁ STATISTIKA Komentované řešení pomocí programu Statistica Program Statistica I Statistica je velmi podobná Excelu. Na základní úrovni je to klikací program určený ke statistickému zpracování dat.
Statistika. cílem je zjednodušit nějaká data tak, abychom se v nich lépe vyznali důsledkem je ztráta informací!
Statistika aneb známe tři druhy lži: úmyslná neúmyslná statistika Statistika je metoda, jak vyjádřit nejistá data s přesností na setinu procenta. den..00..00 3..00..00..00..00..00..00..00..00..00..00 3..00..00..00..00..00..00..00
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis nekategorizovaných dat Co se dozvíte v tomto modulu? Kdy používat modus, průměr a medián. Co je to směrodatná odchylka. Jak popsat distribuci
Kontingenční tabulky v Excelu. Představení programu Statistica
ASTAc/01 Biostatistika 2. cvičení Kontingenční tabulky v Excelu Základní popisné statistiky Představení programu Statistica Import a základní popis dat ve Statistice, M. Cvanová I. Kontingenční tabulky
Statistika jako obor. Statistika. Popisná statistika. Matematická statistika TEORIE K MV2
Statistika jako obor Statistika Statistika je vědní obor zabývající se zkoumáním jevů hromadného charakteru. Tím se myslí to, že zkoumaný jev musí příslušet určité části velkého množství objektů (lidí,
Matematická statistika
Matematická statistika Daniel Husek Gymnázium Rožnov pod Radhoštěm, 8. A8 Dne 12. 12. 2010 v Rožnově pod Radhoštěm Osnova Strana 1) Úvod 3 2) Historie matematické statistiky 4 3) Základní pojmy matematické
22. Pravděpodobnost a statistika
22. Pravděpodobnost a statistika Pravděpodobnost náhodných jevů. Klasická pravděpodobnost. Statistický soubor, statistické jednotky, statistické znaky. Četnosti, jejich rozdělení a grafické znázornění.
Třídění statistických dat
2.1 Třídění statistických dat Všechny muže ve městě rozdělíme na 2 skupiny: A) muži, kteří chodí k holiči B) muži, kteří se holí sami Do které skupiny zařadíme holiče? prof. Raymond M. Smullyan, Dr. Math.
Pravděpodobnost a statistika
Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Pracovní list č. 3 Charakteristiky variability
1. Při zjišťování počtu nezletilých dětí ve třiceti vybraných rodinách byly získány tyto výsledky: 1, 1, 0, 2, 3, 4, 2, 2, 3, 0, 1, 2, 2, 4, 3, 3, 0, 1, 1, 1, 2, 2, 0, 2, 1, 1, 2, 3, 3, 2. Uspořádejte
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Jak nelhat se statistikou? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Co je to statistika? teoretická disciplína, která se zabývá metodami sběru a analýzy dat Jak získat data?
Jevy a náhodná veličina
Jevy a náhodná veličina Výsledky některých jevů jsou vyjádřeny číselně -na hrací kostce padne číslo 1, 4, 6.., jiným jevům můžeme čísla přiřadit (stupeň školního vzdělání: ZŠ, SŠ, VŠ) Data jsme rozdělili
Metodologie pro Informační studia a knihovnictví 2
Metodologie pro Informační studia a knihovnictví 2 Modul V: Nekategorizovaná data Metodologie pro ISK 2, jaro 2014. Ladislava Z. Suchá Metodologie pro Informační studia a knihovnictví 2 Modul 5: Popis
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Nejčastější chyby v explorační analýze
Nejčastější chyby v explorační analýze Obecně doporučuju přečíst přednášku 5: Výběrová šetření, Exploratorní analýza http://homel.vsb.cz/~lit40/sta1/materialy/io.pptx Použití nesprávných charakteristik
Úvod do kurzu. Moodle kurz. (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost
Úvod do kurzu Moodle kurz (a) https://dl1.cuni.cz/course/view.php?id=2022 (b) heslo pro hosty: statistika (c) skripta na pravděpodobnost Výpočty online: www.statisticsonweb.tf.czu.cz Začátek výuky posunut
Základy pravděpodobnosti a statistiky. Popisná statistika
Základy pravděpodobnosti a statistiky Popisná statistika Josef Tvrdík Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace v úterý 14.10 až 15.40 hod. Příklad ze života Cimrman, Smoljak/Svěrák,
Zpracování náhodného výběru. Ing. Michal Dorda, Ph.D.
