0,2 ma ZP 1 T 4 I (-) I B T 3 O (+) I (+) ZP 2. 1,3 ma T 1 T 2. zdroj proudu invertující řízený proudem
|
|
- Aneta Andrea Bednářová
- před 8 lety
- Počet zobrazení:
Transkript
1 Vážení zákazníci, dovolujee si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znaená, že ukázka á sloužit výhradnì pro osobní potøebu potenciálního kupujícího (aby ètenáø vidìl, jaký zpùsobe je titul zpracován a ohl se také podle tohoto, jako jednoho z paraetrù, rozhodnout, zda titul koupí èi ne). Z toho vyplývá, že není dovoleno tuto ukázku jakýkoliv zpùsobe dále šíøit, veøejnì èi neveøejnì napø. uis ování na datová édia, na jiné internetové stránky (ani prostøednictví odkazù) apod. redakce nakladatelství BEN technická literatura redakce@ben.cz
2 +U N 0, A ZP (-) T 4 (-) B T 3 O (+) (+) ZP,3 A T T zdroj proudu invertující řízený proude zesilovač (proudové zrcadlo) Obr..33 Zjednodušené schéa zapojení Nortonova zesilovače Ve zjednodušené obvodové (vnitřní) schéatu zapojení jsou tranzistory: T a T zapojeny jako proudové zrcadlo, proud tekoucí: T je roven proudu, který je: T vnucen tranzistore: T. Zbývající tranzistory tvoří invertující napěťový zesilovač, tranzistor: T 3 realizuje svý velký činitele: h e celé napěťové zesílení: A. Tranzistor: T 3 vlastně přerozděluje proud 0, A ze zdroje proudu: ZP ezi proud do báze tranzistoru: T 4 a kolektoru tranzistoru: T 3. Výstupní stupeň je pak tvořen eitorový sledovače s tranzistore: T 4. Konečně za účele popisu Nortonova zesilovače zobecněnou etodou uzlových napětí se v jeho náhradní schéatu přidá na výstup zdroje napětí řízeného napětí výstupní vodivost: G O, takže vznikne náhradní schéa, které je na obr..34. (-) (-) B G O (+) o (+) r (+) G -A.U (-) zdroj proudu řízený proude zdroj napětí řízený napětí Obr..34 Náhradní schéa reálného Nortonova zesilovače vhodné pro popis aditanční aticí V toto obvodu pak pro vstupní a výstupní proudy platí rovnice: Náhradou odporů vodivosti bude: U ( = r = + ) + B AU. U = O ( o) = AU.. g. g + U. G O. G + U a po zapsání do tvaru vhodného pro aticovou transkripci:. G
3 . g + U. g + U.0 + U.0 + U. G + U. AG. takže výsledná atice popisující Nortonův zesilovač při řešení zobecněnou etodou uzlových napětí á tedy tvar: : : ( o) : : : ( o) : g g G A. G O G O O U. G.0 Přidružená transforace Přidružená transforace je jední z prostředků pro návrh resp. syntézu obvodů v proudové ódu. Vychází se z prototypu obvodu v ódu napěťové, jeuž se přiřadí (resp. tzv. přidruží) obvod v ódu proudové. Tento obecný princip je ilustrován na obr..35. A B A B POTOTYP OBVOD U VST =U V NAPĚŤOVÉM U VÝST =U VÝST = V POUDOVÉM VST = MÓDU MÓDU Obr..35 Princip přidružené transforace Prototyp v napěťové ódu á přenos napětí: U U A = a obvod v ódu proudové á přenos proudu: a =, přičež oba tyto přenosy jsou po přidružené transforaci stejné, tedy: A = a. Proto je ožný příý a jednoznačný přechod ezi napěťový a proudový óde. Přidružený ekvivalente k ideálníu zesilovači napětí (ZNŘN) je proto ideální zesilovač proudu (ZPŘP), jak je znázorněno na obr..36. ZNŘN ZPŘP U U A.U U a. Obr..36 Přidružené prvky Například aktivníu filtru v napěťové ódu s ideální diferenciální operační zesilovače i.d.o.z., jehož schéa zapojení je na obrázku.38 vlevo, bude přidružen aktivní filtr v ódu proudové s negativní proudový konvejore druhé generace - podle principu, jehož schéa je na obr..37 vpravo
4 i.d.o.z. + _ + z y + x U U Obr..37 Příklad přidružené transforace Dále například aktivníu filtru v napěťové ódu s ideální diferenciální operační zesilovače i.d.o.z., jehož schéa zapojení je na obrázku.38 vlevo, bude přidružen aktivní filtr v ódu proudové s negativní proudový konvejore druhé generace -, jehož schéa je na obr..38 vpravo. Stejně tak, jako zapojení ideálního diferenciálního operačního zesilovače jakožto napěťového sledovače v podstatě opakuje vstupní napětí na výstup, negativní proudový konvejor (přidruženě) opakuje vstupní proud: X na svůj výstup: Z. i.d.o.z. + _ - y U U z x Obr..38 Přidružená transforace filtrů druhého řádu. Základní obvody v proudové ódu.. ntegrátor v proudové ódu s + Proudový vstup integrátoru na obr..39 je připojen na vysokoipedanční vstup: y konvejoru +, do něhož neteče proud: i Y 0. Proto se celý vstupní proud: uzavírá do kapacitoru:, na něž vzniká napětí: = u idt = dt. Toto napětí (vzhlede k tou, že ezi vstupníi svorkai: y a: x konvejoru je napětí nulové: u i 0 ) se objevuje i na rezistoru., který protlačuje proud: u i = ix = = dt a tento proud: i X je konvejere opakován na výstup: z, takže výstupní proud: i Z = je: = dt tedy integrále proudu vstupního:. i Y 0 + y z x + Obr..39 ntegrátor s + v proudové ódu - 4 -
5 .. ntegrátor v proudové ódu s OTA Proudový vstup integrátoru na obr..40 je připojen na vstup transaditančního zesilovače (s transaditancí: g ), do něhož však neteče proud: i+ 0. Proto se celý vstupní proud: uzavírá do kapacitoru:, na něž vzniká napětí: = u idt = dt. Výstupní proud transaditančního zesilovače je (obecně): = g. u, kde vstupní napětí: u = u = dt, takže výstupní proud: bude: = g. dt tedy integrál proudu vstupního:. U i i+ 0 + g U Obr..40 ntegrátor s OTA v proudové ódu..3 Zesilovač proudu s transaditanční zesilovače Proudový vstup na obr..4 je připojen na vstup transaditančního zesilovače (s transaditancí: g ), do něhož však neteče proud: i+ 0. Proto se celý vstupní proud: uzavírá do rezistoru:, na něž vzniká napětí: u =.. Výstupní proud transaditančního zesilovače je (obecně): = g. u, kde vstupní napětí: u = u =., takže výstupní proud: bude: = g.u = g.. a tedy proudové zesílení obvodu je: = g.. i+ 0 + U i g U Obr..4 Zesilovač proudu s OTA v proudové ódu
6 . Analogové obvody. Obvody s operačníi zesilovači Kroě základních zapojení operačního zesilovače jako invertujícího a neinvertujícího zesilovače existují další jeho typická zapojení, z nichž některá budou uvedena v další. Základní paraetry operačního zesilovače jsou přito následující : ) Diferenční vstupní napětí ui = u N u P je rozdíl ezi napětí invertujícího ( negativního u N ) a neinverujícího ( pozitivního u P ) vstupu. Protože překročení tohoto axiálního vstupního napětí by ohlo operační zesilovač poškodit, jsou často vstupy chráněny proti přepětí antiparalelně zapojenýi diodai, které se při překročení napětí 0,7 V otevřou, čili tí je axiální velikost u i daná hodnotou 0,7 V ) Souhlasné vstupní napětí u N + up uc = je tedy střední hodnota vstupního napětí. Protože však platí: u i = 0, používá se veli často jiná definice souhlasného vstupního napětí, a to: u c = u P 3) Výstupní proud operačního zesilovače á běžně velikost: 5 A. 4) Jenovité výstupní napětí U O.MAX. je axiální hodnota výstupního napětí, při ktré ještě nedochází k saturaci ( oezování sinusového resp. haronického průběhu ). 5) Převodní charakteristiku tedy závislost výstupního napětí u o na napětí vstupní u i operačního zesilovače ukazuje obr... kladná saturace u o +6V +U O.MAX. u o (u i ) u i 0,4V + 0,4V záporná saturace U O.MAX. 6V Obr.. Převodní charakteristika operačního zesilovače.. Spínače, vzorkovače Diodové spínače a přepínače využívají odlišných vlastností polovodičových diod v propustné a závěrné sěru, pro spínání se obvykle zapojují do ůstků, jak je ukázáno na obr
7 +U SP -U SP u +U SP Z u u u -U SP a) b) Obr.. Schea diodového spínače a jeho scheatická značka Je-li na anodách diod kladné spínací napětí: +U SP a na katodách záporné tj.: U SP, pak se všechny čtyři diody otevřou a protéká jii proud od: +U SP do: U SP. Jsou-li však (již) otevřeny, ůže jii zároveň procházet také i proud, protlačovaný vstupní napětí: u přes zatěžovací odpor: Z (na které tí vzniká výstupní napětí: u ). Diodový spinač je tak sepnut. Jsou-li však diody záporný spínací napětí: U SP na anodách a kladný spínací napětí: +U SP na katodách zahrazeny, neůže jii projít ani proud od napětí: u. Diodový spinač je tedy nyní rozepnut. Některé paraetry spinačů jsou pro porovnání shrnuty v tab.. Tab.. Některé paraetry spinačů paraetr relé Ge dioda Si dioda J FET MOS FET Ge BJT Si BJT SEP Ω < OZP Ω > t SEPNUTÍ s Schéa zapojení spínače s unipolární tranzistore NPN s indukovaný kanále, na jehož hradlo: G se přivádí řídící napětí: u Ř pak ukazuje obr..3. Je-li napětí +U Ř kladné, vytvoří se pod izolovaný hradle záporný indukovaný náboj, který pozění polovodivost P u NPN tranzistoru na N, číž se vodivě propojí polovodiče typu N jeho krajních elektrod, takže tranzistor se chová jako sepnutý spinač. U SP u NPN Z u G U Ř u Ř a) b) N P N -U Ř Obr..3 Schea spinače s FET (a), struktura G FET typu NPN (b) Oproti tou záporné řídící napětí: - U Ř á účinky přesně opačné: pod izolovaný hradle se objeví záporný indukovaný náboj který posílí polovodič P, oddělující polovodič typu N obou krajních elektrod, takže tranzistor se chová jako rozepnutý spinač (tranzistor NPN se jí rozpojí). Vzorkovače s paětí (nebo-li obvody saple and hold: S/H) resp. sledovače s paětí (čili obvody track and hold: T/H ) jsou pak sestaveny ze spínače a paěťového kapacitoru:, jak ukazuje schéa na obr..4. Přito obvod S/H vznikne z obvodu S/H zkrátí-li se sledovací provoz na zanedbatelnou dobu (čili jde-li doba vzorkování k nule). Časové průběhy, znázorněné na obr..4, platí pro případ ideálního spinače a paěťového kapacitoru, skutečný vzorkovač však vykazuje celou řadu chyb, a to sice ) chyby vzorkování a ) chyby (za)paatování, jejichž význa přibližuje obr
8 u,u u ( t ) uř sledování u ( t) t t u uř u paatování Obr..4 Schea vzorkovače s paětí a časové průběhy Mezi charakteristické paraetry vzorkovacích obvodů s paětí patří tedy zejéna: Doba upnutí (acquisition tie) je doba potřebná k přechodu z paěťového (S/H) do sledovacího (T/H) režiu. ychlost přeběhu (slew rate) je axiální rychlost zěny výstupního napětí. U provedení vzorkovače s vnější: P se udává axiální nabíjecí proud. Paěťový kapacitor se nabíjí přes odpor sepnutého spinače SP, který je v sérii s výstupní odpore: zdroje signálu, tedy s časovou konstantou: τ = ( + SP ). P. Z analýzy přechodového děje článku při toto nabíjení lze určit dobu vzorkování: T VZ potřebnou pro dosažení požadované přesnosti, která je v tabulce tab... Činitel potlačení vstupního napětí (průnik vstupního napětí) resp. tzv. (feedthrough rejection ratio) udává převrácenou hodnotu přenosu vstupního napětí na výstup v paěťové provozu (někdy se udává v závislosti na velikosti kapacity paěťového kapacitoru). ychlost klesání výstupního napětí (drop rate) je zěna výstupního napětí za jednotku času po zapaatování napětí. Je způsobena svodovýi proudy paěťového kapacitoru a klidovýi proudy připojených obvodů. u,u chyba průnike napětí v režiu paatování doba upnutí oezená rychlost přeběhu doba ustálení doba uklidněníní u ( t) u ( t ) t u Ř doba vzorkování doba paatování Obr..5 hyby vzorkovacího obvodu t Požaduje-li se, aby se zapaatovaná hodnota za dobu: Tp nezěnila vlive tohoto
teorie elektronických obvodů Jiří Petržela analýza obvodů s regulárními prvky
Jiří Petržela příklad pro příčkový filtr na obrázku napište aditanční atici etodou uzlových napětí zjistěte přenos filtru identifikujte tp a řád filtru Obr. : Příklad na příčkový filtr. aditanční atice
9. Harmonické proudy pulzních usměrňovačů
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Měření na unipolárním tranzistoru
Měření na unipolárním tranzistoru Teoretický rozbor: Unipolární tranzistor je polovodičová součástka skládající se z polovodičů tpu N a P. Oproti bipolárnímu tranzistoru má jednu základní výhodu. Bipolární
8. ZÁKLADNÍ ZAPOJENÍ SPÍNANÝCH ZDROJŮ
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty jeho prvků. U 1 =10 V, R 1 =1 kω, R 2 =2,2 kω.
A5M34ELE - testy 1. Vypočtěte velikost odporu rezistoru R 1 z obrázku. U 1 =15 V, U 2 =8 V, U 3 =10 V, R 2 =200Ω a R 3 =1kΩ. 2. Pomocí Theveninova teorému zjednodušte zapojení na obrázku, vypočtěte hodnoty
Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1
Punčochář, J.: OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH 1 Heater Voltage 6.3-12 V Heater Current 300-150 ma Plate Voltage 250 V Plate Current 1.2 ma g m 1.6 ma/v m u 100 Plate Dissipation (max) 1.1
Vybrané vlastnosti obvodů pracujících v proudovém módu a napěťovém módu
Vybrané vlastnosti obvodů pracujících v proudové ódu a napěťové ódu Vratislav Michal, DTEE Brno University of Technology Vratislav.ichal@gail.co, www.postreh.co/vichal Teoretický úvod: Označení obvodů
Tel-30 Nabíjení kapacitoru konstantním proudem [V(C1), I(C1)] Start: Transient Tranzientní analýza ukazuje, jaké napětí vytvoří proud 5mA za 4ms na ka
Tel-10 Suma proudů v uzlu (1. Kirchhofův zákon) Posuvným ovladačem ohmické hodnoty rezistoru se mění proud v uzlu, suma platí pro každou hodnotu rezistoru. Tel-20 Suma napětí podél smyčky (2. Kirchhofův
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
než je cca 5 [cm] od obvodu LT1070, doporučuje se blokovat napětí U IN
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
1 Elektrotechnika 1. 11:00 hod. R. R = = = Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. U = 60 V. Řešení.
A : hod. Elektrotechnika Metodou postupného zjednodušování vypočtěte proudy všech větví uvedeného obvodu. R I I 3 R 3 R = 5 Ω, R = Ω, R 3 = Ω, R 4 = Ω, R 5 = Ω, = 6 V. I R I 4 I 5 R 4 R 5 R. R R = = Ω,
11 Elektrické specifikace Mezní parametry* Okolní teplota pøi zapojeném napájení 40 C až +125 C Skladovací teplota 65 C až +150 C Napájecí napìtí na V
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Operační zesilovač. Úloha A2: Úkoly: Nutné vstupní znalosti: Diagnostika a testování elektronických systémů
Diagnostika a testování elektronických systémů Úloha A2: 1 Operační zesilovač Jméno: Datum: Obsah úlohy: Diagnostika chyb v dvoustupňovém operačním zesilovači Úkoly: 1) Nalezněte poruchy v operačním zesilovači
II. Nakreslete zapojení a popište funkci a význam součástí následujícího obvodu: Integrátor s OZ
Datum: 1 v jakém zapojení pracuje tranzistor proč jsou v obvodu a jak se projeví v jeho činnosti kondenzátory zakreslené v obrázku jakou hodnotu má odhadem parametr g m v uvedeném pracovním bodu jakou
VLASTNOSTI PLOŠNÝCH SPOJÙ
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Projekt Pospolu. Polovodičové součástky tranzistory, tyristory, traiky. Pro obor M/01 Informační technologie
Projekt Pospolu Polovodičové součástky tranzistory, tyristory, traiky Pro obor 18-22-M/01 Informační technologie Autorem materiálu a všech jeho částí je Ing. Petr Voborník, Ph.D. Bipolární tranzistor Bipolární
+ U CC R C R B I C U BC I B U CE U BE I E R E I B + R B1 U C I - I B I U RB2 R B2
Pro zadané hodnoty napájecího napětí, odporů a zesilovacího činitele β vypočtěte proudy,, a napětí,, (předpokládejte, že tranzistor je křemíkový a jeho pracovní bod je nastaven do aktivního normálního
1 U Zapište hodnotu časové konstanty derivačního obvodu. Vyznačte měřítko na časové ose v uvedeném grafu.
v v 1. V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky. 2. V jakých jednotkách se vyjadřuje indukčnost uveďte název a značku jednotky. 3. V jakých jednotkách se vyjadřuje kmitočet
FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů
FET Field Effect Transistor unipolární tranzistory - aktivní součástky unipolární využívají k činnosti vždy jen jeden druh majoritních nosičů (elektrony nebo díry) pracují s kanálem jednoho typu vodivosti
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Základy elektrotechniky
Základy elektrotechniky Přednáška Tranzistory 1 BIPOLÁRNÍ TRANZISTOR - třívrstvá struktura NPN se třemi vývody (elektrodami): e - emitor k - kolektor b - báze Struktura, náhradní schéma a schematická značka
PŘEDNÁŠKA 2 - OBSAH. Přednáška 2 - Obsah
PŘEDNÁŠKA 2 - OBSAH Přednáška 2 - Obsah i 1 Bipolární diferenciální stupeň 1 1.1 Dif. stupeň s nesymetrickým výstupem (R zátěž) napěťový zisk... 4 1.1.1 Parametr CMRR pro nesymetrický dif. stupeň (R zátěž)...
AKTIVNÍ PRVKY V SOUČASNÉ ANALOGOVÉ TECHNICE
AKTVNÍ PRVK V SOUČASNÉ ANALOGOVÉ TECHNCE "Klasický" prvke analogové techniky 8tých a začátku 9tých let byl operační zesilovač s typickou vnitřní strukturou podle obr. 3.. in Diferenční Napěťový Koncový
Přednáška v rámci PhD. Studia
OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia Doc. Ing. Lubomír Brančík, CSc. UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci)
1 Elektrotechnika 1. 11:00 hod. = + Δ= = 8
:00 hod. Elektrotechnika a) Metodou syčkových proudů (MSP) vypočtěte proudy všech větví uvedeného obvodu. R = Ω, R = Ω, R 3 = Ω, U = 5 V, U = 3 V. b) Uveďte obecný vztah pro výpočet počtu nezávislých syček
Polovodičové prvky. V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky.
Polovodičové prvky V současných počítačových systémech jsou logické obvody realizovány polovodičovými prvky. Základem polovodičových prvků je obvykle čtyřmocný (obsahuje 4 valenční elektrony) krystal křemíku
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem
Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/
Základní zapojení s OZ. Vlastnosti a parametry operačních zesilovačů
OPEAČNÍ ZESLOVAČ (OZ) Operační zesilovač je polovodičová součástka vyráběná formou integrovaného obvodu vyznačující se velkým napěťovým zesílením vstupního rozdílového napětí (diferenciální napěťový zesilovač).
VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_15_Bipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Zpětná vazba a linearita zesílení
Zpětná vazba Zpětná vazba přivádí část výstupního signálu zpět na vstup. Kladná zp. vazba způsobuje nestabilitu, používá se vyjímečně. Záporná zp. vazba (zmenšení vstupního signálu o část výstupního) omezuje
Operační zesilovač (dále OZ)
http://www.coptkm.cz/ Operační zesilovač (dále OZ) OZ má složité vnitřní zapojení a byl původně vyvinut pro analogové počítače, kde měl zpracovávat základní matematické operace. V současné době je jeho
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu
4. Operační usměrňovače Čas ke studiu: 15 minut Cíl Po prostudování tohoto odstavce budete umět popsat činnost základních zapojení operačních usměrňovačů samostatně změřit zadanou úlohu Výklad Operační
ELEKTRONICKÉ PRVKY 7 Výkonové a spínací aplikace tranzistorů 7.1 Ztrátový výkon a chlazení součástky... 7-1 7.2 První a druhý průraz bipolárního
Bohumil BRTNÍK, David MATOUŠEK ELEKTRONICKÉ PRVKY Praha 2011 Tato monografie byla vypracována a publikována s podporou Rozvojového projektu VŠPJ na rok 2011. Bohumil Brtník, David Matoušek Elektronické
VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu CZ.1.07/1.5.00/34.0581 Číslo materiálu VY_32_INOVACE_ENI_3.ME_16_Unipolární tranzistor Název školy Střední odborná škola a Střední odborné učiliště, Dubno Autor Ing. Miroslav Krýdl Tematická
Základní vlastnosti číslicového voltmetru s měřicím usměrňovačem
Základní vlastnosti číslicového voltmetru s měřicím usměrňovačem. Zadání: A. Na číslicovém voltmetru s integračním A/D převodníkem (C50 D, MHB 706...): a) Nastavte minimum a maximum rozsahu voltmetru b)
Základní druhy tranzistorů řízených elektrickým polem: Technologie výroby: A) 1. : A) 2. : B) 1. :
ZADÁNÍ: Změřte výstupní a převodní charakteristiky unipolárního tranzistoru KF 520. Z naměřených charakteristik určete v pracovním bodě strmost S, vnitřní odpor R i a zesilovací činitel µ. Určete katalogové
ELEKTRONICKÉ SOUČÁSTKY
ELEKTRONICKÉ SOUČÁSTKY VZORY OTÁZEK A PŘÍKLADŮ K TUTORIÁLU 1 1. a) Co jsou polovodiče nevlastní. b) Proč je používáme. 2. Co jsou polovodiče vlastní. 3. a) Co jsou polovodiče nevlastní. b) Jakým způsobem
OPERA Č NÍ ZESILOVA Č E
OPERAČNÍ ZESILOVAČE OPERAČNÍ ZESILOVAČE Z NÁZVU SE DÁ USOUDIT, ŽE SE JEDNÁ O ZESILOVAČ POUŽÍVANÝ K NĚJAKÝM OPERACÍM. PŮVODNÍ URČENÍ SE TÝKALO ANALOGOVÝCH POČÍTAČŮ, KDE OPERAČNÍ ZESILOVAČ DOKÁZAL USKUTEČNIT
Mějme obvod podle obrázku. Jaké napětí bude v bodech 1, 2, 3 (proti zemní svorce)? Jaké mezi uzly 1 a 2? Jaké mezi uzly 2 a 3?
TÉMA 1 a 2 V jakých jednotkách se vyjadřuje proud uveďte název a značku jednotky V jakých jednotkách se vyjadřuje napětí uveďte název a značku jednotky V jakých jednotkách se vyjadřuje odpor uveďte název
Spínaèe jsou elektrické pøístroje, které slouží k zapínání, pøepínání a vypínání elektrických obvodù a spotøebièù. Podle funkce, kterou vykonávají, je
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
3/ %,1'(& 83'1 &( &3 )XQNFH. + ; ; ; ; / ; ; + ; EH]H]PuQ\
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
Přednáška 3 - Obsah. 2 Parazitní body effect u NMOS tranzistoru (CMOS proces) 2
PŘEDNÁŠKA 3 - OBSAH Přednáška 3 - Obsah i 1 Parazitní substrátový PNP tranzistor (PSPNP) 1 1.1 U NPN tranzistoru... 1 1.2 U laterálního PNP tranzistoru... 1 1.3 Příklad: proudové zrcadlo... 2 2 Parazitní
Fakulta biomedic ınsk eho inˇzen yrstv ı Elektronick e obvody 2016 prof. Ing. Jan Uhl ıˇr, CSc. 1
Fakulta biomedicínského inženýrství Elektronické obvody 2016 prof. Ing. Jan Uhlíř, CSc. 1 Obsah předmětu Elektronické obvody 1. Zesilovače analogových signálů 2. Napájení elektronických systémů 3. Nelineární
Operační zesilovače. U výst U - U +
Operační zesilovače Analogové obvody zpracovávají signál spojitě se měnící v čase. Nejpoužívanější součástkou v současné době je operační zesilovač. Název operační pochází z dob, kdy se používal (v elektronkovém
elektrické filtry Jiří Petržela aktivní prvky v elektrických filtrech
Jiří Petržela základní aktivní prvky používané v analogových filtrech standardní operační zesilovače (VFA) transadmitanční zesilovače (OTA, BOTA, MOTA) transimpedanční zesilovače (CFA) proudové konvejory
(s výjimkou komparátoru v zapojení č. 5) se vyhněte saturaci výstupního napětí. Volte tedy
Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve všech oblastech elektroniky. Jde o diferenciální zesilovač napětí s velkým ziskem. Jinak řečeno, operační zesilovač
PŘEDNÁŠKA 1 - OBSAH. Přednáška 1 - Obsah
PŘEDNÁŠKA 1 - OBSAH Přednáška 1 - Obsah i 1 Analogová integrovaná technika (AIT) 1 1.1 Základní tranzistorová rovnice... 1 1.1.1 Transkonduktance... 2 1.1.2 Výstupní dynamická impedance tranzistoru...
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
Podívejte se na časový průběh harmonického napětí
Střídavý proud Doteď jse se zabývali pouze proude, který obvode prochází stále stejný sěre (stejnosěrný proud). V praxi se ukázalo, že tento proud je značně nevýhodný. kázalo se, že zdroje napětí ůže být
Obrázek 1: Schematická značka polovodičové diody. Obrázek 2: Vlevo dioda zapojená v propustném směru, vpravo dioda zapojená v závěrném směru
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_2S2_D16_Z_ELMAG_Polovodicove_soucastky_PL Člověk a příroda Fyzika Elektřina a magnetismus
Spínací a vzorkovací obvody, referenční zdroje
Spínací a vzorovací obvody, referenční zdroje Analogové spínače Spínače s unipolárními tranzistory Spínače CMOS Analogové multiplexery Vzorovací obvody pětnovazební vzorovací obvody eferenční zdroje napětí
Binární data. Číslicový systém. Binární data. Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu
5. Obvody pro číslicové zpracování signálů 1 Číslicový systém počítač v reálném prostředí Klávesnice Snímače polohy, dotykové displeje, myš Digitalizovaná data odvozená z analogového signálu Binární data
FEKT VUT v Brně ESO / P5 / J.Boušek 3 FEKT VUT v Brně ESO / P5 / J.Boušek 4
Využití vlastností polovodičových přechodů Oblast prostorového náboje elektrické pole na přechodu Propustný směr difůze majoritních nosičů Závěrný směr extrakce minoritních nosičů Rekombinace na přechodu
teorie elektronických obvodů Jiří Petržela analýza šumu v elektronických obvodech
Jiří Petržela co je to šum? je to náhodný signál narušující zpracování a přenos užitečného signálu je to signál náhodné okamžité amplitudy s časově neměnnými statistickými vlastnostmi kde se vyskytuje?
Součástky s více PN přechody
Součástky s více PN přechody spínací polovodičové součástky tyristor, diak, triak Součástky s více PN přechody první realizace - 1952 třívrstvé tranzistor diak čtyřvrstvé tyristor pětivrstvé triak diak
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr
Kompenzovaný vstupní dělič Analogový nízkofrekvenční milivoltmetr. Zadání: A. Na předloženém kompenzovaném vstupní děliči k nf milivoltmetru se vstupní impedancí Z vst = MΩ 25 pf, pro dělící poměry :2,
10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou
10. Operační zesilovače a jejich aplikace, parametry OZ. Vlastnosti lineárních operačních sítí a sítí s nelineární zpětnou vazbou Jak to funguje Operační zesilovač je součástka, která byla původně vyvinuta
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 1 (zimní semestr 2012/2013, kompletní verze, 2. 11. 2012) Téma 1 / Úloha 1: (zesilovač napětí s ideálním operačním zesilovačem) Úkolem je navrhnout dva různé
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.3 Polovodiče a jejich využití Kapitola
ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec
ISŠT Mělník Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace CZ.1.07/1.5.00/34.0061 VY_32_ INOVACE_C.3.05 Integrovaná střední škola technická Mělník, K učilišti 2566,
Přednáška v rámci PhD. Studia
OBVODY SE SPÍNANÝMI KAPACITORY (Switched Capacitor Networks) Přednáška v rámci PhD. Studia L. Brančík UREL FEKT VUT v Brně ÚVOD DO PROBLEMATIKY Důsledek pokroku ve vývoji (miniaturizaci) analogových integrovaných
Studium tranzistorového zesilovače
Studium tranzistorového zesilovače Úkol : 1. Sestavte tranzistorový zesilovač. 2. Sestavte frekvenční amplitudovou charakteristiku. 3. Porovnejte naměřená zesílení s hodnotou vypočtenou. Pomůcky : - Generátor
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU
VLASTNOSTI POLOVODIČOVÝCH SOUČÁSTEK PRO VÝKONOVOU ELEKTRONIKU Úvod: Čas ke studiu: Polovodičové součástky pro výkonovou elektroniku využívají stejné principy jako běžně používané polovodičové součástky
Dvoustupňový Operační Zesilovač
Dvoustupňový Operační Zesilovač Blokové schéma: Kompenzační obvody Diferenční stupeň Zesilovací stupeň Výstupní Buffer Proudové reference Neinvertující napěťový zesilovač Invertující napěťový zesilovač
Klasifikace: bodů výborně bodů velmi dobře bodů dobře 0-49 bodů nevyhověl. Příklad testu je na následující straně.
Elektronika - pravidla Zkouška: Délka trvání testu: 12 minut Doporučené pomůcky: propisovací tužka, obyčejná tužka, čistý papír, guma, pravítko, kalkulačka se zanedbatelně malou pamětí Zakázané pomůcky:
Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R = 100 kω, φ = 5mW/cm 2.
Nalezněte pracovní bod fotodiody pracující ve fotovoltaickem režimu. Zadáno R 00 kω, φ 5mW/cm 2. Fotovoltaický režim: fotodioda pracuje jako zdroj (s paralelně zapojeným odporem-zátěží). Obvod je popsán
Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna
Otázka č. 3 - BEST Aktivní polovodičové součástky BJT, JFET, MOSFET, MESFET struktury, vlastnosti, aplikace Vypracovala Kristýna Tato otázka přepokládá znalost otázky č. - polovodiče. Doporučuji ujasnit
ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY
ELN 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY 1/14 2. Analogové spínače s tranzistory 2.1 Spínací vlastnosti tranzistorů bipolárních a unipolárních 2.2 Příklady použití spínačů 2. ANALOGOVÉ SPÍNAČE S TRANZISTORY
OPERAČNÍ ZESILOVAČE. Teoretický základ
OPERAČNÍ ZESILOVAČE Teoretický základ Operační zesilovač (OZ) je polovodičová součástka, která je dnes základním stavebním prvkem obvodů zpracovávajících spojité analogové signály. Jedná se o elektronický
ELEKTRONICKÉ SOUČÁSTKY
TEMATICKÉ OKRUHY ELEKTRONICKÉ SOUČÁSTKY 1. Základní pojmy fyziky polovodičů. Pásová struktura její souvislost s elektronovým obalem atomu, vliv na elektrickou vodivost materiálů. Polovodiče vlastní a nevlastní.
A1M14 SP2 Min. NULOVÉ SPÍNAČE
NULOVÉ SPÍNAČE 1 Nulové spínače Určené pro spínání odporových zátěží Snižují riziko rušení vyvolané sepnutím v náhodném okamžiku po průchodu napětí nulou. Sepnutí v t > 0 strmý nárůst napětí a proudu na
Elektrotechnická zapojení
Elektrotechnická zapojení 1. Obvod s rezistory Na základě níže uvedeného obrázku vypočítejte proudy I1, I2, I3. R1 =4Ω, R2 =2Ω, R3 =6Ω, R4 =1Ω, R5 =5Ω, R6 =3Ω, U01 =48V 2. Obvod s tranzistorem počet bodů:
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ ANALOGOVÝ SPÍNAČ PRO APLIKACE V TECHNICE SPÍNANÝCH PROUDŮ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV MIKROELEKTRONIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION DEPARTMENT OF
Fyzikální praktikum 3 Operační zesilovač
Ústav fyzikální elekotroniky Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 3 Úloha 7. Operační zesilovač Úvod Operační zesilovač je elektronický obvod hojně využívaný téměř ve
Bipolární tranzistor. Bipolární tranzistor - struktura. Princip práce tranzistoru. Princip práce tranzistoru. Zapojení SC.
ipolární tranzistor Tranzistor (angl. transistor) transfer resistor bipolární na přenosu proudu se podílejí jak elektrony, tak díry je tvořen dvěma přechody na jednom základním monoktystalu Emitorový přechod
Studium klopných obvodů
Studium klopných obvodů Úkol : 1. Sestavte podle schématu 1 astabilní klopný obvod a ověřte jeho funkce.. Sestavte podle schématu monostabilní klopný obvod a buďte generátorem a sledujte výstupní napětí.
teorie elektronických obvodů Jiří Petržela analýza obvodů metodou orientovaných grafů
Jiří Petržela analýza obvodů metodou orientovaných grafů podstata metod spočívá ve vjádření rovnic popisujících řešený obvod pomocí orientovaných grafů uzl grafu odpovídají závislým a nezávislým veličinám,
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 2
POZNÁMKY K ZADÁNÍ PREZENTACÍ - 17BBEO - TÉMA 2 (zimní semestr 2012/2013, kompletní verze, 21. 11. 2012) Téma 2 / Úloha 1: (jednocestný usměrňovač s filtračním kondenzátorem) Simulace (např. v MicroCapu)
Czech Technical University in Prague Faculty of Electrical Engineering. Fakulta elektrotechnická. České vysoké učení technické v Praze
Z předchozích přednášek víme, že kapacitor a induktor jsou setrvačné obvodové prvky, které ukládají energii Dosud jsme se zabývali ustáleným stavem předpokládali jsme, že v minulosti byly všechny kapacitory
Měření vlastností stejnosměrných tranzistorových zesilovačů
ysoká škola báňská Technická universita Ostrava Fakulta elektrotechniky a informatiky Základy elektroniky ZEL Laboratorní úloha č. 6 Měření vlastností stejnosměrných tranzistorových zesilovačů Datum měření:
Spínače s tranzistory řízenými elektrickým polem. Používají součástky typu FET, IGBT resp. IGCT
Spínače s tranzistory řízenými elektrickým polem Používají součástky typu FET, IGBT resp. IGCT Základní vlastnosti spínačů s tranzistory FET, IGBT resp. IGCT plně řízený spínač nízkovýkonové řízení malý
Dioda jako usměrňovač
Dioda A K K A Dioda je polovodičová součástka s jedním P-N přechodem. Její vývody se nazývají anoda a katoda. Je-li na anodě kladný pól napětí a na katodě záporný, dioda vede (propustný směr), obráceně
Bipolární tranzistory
Bipolární tranzistory Historie V prosinci 1947 výzkumní pracovníci z Bellových laboratořích v New Jersey zjistili, že polovodičová destička z germania se zlatými hroty zesiluje slabý signál. Vědci byli
Univerzita Tomáše Bati ve Zlíně
Univerzita Tomáše Bati ve Zlíně Ústav elektrotechniky a měření Struktura logických obvodů Přednáška č. 10 Milan Adámek adamek@ft.utb.cz U5 A711 +420576035251 Struktura logických obvodů 1 Struktura logických
Základy elektrotechniky
Základy elektrotechniky Přednáška Diody, usměrňovače, stabilizátory, střídače 1 VÝROBA POLOVODIČOVÝCH PRVKŮ Polovodič - prvek IV. skupiny, nejčastěji Si, - vysoká čistota (10-10 ), - bezchybná struktura
Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů
Určení čtyřpólových parametrů tranzistorů z charakteristik a ze změn napětí a proudů Tranzistor je elektronická aktivní součástka se třemi elektrodami.podstatou jeho funkce je transformace odporu mezi
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Logické obvody sekvenční,
Řídicí obvody (budiče) MOSFET a IGBT. Rozdíly v buzení bipolárních a unipolárních součástek
Řídicí obvody (budiče) MOSFET a IGBT Rozdíly v buzení bipolárních a unipolárních součástek Řídicí obvody (budiče) MOSFET a IGBT Řídicí obvody (budiče) MOSFET a IGBT Hlavní požadavky na ideální budič Galvanické
VÝKONOVÉ TRANZISTORY MOS
VÝKONOVÉ TANZSTOY MOS Pro výkonové aplikace mají tranzistory MOS přednosti: - vysoká vstupní impedance, - vysoké výkonové zesílení, - napěťové řízení, - teplotní stabilita PNP FNKE TANZSTO MOS Prahové
Měření základních vlastností logických IO TTL
Měření základních vlastností logických IO TTL 1. Zadání: A. Kombinační obvody: U jednoho hradla NAND TTL (IO 7400): a) Změřte převodní statickou charakteristiku U výst = f(u vst ) b) Změřte vstupní charakteristiku
OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH
OPERAČNÍ ZESILOVAČE V ANALOGOVÝCH SYSTÉMECH Josef Punčochář Katedra elektrotechniky, FEI, VŠB TU Ostrava 17. listopadu 15, 708 33 Ostrava Poruba, josef.puncochar@vsb.cz Abstrakt: V textu jsou stručně popsány
4.2 Paměti PROM - 87 - NiCr. NiCr. Obr.140 Proudy v naprogramovaném stavu buňky. Obr.141 Princip PROM. ADRESOVÝ DEKODÉR n / 1 z 2 n
Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího
17. Elektrický proud v polovodičích, užití polovodičových součástek
17. Elektrický proud v polovodičích, užití polovodičových součástek Polovodiče se od kovů liší především tím, že mají větší rezistivitu (10-2 Ω m až 10 9 Ω m), (kovy 10-8 Ω m až 10-6 Ω m). Tato rezistivita
1 VA-charakteristiky tranzistorů JFET a MOSFET. Úloha č. 7
1 A-charakteristik tranzistorů JFET a MOSFET Úloha č. 7 Úkol: 1. Změřte A charakteristik unipolárního tranzistoru (JFET - BF245) v zapojení se společnou elektrodou S 2. JFET v zapojení se společnou elektrodou
Obvodové prvky a jejich
Obvodové prvky a jejich parametry Ing. Martin Černík, Ph.D. Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace. Elektrický obvod Uspořádaný systém elektrických prvků a vodičů sloužící
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka
Kapacita, indukčnost; kapacitor-kondenzátor, induktor-cívka Kondenzátor je schopen uchovat energii v podobě elektrického náboje Q. Kapacita C se udává ve Faradech [F]. Kapacita je úměrná ploše elektrod
Operační zesilovač, jeho vlastnosti a využití:
Truhlář Michal 6.. 5 Laboratorní práce č.4 Úloha č. VII Operační zesilovač, jeho vlastnosti a využití: Úkol: Zapojte operační zesilovač a nastavte jeho zesílení na hodnotu přibližně. Potvrďte platnost