Př. : Stanovte jednotlivé četnosti a číselné charakteristiky zadaného statistického souboru a nakreslete krabicový graf:, 8, 7, 43, 9, 47, 4, 34, 34, 4, 35. Statistický soubor seřadíme vzestupně podle
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním
Minimální hodnota. Tabulka 11
PŘÍLOHA č.1 Výsledné hodnoty Výsledky - ženy (SOŠ i SOU, maturitní i učební obory) Aritmetický průměr Maximální hodnota Minimální hodnota Medián Modus Rozptyl Směrodatná odchylka SOM 0,49 2,00 0,00 0,33
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava
Statistika s Excelem aneb Máme data. A co dál? Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM 2016 Jak získat data? Primární zdroje dat Vlastní měření (fyzika, biologie,
Základy popisné statistiky
Základy popisné statistiky V této kapitole se seznámíme se základy popisné statistiky, představíme si základní pojmy a budeme si je ilustrovat na praktických příkladech. Kapitola je psána formou volného
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat
2. Základní typy dat Spojitá a kategoriální data Základní popisné statistiky Frekvenční tabulky Grafický popis dat Anotace Realitu můžeme popisovat různými typy dat, každý z nich se specifickými vlastnostmi,
TECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
Deskriptivní statistika (kategorizované proměnné)
Deskriptivní statistika (kategorizované proměnné) Nejprve malé opakování: - Deskriptivní statistika se zabývá popisem dat, jejich sumarizaci a prezentací. - Kategorizované proměnné jsou všechny proměnné,
1.1 Dva základní typy statistiky Popisná statistika (descriptive statistics) Inferenční statistika (inferential statistics)
1. PODSTATA STATISTIKY Původní význam - pouhé sbírání čísel (název z latinského status = stát, použití k označení vědy zabývající se sběrem informací o státu - o počtu obyvatel, ekonomice,...) Dnešní pojetí
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ. FAKULTA STROJNÍHO INŽENÝRSTVÍ Ústav materiálového inženýrství - odbor slévárenství
1 PŘÍLOHA KE KAPITOLE 11 2 Seznam příloh ke kapitole 11 Podkapitola 11.2. Přilité tyče: Graf 1 Graf 2 Graf 3 Graf 4 Graf 5 Graf 6 Graf 7 Graf 8 Graf 9 Graf 1 Graf 11 Rychlost šíření ultrazvuku vs. pořadí
Protokol č. 1. Tloušťková struktura. Zadání:
Protokol č. 1 Tloušťková struktura Zadání: Pro zadané výčetní tloušťky (v cm) vypočítejte statistické charakteristiky a slovně interpretujte základní statistické vlastnosti tohoto souboru tloušťek. Dále
UKAZATELÉ VARIABILITY
UKAZATELÉ VARIABILITY VÝZNAM Porovnejte známky dvou studentek ze stejného předmětu: Studentka A: Studentka B: Oba soubory mají stejný rozsah hodnoty, ale liší se známky studentky A jsou vyrovnanější, jsou
Otázky k měření centrální tendence. 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení?
Otázky k měření centrální tendence 1. Je dáno rozložení, ve kterém průměr = medián. Co musí být pravdivé o tvaru tohoto rozložení? 2. Určete průměr, medián a modus u prvních čtyř rozložení (sad dat): a.
Příloha podrobný výklad vybraných pojmů
Příloha podrobný výklad vybraných pojmů 1.1 Parametry (popisné charakteristiky) základního souboru 1.1.1 Míry polohy (střední hodnoty) Aritmetický průměr představuje pravděpodobně nejznámější střední hodnotou,
2. Statistická terminologie a vyjadřovací prostředky. 2.1. Statistická terminologie. Statistická jednotka
2. Statistická terminologie a vyjadřovací prostředky 2.1. Statistická terminologie Statistická jednotka Statistická jednotka = nositel statistické informace, elementární prvek hromadného jevu. Příklady:
Základy biostatistiky
Základy biostatistiky Veřejné zdravotnictví 3.LF UK Viktor Hynčica Úvod se statistikou se setkáváme denně ankety proč se statistika začala používat ve zdravotnictví skupinový přístup k léčení celé populace
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Prostá regresní a korelační analýza 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Problematika závislosti V podstatě lze rozlišovat mezi závislostí nepodstatnou, čili náhodnou
Metody sociálních výzkumů. Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika.
Metody sociálních výzkumů Velmi skromný úvod do statistiky. Motto: Jsou tři druhy lži-lež prostá, lež odsouzeníhodná a statistika. Statistika Význam slova-vychází ze slova stát, s jeho administrativou
STATISTIKA S EXCELEM. Martina Litschmannová MODAM,
STATISTIKA S EXCELEM Martina Litschmannová MODAM, 8. 4. 216 Obsah Motivace aneb Máme data a co dál? Základní terminologie Analýza kvalitativního znaku rozdělení četnosti, vizualizace Analýza kvantitativního
Charakterizace rozdělení
Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf
Obecné momenty prosté tvary
Obecné momenty prosté tvary První obecný moment: (Σy i )/n, i=1 n aritmetický průměr, těžiště dat y Druhý obecný moment: (Σy i2 )/n, i=1 n y 2 Obecné momenty prosté tvary Příklad 1 pokračování: y = (3+4+2+3+2+3+3+3)/8
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení ze 4ST201. Na případné faktické chyby v této prezentaci mě prosím upozorněte. Děkuji Tyto slidy berte pouze jako doplňkový materiál není v nich obsaženo
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
Pojem a úkoly statistiky
Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Pojem a úkoly statistiky Statistika je věda, která se zabývá získáváním, zpracováním a analýzou dat pro potřeby
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 10. Mgr. David Fiedor 27. dubna 2015 Nelineární závislost - korelační poměr užití v případě, kdy regresní čára není přímka, ale je vyjádřena složitější matematickou funkcí
Seminarni prace. 2 3 stranky staci, dat nema byt 3 a nema jich byt pul milionu. k te seminarce
Seminarni prace Popisná statistika, data nesmí být časovou řadou Zkoumat můžeme třeba mzdy, obraty atd. (takže možná QA?) Formát pdf, poslat nejpozději den před zkouškou. Podrobnější informace jsou na
Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která
Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho