Napájecí zdroj počítače

Rozměr: px
Začít zobrazení ze stránky:

Download "Napájecí zdroj počítače"

Transkript

1 Napájecí zdroj počítače PSU Power Supply Unit zařízení sloužící ke zpracování střídavého napětí dodávaného z elektrické sítě (230 V/50 Hz) na nízké napětí potřebné k napájení komponent počítače (transformátor - mění silnoproud na slaboproud) některé zdroje mají přepínač pro změnu vstupního napětí mezi 230 V a 115 V, ostatní se automaticky přizpůsobí jakémukoliv napětí v tomto rozsahu Typy napájecích zdrojů Obrázek 1 - Typy napájecích zdrojů 1. ATX (Advanced Technology extended) povolení nebo zakázání napájení je přes základní desku, která poskytuje podporu pro různé další funkce, jako např. pohotovostní režim, zapnutí přes síťovou kartu (magic packet) nejnovější verze standardního napájení ATX je 2.31 (z poloviny r. 2008) v novějších verzích je vidět zvyšující se počet 12V napájecích větví a klesající výkon větve 5 V; nejvýkonnější zdroje mají až 6 samostatných 12 V větví, z nichž každá je schopna dodat proud kolem 20 A rozměry panelu jsou 86 X 150 mm a rozteče otvorů pro upevňování šrouby jsou stejné; hloubka se mění v závislosti na výkonu od 140 do 180 mm pro chlazení zpravidla slouží pomaloběžné ventilátory (120 mm) s tepelnou regulací, zajišťující tichý chod 2. AT (Advanced Technology) dnes již nepoužívané zdroje vyráběly se s výkony 150 až 400 W mají jiné konektory než ATX, proto je nelze zaměnit hardwarový vypínač 1/0 (bez účasti základní desky) 3. SFX (Small Form Factor) zmenšené ATX zdroje, určené do malých skříní s výkonem 200 až 350 W rozměry jsou různé a pohybují se kolem 125 x 100 x 70 mm většinou jsou opatřeny malými ventilátory (60 mm) s vyšším počtem otáček, které mohou při zátěži způsobovat hluk 4. TFX (Thin Form Factor) nízké ATX zdroje, určené do skříní Slim Desktop s výkonem 200 až 300 W rozměr bývá 85 x 175 x 65 mm 1/12

2 mají buď ventilátor 80 mm, který nasává teplý vzduch ze skříně, nebo jeden ventilátor 60 mm, který vyfukuje teplý vzduch ze zdroje 5. IPC (Industrial PC) velikost je přizpůsobena montáži do serverových skříní typu Rack s výškou 1U (270 x 100 x 41 mm) nebo 2U (270 x 100 x 70 mm) pro dosažení vyšší spolehlivosti bývají v serveru dva zdroje (redundantní zdroj) výkon se pohybuje v rozsahu 200 až 600 W Obrázek 2 - Tabulka s příklady - porovnání výkonů různých typů zdrojů Zařízení připojená k napájení 1. Základní deska 2. Pevné disky 3. Mechaniky (optické (CD-ROM, DVD,...), páskové, magnetické (ZIP, JAZ, FDD), magnetooptické a další) 4. Aktivní chladiče 5. Grafická karta 6. Další zařízení (např. mechaniky pro externí HDD, některé speciální moduly, kontrolky, podsvícení aj.) Pro všechny další součásti je dodáváno napětí nepřímo ze základní desky (jakékoli rozšiřující karty, některé ventilátory, procesory, porty, LED kontrolky atd.) Power rating Napájecí zdroje jsou hodnoceny na základě maximálního výkonu. Typické výkonové rozsahy pro domácí a kancelářské aplikace jsou v rozmezí od 300 W do 500 W (pro miniaturní a obzvláště staré počítače i pod 300 W). Napájecí zdroje používané v počítačích pro hráče mají výkon poněkud vyšší 500 W až 800 W a zdroje pro servery od 800 W až do 1400 W. Silnější zdroje jsou určeny především pro velké servery a v menší míře pro počítače s více procesory, více pevnými disky a několika grafickými kartami. 2/12

3 Někteří výrobci přesahují hodnotu výkonu svých zdrojů pro marketingové účely. Je to jeden z důsledků absence norem pro měřící podmínky. Nejčastěji se tak vyskytují: hodnota špičkového výkonu místo výkonu trvalého definice trvalého výkonu za nerealistických nízkých teplot (např. při pokojové teplotě, ač uvnitř zařízení se teplota pohybuje okolo 40 C) hodnoty pro odběr z veškerého vedení, ačkoli je u moderních počítačů odebírán proud pouze z hlavní 12 V linie) Konektory Obrázek 4 - Konektory ATX Obrázek 3 Konektory zdroje ATX Obrázek 6 - Hlavní napájecí konektor Obrázek 5 Konektory ATX Hlavní napájecí konektor (obvykle nazývaný P1): jedná se o konektor pro připojení napájení k základní desce. Mívá 20 nebo 24 pinů. Jeden z nich patří PS-ON drátu (je obvykle zelený). Je to největší konektor ze všech. Na starších AT zdrojích byl tento konektor rozdělen na dvě části: P8 a P9. Napájecí zdroj s 24pinovým konektorem nemůže být použit na základní desce s konektorem 20pinovým. V případech, kdy má základní deska pouze 24pinový konektor, jsou některé zdroje dodávány s dvěma konektory (jeden s 20 piny a druhý se 4 piny), které tak dohromady tvoří jeden 24pinový konektor. 3/12

4 ATX12V - 4pinový napájecí konektor (někdy nazývaný P4), druhý, který je pro připojení k základní desce (kromě hlavního 24pinového), poskytuje zvláštní napájení pro procesor. Pro high-end desky a procesory je totiž zapotřebí více energie, proto EPS12V má 8 pinový konektor. U starších zdrojů se s tímto konektorem nesetkáte. 4pinový periferní (známý jako Molex, dle svého výrobce) klasický konektor pro napájení pevných disků v počítači. Obsahuje čtyři vodiče: dva černé (zem), jeden červený (+5 V) a jeden žlutý (+12 V). Dříve používán i jako napájení pro 8 a 5,25 disketové jednotky. V některých případech jsou využívány jako dodatečné napájení pro různé karty. 4pinový Berg (též Mini-konektor nebo mini-molex): malý napájecí konektor pro 3,5 disketové jednotky. V některých případech může být použit jako pomocný konektor pro grafické karty AGP. pomocné napájecí konektory: existuje několik typů pomocných konektorů, určených pro dodatečné napájení, pokud jsou zapotřebí SATA Power - 15pinový konektor pro komponenty, které používají SATA napájecí zásuvky. Tento konektor dodává napětí ve třech různých hodnotách: +3.3, +5 a +12 Voltů. 6pinové - většina moderních počítačů dodává energii pomocí 6pinových konektorů, které obvykle využívají PCI grafické karty Express. Každý tento konektor může mít na výstupu maximálně 75 W. 6+2 piny - pro účely zpětné kompatibility jsou některé PCI grafické karty Express určeny pro tento druh pinové konfigurace. To umožňuje mít buď 6pinové, nebo 8pinové karty, které mají být připojeny pomoc dvou samostatných modulů kabelového připojení do stejné zdířky: jeden s 6 kolíky a další se dvěma. C14 IEC konektor s vhodným C13 kabelem se používá k napájení místní rozvodné sítě. Notebooky Většina přenosných počítačů má zdroje, které poskytují na výstupu výkon od 25 do 100 W. Obvykle to jsou zdroje externí, které konvertují AC napětí na jedno stejnosměrné (nejčastěji 19V), DC-DC konverze dále dochází v NTB, aby poskytl různá stejnosměrná napětí požadovaný různými složkami počítače. Servery Některé webové servery používají jedno 12 V napájení. Všechna ostatní napětí jsou generována pomocí modulu regulace napětí na základní desce. Záložní zdroje UPS (Uninterruptible Power Supply (Source)) nepřerušitelný zdroj energie zařízení nebo systém, který zajišťuje souvislou dodávku elektřiny pro zařízení, která nesmějí být neočekávaně vypnuta. Podle platných českých norem (ČSN EN 62040) se takové zařízení nazývá "Zdroj nepřerušovaného napájení". UPS je obvykle zapojen mezi primární zdroj elektřiny a vstup napájení chráněného zařízení. Mezi nejčastěji chráněné systémy patří obvykle telekomunikační zařízení, počítačové systémy, systémy zajišťující chod letišť, nemocniční přístroje a další. UPS funguje na principu akumulátoru. Pokud není dodávka elektřiny z primárního zdroje přerušena, je baterie udržována v nabitém stavu. Zároveň slouží jako ochrana proti dalším problémům rozvodné sítě (viz níže). V okamžiku přerušení dodávky elektřiny zajišťuje 4/12

5 napájení zařízení až do obnovení napětí, případně do svého vybití. Doba, po kterou UPS udrží zařízení v chodu, je dána aktuální kapacitou akumulátorů a velikostí zatížení, př. dalšími parametry. Pohybuje se od několika minut po několik hodin. V češtině se toto zařízení někdy označuje jako záložní zdroj energie, slangově mezi počítačovými profesionály jako úpéeska nebo jůpíeska. Typy UPS Off-line: Nejjednodušší princip, který se využívá pro nejmenší výkony. Napájecí napětí prochází ze vstupu přímo na výstup, při přerušení napájení (či při nějakém problému, jako je velké podpětí nebo přepětí) se přepne na výstup napětí z měniče, napájeného akumulátorem. Tento typ UPS není schopen úpravy podpětí nebo přepětí. Prodleva při přepnutí je okolo 25 ms. Line-interactive: Jedná se o zdokonalený Off-line. Dokáže skokově stabilizovat výstupní napětí, aby se co nejvíce blížilo předepsanému napětí, aniž by přecházel na akumulátorové napájení - využívá na to přepínání odboček autotransformátoru. Posílení nižšího napětí se říká boost, potlačení vyššího napětí buck nebo trim. Při větší nestabilitě nebo při úplném výpadku vstupního napětí dochází k přepnutí výstupního napětí na napětí ze střídače, napájeného z baterií. Prodleva při přepnutí se udává 4 10 ms. Toto je často používaný typ UPS pro výkony okolo 1000 VA. Online s dvojitou konverzí: Nejpokročilejší a zároveň nejdražší typ UPS. Napětí nejdříve projde filtry, poté se usměrní a následně střídačem mění na výstupní napětí 230 V AC (př. 3 x 400 V). Na vstupní napětí je připojen pomocný obvod nabíječe akumulátorů. Na stejnosměrném vysokonapěťovém DC meziobvodu je připojen kromě vstupního usměrňovače (který dodává energii v případě normálního provozu) také výstup DC/DC měniče z akumulátorů, který vytváří požadované provozní napětí z nízkého napětí akumulátorů v případě výpadku vstupního napájení. Jelikož výstupní inverter (střídač) je napájen z tohoto vysokého napětí po celou dobu provozu (jak v případě normálního provozu, tak při výpadku), tudíž při jakémkoliv zkreslení či výpadku vstupního napětí nevzniká žádná prodleva při přepnutí na bateriový provoz, jak je tomu u ostatních typů UPS. Mezi další výhody online UPS patří možnost pracovat bez využití energie z akumulátorů v širokém pásu vstupních napětí při zachování konstantního výstupního napětí, popř. také možnost sloužit jako frekvenční měnič s jiným výstupním kmitočtem než je frekvence vstupní sítě (typicky konverze mezi 50/60Hz). Kvůli dvojité konverzi celého přenášeného výkonu jsou tyto UPS dražší, mají menší účinnost (ze které vyplývá nutnost aktivního chlazení ventilátory), ale jsou vhodné pro všechny typy zátěží, pro prostředí s výrazně nestabilní sítí a tam, kde by i krátká prodleva při přepnutí na záložní napájení mohla být fatální. Bypass: Online UPS obsahují bypass, který slouží pro přímé propojení vstupu a výstupu v případě nějakého problému. Bypass se například sepne při přetížení, přehřátí nebo jiné chybě elektroniky UPS, popř. je možné jej sepnout manuálně. Komunikační rozhraní Úkolem komunikačního rozhraní je komunikace mezi UPS a zařízením, do kterého je připojena. Tím zařízením může být PC nebo jiné zařízení, například NAS. Při výpadku proudu je pak záložní zdroj schopen zálohované zařízení bezpečně vypnout (případně uložit data aplikací a poté vypnout). Pokud UPS komunikační port neobsahuje, není schopna se zálohovaným zařízením komunikovat a bezpečné vypnutí zbývá tedy na uživateli, který je upozorněn např. akustickým signálem. 5/12

6 Typy problémů Existuje devět obecných typů problémů s napájením z veřejné elektrovodné sítě, které UPS mohou eliminovat s možnými nebezpečími při nepoužití UPS: 1. Ztráta napájení (blackout) Úplná ztráta napájecího napětí po dobu delší než 2 sinusové cykly. Způsobí, že připojená zátěž přestane fungovat. 2. Krátkodobý pokles Velmi krátkodobý pokles napětí o 15-20% ( bliknutí světel ) Většinou neškodné. 3. Napěťová špička Krátkodobé přepětí o více než 10% může způsobit poškození zařízení. 4. Dlouhodobé podpětí (brownout) Dlouhá linie nízkého napětí může způsobit nadměrné opotřebování spotřebičů. Popř i nefunkčnost citlivých zařízení. 5. Dlouhodobé přepětí Dlouhá linie vysokého napětí způsobuje poškození/rychlé opotřebování spotřebičů. 6. Rušení v síti (šum) Způsobuje elektromagnetické rušení. 7. Změna frekvence Odchylka od standardní frekvence (50Hz, způsobuje např. změnu rychlosti motorů, spadnutí počítače. 8. Napěťové rázy Mžikové špičky až V, způsobovány přeskokem jisker při spínání a elektrostatickými výboji. Mohou mít za následek chyby dat nebo i poškození počítačů. 9. Harmonické zkreslení Harmonické zkreslení sinusového průběhu. Obvykle způsobeno nelineární zátěží (motory ). Způsobuje chyby v komunikaci nebo i poškození hardware. Přepěťová ochrana Přepěťové ochrany chrání elektrická zařízení před poškozením izolace přepětím vyšším, než které je schopná izolace vydržet. Nazývají se též "bleskojistky" nebo "svodiče přepětí". Za přepětí můžeme považovat napětí (U), které je oproti jmenovitému napětí (Un) dvojnásobné. Překročení jmenovité hodnoty napětí Un o % je považováno za normální provozní stav. Nastavená ochranná hladina, kdy přepěťová ochrana začne omezovat napětí průchodem vnitřního proudu, musí být nižší, než je izolační hladina zařízení. Druhy 1. Polovodičové: Využívají nelineárních V-A charakteristik, kdy se součástka začne rychle otevírat, jsou trvale připojeny ke spotřebiči. V oblasti mn (malého napětí, řádově jednotky voltů) se využívá závěrného směru Zenerových diod. Pro střídavé obvody se musí zapojit dvě Zenerovy diody antisériově. Pro větší nároky se používají transily a napěťově závislé odpory - varistory. 2. Ochranné jiskřiče: Vytvářejí po průrazu dielektrika přechodné zemní zkratové spojení, samy však nejsou schopny vzniklý oblouk zhasnout (pojistky). Používají se jako pomocné svodiče u vn (vysoko napěťových) průchodek a izolátorů, mají ale velký rozptyl zapalovacích napětí. 3. Růžková bleskojistka: Podobně jako u jiskřiště vznikne oblouk v nejužším místě, vlivem ohřevu vzduchu a silovými účinky vlastního magnetického pole je oblouk vytlačován vzhůru a na koncích růžků pak uhasne. Používá se pro ochranu trakčních vedení a úsečníků. 6/12

7 4. Vyfukovací trubice: Obsahuje zapalovací a hlavní jiskřiště. Elektrický oblouk hlavního jiskřiště rozkládá izolační materiál trubice za vzniku plynů o vysokém tlaku, který zháší oblouk, plameny však šlehají až několik metrů. 5. Ventilová bleskojistka: Obsahuje sériově zařazená jiskřiště s odporovými bloky (varistory), přepětí svede do země, při poklesu U varistory zvětší svůj odpor a oblouk jiskřiště zhasne. Zejména pro velmi vysoká napětí. 6. Průrazka: Při vysokém napětí vytvoří trvalý zemní zkrat, proud nevypíná. Odkazy (zdroje) /12

8 Chlazení počítače Chlazení počítačů má za úkol odvést z vnitřku počítače ztrátové teplo, vznikající činností aktivních elektrotechnických součástek, které v počítači zajišťují jeho funkčnost. Odvod tepla je způsoben díky vhodnému použití materiálu (dnes je neoblíbenější bud měď nebo s kombinací hliníku, kvůli pevnosti, lehkosti a hlavně ceně), pouze kovový chladič (pasivní) nebo přidání ventilátory, dále také za použití kapaliny (nejčastěji destilovaná voda nebo případně voda upravená tak, aby se nestala elektricky vodivá) v oběhu nebo kapaliny pod bodem mrazu (tekutým dusíkem nebo oxidem uhličitým). Každá firma se snaží vyvinout co nejlepší tvar, jak u chladiče pasivního/aktivního, tak u chladiče vodního, kde jde jen o to co nejlépe tvarovat kanálky v chladicím bloku. V dobách prvních elektronkových počítačů bylo nutno k účinnému chlazení vyměňovat značný objem vzduchu, což bylo zajišťováno leteckými vrtulemi; ve speciálních případech i zkapalněným dusíkem nebo oxidem uhličitým. Dnešní sálové počítače se chladí klimatizací celé místnosti nebo jako běžné stolní PC mikropočítače, to znamená za použití kovové základny a ventilátoru. Zdroje tepla Procesor - Nejvíce odpadního tepla zde vzniká při přepínání stavů tranzistorů během provádění jeho početních operací. Základní deska - Zde mají největší podíl napájecí obvody, které jsou složeny z tranzistorů, poté čipset, pak přídavné čipy, jako zvukový kodek, síťový čip a další, a pak třeba rezistory ad. Grafická karta - Zde nejvíc tepla produkuje GPU, pak napájecí obvody, poté paměti a pak součásti typu rezistorů a další. Pevný disk - Nejvíce tepla zde vytváří malý elektromotor, který otáčí disk. Zdroj - Jedná se o zařízení, které se nachází na konci chladicího systému, nicméně jím produkované teplo se může přes skříň přenášet i do prostoru skříně. Odpadní teplo zde vzniká především v transformátoru, usměrňovači a tranzistorech. Operační paměť - Tato součást vyzařuje obvykle o poznání méně tepla než ostatní součásti, přesto díky ploše a umístění obtížně chladí a tak mnohdy díky tomu dosahují teploty C a více. Další součásti jako je např. zvuková karta a další doplňkové komponenty, které jsou do počítače montovány fakultativně dle potřeb uživatelů a které většinou mají malý zdroj tepla. Typy chlazení 1. Pasivní chlazení Popis: Pasivní chladič je kovová nepohyblivá součástka, která má na sobě navařená žebra pro zajištění co největší plochy z důvodu lepšího předávání tepla okolnímu vzduchu. U menších verzí chladičů může jít o výrobek zhotovený z jednoho kusu kovu. Jedná se o součástku vyrobenou frézováním, upravenou laserem nebo jinak. Pasívní chladiče jsou až na výjimky (zakázkové a výroční chladiče) vyrobeny buďto z 8/12

9 mědi (dražší) nebo z hliníku (levnější), případně kombinace obou. Často se kombinuje měď jako základna a hliník na žebra, pro dosažení dobrého poměru cena/chladicí efekt, anebo se případně mezi základnu a žebra přidávají heatpipes pro lepší odvod tepla (uvnitř je kapalina). Hliník je levnější, lehčí, pevnější, ale má znatelně menší tepelnou vodivost a je křehčí, díky tomu se používá buďto u levných variant chladičů anebo se používá k Obrázek 7 - Tvar pasivního chladiče výrobě žeber. Měď se oproti němu používá u dražších chladičů a dají se zde použít žebra s menší tloušťkou, nezlomí se tak snadno jako žebra hliníková. Poslední dobou se použití heatpipes stalo žádané a tak mnohdy se dávají zbytečně jenom proto, aby chladiče vypadaly "cool", celkový technický přínos je ale v tomto případě spekulativní (snížení teploty jednoho čipu, zvýšení druhého). Nic to ale nemění na faktickém přínosu této technologie, jedná se o rychlejší přenos odpadního tepla z malé plochy pryč od jeho zdroje. Pasívní chladiče bývají vyrobeny ze slitin hliníku, stále více se však rozšiřují i měděné chladiče, protože měď má výrazně vyšší tepelnou vodivost. Měděné chladiče mohou mít žebra s menší tloušťkou (nezlomí se tak snadno jako hliníková). V poslední době se také více uplatňují tzv. heatpipes, což jsou měděné válce, které dobře vedou teplo a odvádějí jej např. od pasivního chladiče na Northbridge, který je umístěn blízko přídavných karet, směrem k otevřenému prostranství k Southbridge kde je teprve umístěn aktivní chladič. Heatpipes: Měděné válce s póry částečně naplněné kapalinou. Používají se pro převod tepla od základny chladiče (kontakt s čipem) k žebrům chladiče, které jsou umístěny dál od základny a více ve volném prostoru a díky tomu se mohou lépe chladit. Standardní průměr bývá 6 mm, ale někdy se používají průměry větší než 6 mm zejména pro použití u grafických karet a procesorů s vysokým vyzářeným tepelným výkonem (vysokou teplotu). Používají se na chladičích: procesorů - u CPU se klade důraz na to, aby předal teplo pokud možno do cesty ventilátoru v zadní pozici skříně nebo zdroje; grafických karet - zde se teplo snaží rovnoměrně roznést pro celé ploše chladiče (u výkonnějších je velikost rovna velikosti karty), aby docházelo k co největší efektivitě; čipsetů - většinou se rozptyluje teplo mezi napájecími obvody a Northbridge, případně se Southbridge; výjimečně pak jinde, většinou pro vzhled. Existují i ploché heatpipes většinou na základních deskách pro nižší profil, pod přídavnými kartami není moc místa a musí vést nad rezistory a dalšími čipy, díky tomu mnohdy mají pouze okolo 5mm prostoru. Nebo se používají u grafických karet na spodní straně chladiče pro rychlý odvod tepla ke koncům chladičů. Začínající technologií je vapor chamber, která vychází z "ploché" heatpipes, ale má podstatně větší plochu (klidně 5x10 cm a víc), která se používá pouze u grafických karet pro lepší, menší a účinnější chlazení karty. Obrázek 8 - Aktivní chladič ze zdroje 9/12

10 2. Aktivní chlazení: Aktivní chlazení je prováděno proudícím vzduchem. Proud vzduchu je obvykle vytvářen ventilátorem. Nejvíce používané ventilátory v počítačích mívají rozměry o hraně 80, 90/92 nebo 120 mm a otáčkách za minutu, dnes jsou preferovány pomaluotáčkové ventilátory RPM a větší velikosti. Aktivní chlazení je použito pro chlazení procesoru, grafické karty, zdroje nebo pevných disků, případně některé součástky mohou být chlazeny proudem vzduchu vytvořeným poblíž některého dalšího větráčku (na procesoru atd.). Pomocí aktivních chladičů se vytváří tzv. tunely, v principu jde o dosažení lepšího proudění vzduchu skříní (na přední části je jeden aktivní chladič který nasaje vzduch do skříně, ten se zde ohřeje a zdrojem nebo dalším aktivním chladičem pod zdrojem je vysáván mimo skříň). Většinou platí, že čím víc má RPM, tím je hlučnější (udáváno v db nebo Sone). Díky zvýšenému průtoku vzduchu způsobeným ventilátorem je potřeba podstatně menší plochy (velikosti) chladiče a díky tomu jsou nižší náklady na výrobu chladiče, i když je součástí ventilátor. S rozměry při stejných otáčkách roste průtok vzduchu. RPM je anglická zkratka pro otáčky za minutu. Je dobré dát pozor na manipulaci s točícími ventilátory, kvůli možnosti poranění kůže (seknutí, odseknutí vrchní kůže, ). 3. Kombinované chlazení: Kombinované chlazení je použito nejčastěji, jde o pasivní chladič na kterém je nasazen chladič aktivní, který vytváří proud vzduchu procházející pasivním chladičem. Použití kupř. na procesorech (CPU, GPU) nebo i na Northbridgích. 4. Vodní chlazení: Vodní chlazení vzniklo z nedostatku vhodného chlazení pro počítače s nástupem výkonných sestav někdy po roce Nyní jeho časté používání zpomalují levnější avšak stejně výkonné kombinované chladiče hlavně čtyř velkých firem: Zalman, Thermaltake, PrimeCooler a částečně Nexus. Vodní chlazení je uzavřená soustava, ve které probíhá chladicí médium kterým je voda (nejlépe destilovaná). Okruh sestává z čerpadla, chladičů na jednotlivé chlazené komponenty (CPU, GPU, HDD, paměti RAM atd.), velkého pasivního chladiče (tzv. radiátor ), který může obsahovat i chladiče aktivní a případně může být v obvodu i expanzní nádoba, díky níž se dá lépe kontrolovat a doplňovat voda. Prodávají se jak kompletní sestavy, tak jednotlivé díly pro vlastní sestavení vodního okruhu. Vodní chlazení však pouze přesouvá problém mimo skříň, zde se teplo stejně musí předat přes pasivní chladič vzduchu. Obzvláště v domácích sestavách mohou být nebezpečné netěsností a také vodní chlazení je nejdražší forma chlazení PC. Vypadá však efektně (při tuningu se obvykle voda barví nějakou barvou) a počítač je díky němu i tišší. Vodní chlazení vyrábí i některé české firmy. 5. Kapalina s teplotou pod 0 C: Většinou se používá tekutý dusík nebo oxid uhličitý pro extrémní chlazení komponent (CPU, GPU a další..), většinou za dosažením co největšího přetaktování a tak vytvoření rekordu. Nejde o vůbec levné chlazení, cena za jednu bombu ,- Kč není nic neobvyklého, proto si to může dovolit buďto bohatý člověk, na jednorázovou akci (třeba Invex), případně redakce a atd. Je potřeba dávat pozor, protože dochází k manipulaci s chladnou kapalinou, co může způsobit poranění. (Polití (neplatí pro ponoření) tekutým dusíkem nezpůsobuje zranění.) 6. Ostatní způsoby: Za další výkonnou metodu chlazení, i když trošku atypickou, můžeme považovat i tzv. "chování počítače v akvárku". V podstatě se do speciálně upravené nádoby s komponenty nalije olej. Ten má větší měrnou tepelnou kapacitu než vzduch, tím pádem chladí lépe. Nemusíte se obávat, že by počítač "vybuchnul", neboť olej nevede elektrický proud. Destilovaná voda poslouží taky dobře, protože ani ta nevede elektřinu. Ale zde je možnost, že během běhu tohoto zařízení se do této vody dostane příměs, která zapříčiní elektrickou vodivost vody (například rez či oxid uhličitý). 10/12

11 Uchycení Uchycení chlazení k čipům se obvykle provádí teplovodivým lepidlem, pokud jsou k dispozici otvory v PCB tak pomocí šroubů, plastových šroubů, spon a dalších spojovacích součástí. Je zapotřebí, aby uchycení bylo pevné pro dosažení maximálního přenosu tepla a snížení teplot, proto je potřeba toto pozorně navrhnout. Mnohé problémy s nestabilitou součástek jsou způsobeny nedostatečným chlazením a to mnohdy způsobeným právě nesprávným uchycením. Dnes se běžně mezi chlazenou součást a chladič vkládá teplovodivá pasta pro lepší vzájemný kontakt obou částí. Vyplní vzduchové mezery, které by jinak fungovaly jako dobrý izolant tepla. Nedoporučuje se použití lepidel jako sekundové lepidlo a další, které mnohdy samy o sobě fungují částečně jako izolant a díky tomu potom chladič není využit a mnohou tak vznikat problémy. Způsob chlazení Způsob (logika) chlazení komponent může být mnohdy dosti individuální. Třeba chlazení každé součástky zvlášť nebo vedení proudu vzduchu tak, aby chladil všechny potřebné součásti najednou, jedná se o cílené proudění vzduchu. Nejjednodušší způsob chlazení dnes používaný u skříní PC je nasávání na přední straně (buďto celá nebo přes HDD, poté okolo a před grafickou kartou směrem k procesoru a zdrojem ven. Většina ostatních typů chlazení staví na tomto osvědčeném základu. Ukázky chlazení obrázky 11/12

12 Odkazy (zdroje) /12

8. Počítačová skříň,zdroj a UPS. Počítačová skříň

8. Počítačová skříň,zdroj a UPS. Počítačová skříň 8. Počítačová skříň,zdroj a UPS Počítačová skříň Definice: Počítačová skříň (anglicky computer case) je hardware pro počítače, která slouží k mechanickému upevnění všech ostatních vnitřních dílů a částí

Více

Středoškolská technika 2015

Středoškolská technika 2015 Středoškolská technika 2015 Setkání a prezentace prací středoškolských studentů na ČVUT Bytový rozváděč Král Jaromír, Valenta Jakub Střední průmyslová škola stavební a, příspěvková orgnizace Čelakovského

Více

Chlazení PC. Autor: Kulhánek Zdeněk

Chlazení PC. Autor: Kulhánek Zdeněk Chlazení PC Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_823 1.11.2012 1 Kvalitní

Více

UPS (Uninterruptible Power Supply)

UPS (Uninterruptible Power Supply) UPS (Uninterruptible Power Supply) UPS neboli záložní napájecí zdroje (z angl. Uninterruptible Power Supply, tedy zdroje nepřetržitého napájení), jsou zařízení jejichž funkcí je zpravidla krátkodobá (řádově

Více

Počítačový napájecí zdroj

Počítačový napájecí zdroj Počítačový napájecí zdroj Počítačový napájecí zdroj je měnič napětí. Má za úkol přeměnit střídavé napětí ze sítě (230 V / 50 Hz) na napětí stejnosměrné, a to do několika větví (3,3 V; 5 V; 12 V). Komponenty

Více

Počítačový napájecí zdroj

Počítačový napájecí zdroj Počítačový napájecí zdroj Počítačový zdroj je jednoduše měnič napětí. Má za úkol přeměnit střídavé napětí ze sítě (230 V / 50 Hz) na napětí stejnosměrné, a to do několika větví (3,3V, 5V, 12V). Komponenty

Více

Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo.

Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo. CHLAZENÍ V POČÍTAČI Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo. Q R I 2 t J Množství vzniklého tepla, mimo jiné, přímo úměrně

Více

CHLAZENÍ V POČÍTAČI. Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo.

CHLAZENÍ V POČÍTAČI. Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo. CHLAZENÍ V POČÍTAČI Prochází-li elektrický proud obvodem, dochází k zahřívání jeho částí. Vzniká podle Joule-Lenzova zákona elektrické teplo. Q = R I 2 t [ J ] Množství vzniklého tepla mimo jiné přímo

Více

1 Napájení PC, UPS. Technické vybavení osobních počítačů

1 Napájení PC, UPS. Technické vybavení osobních počítačů 1 Napájení PC, UPS Napájecí zdroj má za úkol napájet veškeré komponenty počítače (základní desku, procesor, paměti, přídavné karty, pevné disky a mechaniky). Napájecí zdroje jsou stejnosměrné, jsou to

Více

Rozvod elektrické energie v průmyslových a administrativních budovách. Sítě se zálohovaným a nepřetržitým napájením. A 5 M 14 RPI Min.

Rozvod elektrické energie v průmyslových a administrativních budovách. Sítě se zálohovaným a nepřetržitým napájením. A 5 M 14 RPI Min. Rozvod elektrické energie v průmyslových a administrativních budovách Sítě se zálohovaným a nepřetržitým napájením Topologie a uspořádání rozvodu elektrické energie v průmyslových objektech a administrativních

Více

Počítačové zdroje. Autor: Kulhánek Zdeněk

Počítačové zdroje. Autor: Kulhánek Zdeněk Počítačové zdroje Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_822 1.11.2012 1 Mění

Více

Bezkontaktní spínací prvky: kombinace spojitého a impulsního rušení: strmý napěťový impuls a tlumené vf oscilace výkonové polovodičové měniče

Bezkontaktní spínací prvky: kombinace spojitého a impulsního rušení: strmý napěťový impuls a tlumené vf oscilace výkonové polovodičové měniče 12. IMPULZNÍ RUŠENÍ 12.1. Zdroje impulsního rušení Definice impulsního rušení: rušení, které se projevuje v daném zařízení jako posloupnost jednotlivých impulsů nebo přechodných dějů Zdroje: spínání elektrických

Více

Ochranné prvky pro výkonovou elektroniku

Ochranné prvky pro výkonovou elektroniku Ochranné prvky pro výkonovou elektroniku Výkonová elektronika - přednášky Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. Poruchový stav některá

Více

Identifikátor materiálu: ICT-1-08

Identifikátor materiálu: ICT-1-08 Identifikátor materiálu: ICT-1-08 Předmět Informační a komunikační technologie Téma materiálu Motherboard, CPU a RAM Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní desku počítače.

Více

Přepětí a svodiče přepětí

Přepětí a svodiče přepětí Přepětí a svodiče přepětí Přepětí Přepětí je napětí, které je vyšší než jmenovité napětí. Je-li však napětí v povelené toleranci (+5 % nn a +10 % vn, vvn a zvn) hovoříme o nadpětí. O přepětí hovoříme tedy

Více

SKŘÍŇ PC. Základní součástí počítačové sestavy je skříň.

SKŘÍŇ PC. Základní součástí počítačové sestavy je skříň. SKŘÍŇ PC Základní součástí počítačové sestavy je skříň. Obsah skříně PC Skříň PC je nejdůležitější částí PC sestavy. Bez ní by počítač nemohl pracovat. Jsou v ní umístěny další součástky hardwaru, které

Více

Hardware PC skříně. Autor: Kulhánek Zdeněk

Hardware PC skříně. Autor: Kulhánek Zdeněk Hardware PC skříně Autor: Kulhánek Zdeněk Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_821 1.11.2012 1

Více

2.7 Základní deska. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu

2.7 Základní deska. Střední průmyslová škola strojnická Vsetín. Ing. Martin Baričák. Název šablony Název DUMu. Předmět Druh učebního materiálu Název školy Číslo projektu Autor Název šablony Název DUMu Tematická oblast Předmět Druh učebního materiálu Anotace Vybavení, pomůcky Ověřeno ve výuce dne, třída Střední průmyslová škola strojnická Vsetín

Více

THOR Modular. Popis. Vlastnosti. Modulární UPS systém

THOR Modular. Popis. Vlastnosti. Modulární UPS systém THOR Modular Modulární UPS systém Online dvojitá konverze Škálovatelné Decentralizované Paralelní Modulární 10, 20, 30, 40 moduly Systémy 10 520 Popis THOR Modular je nový škálovatelný online systém s

Více

Návod k použití záložních zdrojů MTN.

Návod k použití záložních zdrojů MTN. Návod k použití záložních zdrojů MTN www.zdroje.cz Rozsah dodávky: Záložní zdroj MTN... 1ks Síťová šňůra délka 1,8m (1,5m pro řadu W). 1ks Teplotní čidlo 3 m..... 1ks Svorky pro připojení baterie 0,5m

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: CZ.1.07/1.5.00/34.0410 Číslo šablony: 11 Název materiálu: Hardwarové sestavení PC Ročník: Identifikace materiálu: Jméno autora:

Více

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/

Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/ Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu

Více

Zdroje napětí - usměrňovače

Zdroje napětí - usměrňovače ZDROJE NAPĚTÍ Napájecí zdroje napětí slouží k přeměně AC napětí na napětí DC a následnému předání energie do zátěže, která tento druh napětí (proudu) vyžaduje ke správné činnosti. Blokové schéma síťového

Více

Předmět: informační a komunikační technologie

Předmět: informační a komunikační technologie Předmět: informační a komunikační technologie Výukový materiál Název projektu: Zkvalitnění výuky prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0799 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Bezpečnostní modul Monitorování Nouzového zastavení dle ČSN EN 418/ČSN EN

Bezpečnostní modul Monitorování Nouzového zastavení dle ČSN EN 418/ČSN EN Bezpečnostní modul Monitorování Nouzového zastavení dle ČSN EN 418/ČSN EN 60204-1 Označení svorek Rozměry 2 3 4 13 23 33 Y64 41 Y74 2 3 4 13 23 33 41 Y64 Y74 99 mm (3,89 in) 35 mm (1,38 in) 1 / 2 S33 S34

Více

Sínusový záložní zdroj INTEX 400-12

Sínusový záložní zdroj INTEX 400-12 Sínusový záložní zdroj INTEX 400-12 Profesionální sínusový záložní zdroj UPS, nízkofrekvenční technologie, integrovaný nabíječ externích akumulátorů max. 10A, dvoustupňové nabíjení. Robustní celokovová

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Registrační číslo projektu Šablona Autor Název materiálu CZ.1.07/1.5.00/34.0951 III/2 INOVACE A ZKVALITNĚNÍ VÝUKY PROSTŘEDNICTVÍM ICT Mgr. Petr

Více

Záložní zdroj SinusPRO-500E

Záložní zdroj SinusPRO-500E Záložní zdroj SinusPRO-500E Obsah Obsah... 2 1. Popis zařízení... 3 1.1 Činnost zařízení... 3 1.2 Upozornění... 3 1.3 Ovládací prvky... 3 1.4 Popis displeje... 4 2. Uvedení do provozu a ovládání... 5 2.1

Více

Zkušebnictví, a.s. KEMA Laboratories Prague Podnikatelská 547, Praha 9 Běchovice

Zkušebnictví, a.s. KEMA Laboratories Prague Podnikatelská 547, Praha 9 Běchovice Pracoviště zkušební laboratoře: 1. Oddělení HPL 2. Oddělení HVL Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř poskytuje odborná stanoviska a interpretace výsledků

Více

Záložní zdroje a zásuvkové moduly

Záložní zdroje a zásuvkové moduly www.moeller.cz Záložní zdroje a zásuvkové moduly Eaton je společnost poskytující širokou škálu technologických řešení a služeb po celém světě. Klíčovými divizemi společnosti Eaton jsou Electrical, Fluid

Více

Technologie fotovoltaických zdrojů IV.c

Technologie fotovoltaických zdrojů IV.c Technologie fotovoltaických zdrojů IV.c Technologie provedení ochrany fotovoltaické elektrárny Většina fotovoltaických (PV) elektráren je složena z většího počtu šikmých liniových stojanů z pozinkované

Více

POKYNY PRO PROJEKTOVÁNÍ, MONTÁŽ A ÚDRŽBU

POKYNY PRO PROJEKTOVÁNÍ, MONTÁŽ A ÚDRŽBU POKYNY PRO PROJEKTOVÁNÍ, MONTÁŽ A ÚDRŽBU Usměrňovač 24V / 10A KE 230-24-10 BP Pražská energetika, a. s. Datum 08/2005 1 Popis zařízení Zařízení KE 230-24-10 BP slouží k napájení zařízení stejnosměrným

Více

9/10/2012. Výkonový polovodičový měnič. Výkonový polovodičový měnič obsah prezentace. Výkonový polovodičový měnič. Konstrukce polovodičových měničů

9/10/2012. Výkonový polovodičový měnič. Výkonový polovodičový měnič obsah prezentace. Výkonový polovodičový měnič. Konstrukce polovodičových měničů Výkonový polovodičový měnič Konstrukce polovodičových měničů Výkonový polovodičový měnič obsah prezentace Výkonový polovodičový měnič. Přehled norem pro rozvaděče a polovodičové měniče.. Výběr z výkonových

Více

Zdroj napájí všechny součásti počítače převádí střídavé napětí 230 V na stejnosměrné napětí těchto hodnot: + 3,3 V port AGP, paměti, chipset, U I/O procesoru + 5 V řídící části diskových mechanik, napájení

Více

Řada 78 - Spínané napájecí zdroje

Řada 78 - Spínané napájecí zdroje Spínané napájecí zdroje na DIN-lištu výstup: 12 V DC; 12 nebo 50 24 V DC; 12, 36 nebo 60 vstup: (110...240) V AC 50/60 Hz nebo 220 V DC nízká spotřeba naprázdno < 0,4 ochrana proti přetížení a zkratu na

Více

ZDROJ 230V AC/DC DVPWR1

ZDROJ 230V AC/DC DVPWR1 VLASTNOSTI Zdroj DVPWR1 slouží pro napájení van souboru ZAT-DV řídícího systému ZAT 2000 MP. Výstupní napětí a jejich tolerance, časové průběhy logických signálů a jejich zatížitelnost odpovídají normě

Více

TENZOMETRICKÝ PŘEVODNÍK

TENZOMETRICKÝ PŘEVODNÍK TENZOMETRICKÝ PŘEVODNÍK typ TENZ2109-5 Výrobu a servis zařízení provádí: ATERM, Nad Hřištěm 206, 765 02 Otrokovice Telefon/Fax: 577 932 759 Mobil: 603 217 899 E-mail: matulik@aterm.cz Internet: http://www.aterm.cz

Více

GFK-1913-CZ Prosinec 2001. Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C.

GFK-1913-CZ Prosinec 2001. Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C. Modul slouží pro výstup digitálních signálů 24 Vss. Specifikace modulu Rozměry pouzdra (šířka x výška x hloubka) Připojení 48,8 mm x 120 mm x 71,5 mm dvou- a třídrátové Provozní teplota -25 C až +55 C

Více

Postup stavby PC. Autor: Bc. Miroslav Světlík

Postup stavby PC. Autor: Bc. Miroslav Světlík Postup stavby PC Autor: Bc. Miroslav Světlík Škola: Hotelová škola, Obchodní akademie a Střední průmyslová škola Teplice, Benešovo náměstí 1, příspěvková organizace Kód: VY_32_INOVACE_ICT_831 1. 11. 2012

Více

Řada 78 - Spínané napájecí zdroje

Řada 78 - Spínané napájecí zdroje Řada 78 - Spínané napájecí zdroje Řada 78 Spínané síťové zdroje na DIN-lištu výstup:12 V DC; 12 nebo 50 24 V DC; (12-36 - 60-120 - 130) vstup: (110...240) V AC 50/60 Hz (120...240) V AC/DC nebo 220 V DC

Více

Informační a komunikační technologie

Informační a komunikační technologie Informační a komunikační technologie 3. www.isspolygr.cz Vytvořil: Ing. David Adamovský Strana: 1 Škola Integrovaná střední škola polygrafická Ročník Název projektu 1. ročník SOŠ Interaktivní metody zdokonalující

Více

Napájecí zdroj. Zdroje AT. Zdroje AT. Josef Jan Horálek

Napájecí zdroj. Zdroje AT. Zdroje AT. Josef Jan Horálek Napájecí zdroj Josef Jan Horálek Josef Jan Horálek FIM UHK Architektura počítačů II Zdroje AT Starší zdroje používané u deset AT Dvě napěťové úrovně 12V a 5V Vypínání mechanickým vypínačem Na základní

Více

35904, 35909 Automobilový měnič a nabíječka

35904, 35909 Automobilový měnič a nabíječka 35904, 35909 Automobilový měnič a nabíječka Měnič z 1 V DC na AC Automatické 3-fázové nabíjení baterií 1 V Funkce zálohovaného zdroje (UPS) Uživatelská příručka Před prvním zapnutím přístroje si pečlivě

Více

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr : Binární vstupní / výstupní modul 07 DC 92

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr : Binární vstupní / výstupní modul 07 DC 92 4.8 Binární vstupní / výstupní modul 07 DC 9 3 konfigurovatelných binárních vstupů / výstupů, 4 V DC, galvanicky oddělených po skupinách, výstupy zatížitelné 500 ma, CS31 - linie 1 3 4 1 Obr. 4.8-1: Binární

Více

Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace

Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace BKE Napájecí systém NS-500-545_1U Návod k obsluze a technická specifikace - 1 - OTD 45007509 1 Obsah 1 Obsah...2 2 Provozní podmínky...3 2.1 Vstupní napětí...3 2.2 Chlazení...3 2.3 Externí jištění...3

Více

Proudový ventil. Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw. Proudové ventily jsou konstruovány pro spínání těchto odporových zátěží:

Proudový ventil. Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw. Proudové ventily jsou konstruovány pro spínání těchto odporových zátěží: 4 937 DESIO Proudový ventil Pro pulsní řízení AC 24 V pro elektrické výkony do 30 kw SEA45.1 Použití Proudový ventil se používá pro regulaci topných elementů v zařízeních vytápění, větrání a klimatizace,

Více

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr. 4.7-1: Binární vstupní / výstupní modul 07 DC 91

Obsah. Zobrazovací a ovládací prvky na čelním panelu. Účel použití. Elektrické zapojení. Obr. 4.7-1: Binární vstupní / výstupní modul 07 DC 91 4.7 Binární vstupní / výstupní modul 16 binárních vstupů, 8 binárních výstupů, 8 konfigurovatelných binárních vstupů / výstupů, 4 V DC, CS31 - linie 1 3 Advant Controller 31 I/O Unit ERR Test 4 1 Obr.

Více

ŘADA E24, E35MA, E40MA, E50MA, E57MA VHODNÉ PRO NAPÁJENÍ SPOTŘEBIČŮ VYŽADUJÍCÍ STABILIZOVANÉ NAPĚTÍ.

ŘADA E24, E35MA, E40MA, E50MA, E57MA VHODNÉ PRO NAPÁJENÍ SPOTŘEBIČŮ VYŽADUJÍCÍ STABILIZOVANÉ NAPĚTÍ. 137 GENERÁTORY 13 138 generátory Modely pro profesionální použití, s pohodlným čelním panelem Spolehlivý a úsporný motor Mitsubishi OHV Bezkartáčkový design generátoru Velká palivová nádrž s indikátorem

Více

DSE6120 MKII OVLÁDACÍ PANELY PRO AUTOMATICKÝ START

DSE6120 MKII OVLÁDACÍ PANELY PRO AUTOMATICKÝ START DSE6110/20 MKII OVLÁDACÍ PANELY PRO AUTOMATICKÝ START DSE6110 MKII DSE6120 MKII DSE6110 MKII je ovládací panel automatického spouštění a modul DSE6120 MKII je ovládací panel automatického spuštění pro

Více

GREEN MOTION SYSTÉM. UPS pro výtahy Návod na obsluhu

GREEN MOTION SYSTÉM. UPS pro výtahy Návod na obsluhu GREEN MOTION SYSTÉM UPS pro výtahy Návod na obsluhu Green Motion UPS DC/AC konvertor Green Motion Card Regulátor baterií Green Motion System je UPS-systém, který snižuje náklady na energie a zabezpečuje

Více

Polovodičové usměrňovače a zdroje

Polovodičové usměrňovače a zdroje Polovodičové usměrňovače a zdroje Druhy diod Zapojení a charakteristiky diod Druhy usměrňovačů Filtrace výstupního napětí Stabilizace výstupního napětí Zapojení zdroje napětí Závěr Polovodičová dioda Dioda

Více

Základní deska (mainboard)

Základní deska (mainboard) Základní deska (mainboard) Základní deska je nejdůležitější části sestavy počítače. Zajišťuje přenos dat mezi všemi díly a jejich vzájemnou komunikaci. Pomocí konektorů umožňuje pevné přichycení (grafická

Více

Hardware Skladba počítače. Mgr. Lukáš Provazník ZŠ praktická a ZŠ speciální Lomnice nad Popelkou DUM č.: VY_3.2_INOVACE_1LP_35

Hardware Skladba počítače. Mgr. Lukáš Provazník ZŠ praktická a ZŠ speciální Lomnice nad Popelkou DUM č.: VY_3.2_INOVACE_1LP_35 Hardware Skladba počítače Mgr. Lukáš Provazník ZŠ praktická a ZŠ speciální Lomnice nad Popelkou DUM č.: VY_3.2_INOVACE_1LP_35 Počítač Zařízení pro zpracováni dat (v souborech text, hudba, video) Počítačová

Více

GFK-2004-CZ Listopad Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C.

GFK-2004-CZ Listopad Rozměry pouzdra (šířka x výška x hloubka) Připojení. Skladovací teplota -25 C až +85 C. Modul slouží pro výstup digitálních signálů 24 Vss. Specifikace modulu Rozměry pouzdra (šířka x výška x hloubka) Připojení 48,8 mm x 120 mm x 71,5 mm dvou-, tří- a čtyřdrátové Provozní teplota -25 C až

Více

Jističe, stykače, a svodiče přepětí

Jističe, stykače, a svodiče přepětí Jističe, stykače, a svodiče přepětí Jiří Kubín TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií

Inovace výuky prostřednictvím ICT v SPŠ Zlín, CZ.1.07/1.5.00/34.0333 Vzdělávání v informačních a komunikačních technologií VY_32_INOVACE_31_04 Škola Název projektu, reg. č. Vzdělávací oblast Vzdělávací obor Tematický okruh Téma Tematická oblast Název Autor Vytvořeno, pro obor, ročník Anotace Přínos/cílové kompetence Střední

Více

OBSAH První 1.1. Obecná opatření 1.2. Bezpečnostní opatření při práci s bateriemi...

OBSAH První 1.1. Obecná opatření 1.2. Bezpečnostní opatření při práci s bateriemi... ZZA-200/300/400-A/S Manual OBSAH První 1.1. Obecná opatření 1.2. Bezpečnostní opatření při práci s bateriemi...... vlastnosti 3. Zásada 4. Specifikace 5. Rozměry a 6. Instalace a 7. Údržba a 8. Poznámky

Více

zařízení prof.ing. Petr Chlebiš, CSc. Fakulta elektrotechniky a informatiky

zařízení prof.ing. Petr Chlebiš, CSc. Fakulta elektrotechniky a informatiky Konstrukce elektronických zařízení prof.ing. Petr Chlebiš, CSc. Ostrava - město tradiční průmyslové produkce - třetí největší český výrobce v oboru dopravních zařízení - tradice v oblasti vývoje a výroby

Více

Nabíječ KE R5-2 x 14V 20A. Zařízení je schváleno pro ČD ZL 9/98 -SZ

Nabíječ KE R5-2 x 14V 20A. Zařízení je schváleno pro ČD ZL 9/98 -SZ KUMER PRAG, spol. s r.o. Komplexní řešení v oblasti nouzového napájení, měřící a regulační techniky Bezdrevská 157/4 190 00 Praha 9 ( Kyje ) Tel.: 284 688 615, 284 688 458, Fax.: 284 690 529 e mail.: kumer@kumer.cz

Více

Čistý sinusový měnič řady NP 300W / 400W / 600W / 700W / 1000W / 1200W / 1500W / 1700W / 2000W / 2200W / 2500 / 2700W / 3000W / 3500W / 4000W

Čistý sinusový měnič řady NP 300W / 400W / 600W / 700W / 1000W / 1200W / 1500W / 1700W / 2000W / 2200W / 2500 / 2700W / 3000W / 3500W / 4000W Návod k obsluze Čistý sinusový měnič řady NP 300W / 400W / 600W / 700W / 1000W / 1200W / 1500W / 1700W / 2000W / 2200W / 2500 / 2700W / 3000W / 3500W / 4000W Uživatelský manuál Tento obrázek je pouze orientační

Více

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115

Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Gymnázium a Střední odborná škola, Rokycany, Mládežníků 1115 Číslo projektu: Číslo šablony: 15 Název materiálu: Ročník: Identifikace materiálu: Jméno autora: Předmět: Tématický celek: Anotace: CZ.1.07/1.5.00/34.0410

Více

Doc. Ing. Stanislav Kocman, Ph.D , Ostrava

Doc. Ing. Stanislav Kocman, Ph.D , Ostrava 6. ELEKTRICKÉ PŘÍSTROJE Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Funkce přístrojů a jejich stavba Elektrický oblouk a jeho zhášení Spínací přístroje Jístící

Více

Zkontrolujte, zda zatížení UPS UPS je přetížena z elektrorozvodné sítě je v pořádku

Zkontrolujte, zda zatížení UPS UPS je přetížena z elektrorozvodné sítě je v pořádku Důležité bezpečnostní instrukce Čtěte před instalací produktu Bezpečnost osob UPS má svůj vlastní vnitřní napájecí zdroj (baterii). V důsledku toho mohou být její výkonové výstupy pod napětím, i když je

Více

Cvičení č.7. Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC Rozdělení zařízení vzhledem k citlivosti na rušení

Cvičení č.7. Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC Rozdělení zařízení vzhledem k citlivosti na rušení Cvičení č.7 Zásady projektování výkonových zařízení, systémů a instalací z hlediska EMC 7.1. Rozdělení zařízení vzhledem k citlivosti na rušení Zařízení velmi citlivá: o čidla elektrických a neelektrických

Více

NAPÁJECÍ ZDROJE PC Základní princip činnosti PS_ON signál. Power_Good signál.

NAPÁJECÍ ZDROJE PC Základní princip činnosti PS_ON signál. Power_Good signál. NAPÁJECÍ ZDROJE PC Obecně zdroj PC převádí střídavé síťové napětí (u nás 230 V/50 Hz) na stejnosměrná napětí potřebná pro napájení všech částí počítače. Postupně bylo vypracováno několik standardů určujících

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_13_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ

KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KAPITOLA 1 - ZÁKLADNÍ POJMY INFORMAČNÍCH A KOMUNIKAČNÍCH TECHNOLOGIÍ KLÍČOVÉ POJMY technické vybavení počítače uchování dat vstupní a výstupní zařízení, paměti, data v počítači počítačové sítě sociální

Více

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný

Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů. Zdeněk Oborný Mikropočítačová vstupně/výstupní jednotka pro řízení tepelných modelů Zdeněk Oborný Freescale 2013 1. Obecné vlastnosti Cílem bylo vytvořit zařízení, které by sloužilo jako modernizovaná náhrada stávající

Více

Sinus-Inverter SW150 12V 0043.0000 Sinus-Inverter SW150 24V 0043.0001. KUMER PRAG, spol. s r.o.

Sinus-Inverter SW150 12V 0043.0000 Sinus-Inverter SW150 24V 0043.0001. KUMER PRAG, spol. s r.o. Výkonný sinusový střídač DC/AC Mikroprocesorové řízení Přetížitelnost a zkratuvzdornost Přesná výstupní frekvence 50 Hz Nízká vlastní spotřeba Výstraha při hlubokém vybití + přetížení S možností připojení

Více

ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY

ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY ZAŘÍZENÍ PRO MĚŘENÍ DÉLKY typ DEL 2115C 1. Obecný popis Měřicí zařízení DEL2115C je elektronické zařízení, které umožňuje měřit délku kontinuálně vyráběného nebo odměřovaného materiálu a provádět jeho

Více

Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej.

Sundaram KS. Vysoce účinný sinusový měnič a nabíječ. Uživatelská konfigurace provozu. Snadná montáž. Detailní displej. Sundaram KS Vysoce účinný sinusový měnič a nabíječ Sundaram KS 1K/2K/3K Sundaram KS 4K/5K > Střídač s čistým sinusovým průběhem > Výběr rozsahu vstupního napětí pro domácí spotřebiče a osobní počítače

Více

Základní deska (motherboard, mainboard)

Základní deska (motherboard, mainboard) Základní deska (motherboard, mainboard) Jedná se o desku velkou cca 30 x 25 cm s plošnými spoji s množstvím konektorů a slotů připravených pro vložení konkrétních komponent (operační paměť, procesor, grafická

Více

Přídavné karty. Zvuková karta. Síťová karta

Přídavné karty. Zvuková karta. Síťová karta Přídavné karty - jsou samostatná hardwarová zařízení umožňující rozšířit možnosti počítače o nové funkce, které základní hardwarová sestava neumožňuje. - díky přídavným kartám se z počítače stává skutečně

Více

200W ATX PC POWER SUPPLY

200W ATX PC POWER SUPPLY 200W ATX PC POWER SUPPLY Obecné informace Zde vám přináším schéma PC zdroje firmy DTK. Tento zdroj je v ATX provedení o výkonu 200W. Schéma jsem nakreslil, když jsem zdroj opravoval. Když už jsem měl při

Více

Obsah. Tlakové spínače. Série Materiál Připojení Tlak Teplota Funkce Strana. 18 S Allfluid nerezová ocel G 1/4 kolík 0-800 bar +85 C 228

Obsah. Tlakové spínače. Série Materiál Připojení Tlak Teplota Funkce Strana. 18 S Allfluid nerezová ocel G 1/4 kolík 0-800 bar +85 C 228 Obsah Tlakové spínače Série Materiál Připojení Tlak Teplota Funkce Strana 18 S Allfluid nerezová ocel kolík 0-800 bar +85 C 228 33 D Hliník, nerezová ocel, Polyesterová fólie Příruba -1-630 bar +80 C 230

Více

www.volny.cz/elsovyroba

www.volny.cz/elsovyroba 3/2006 www.volny.cz/elsovyroba e l s o @ c e n t r u m. c z aše firma se zabývá výrobou elektroniky, převážně zálohovaných napájecích zdrojů s výstupním napětím 12V nebo 24V pro zabezpečovací, protipožární,

Více

Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava

Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava 13A. ZÁLOZ LOŽNÍ ZDROJE Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova přednp ednášky Úvod Rozdělení záložních zdrojů Statické zdroje nepřerušovaného napájení (UPS) Požadavky

Více

SCA 30. Sada solárního ohřevu, návod pro instalaci IHB 1225-1 431211

SCA 30. Sada solárního ohřevu, návod pro instalaci IHB 1225-1 431211 SCA 0 K E Sada solárního ohřevu, návod pro instalaci IHB - Návod pro instalaci - SCA 0 Obsah dodávky Popis Toto příslušenství se používá pro připojení solárního ohřevu k jednotce VVM 00. Solární ohřev

Více

Bezpečnostní instrukce. Popis

Bezpečnostní instrukce. Popis Nepřerušitelný zdroj napětí ROLINE PersonalSecure500VA/ 650VA/ 800VA Katalogové číslo: 19.40.3505 (500) Katalogové číslo: 19.40.3508 (800) Bezpečnostní instrukce. Nevhazujte baterie do ohně mohou explodovat..

Více

8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH Úvod. Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem)

8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH Úvod. Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem) 8. MOŽNOSTI PRO OMEZOVÁNÍ HARMONICKÝCH 8.1. Úvod Míra vlivu zařízení na napájecí síť Je dána zkratovým poměrem (zkratovým číslem) zkratový výkon v PCC výkon nelin. zátěže (všech zátěží) R = S sce sc /

Více

KLEŠŤOVÝ MĚŘÍCÍ PŘÍSTROJ PRO MĚŘENÍ AC AX-202

KLEŠŤOVÝ MĚŘÍCÍ PŘÍSTROJ PRO MĚŘENÍ AC AX-202 KLEŠŤOVÝ MĚŘÍCÍ PŘÍSTROJ PRO MĚŘENÍ AC AX-202 NÁVOD K OBSLUZE Bezpečnost Mezinárodní bezpečnostní symboly Tento symbol ve vztahu k jinému symbolu nebo zdířce označuje, že uživatel musí pro další informace

Více

Integrovaná střední škola, Sokolnice 496

Integrovaná střední škola, Sokolnice 496 Integrovaná střední škola, Sokolnice 496 Název projektu: Moderní škola Registrační číslo: CZ.1.07/1.5.00/34.0467 Název klíčové aktivity: V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných

Více

GFK-2005-CZ Prosinec Rozměry pouzdra (šířka x výška x hloubka) Připojení. Provozní teplota -25 C až +55 C. Skladovací teplota -25 C až +85 C

GFK-2005-CZ Prosinec Rozměry pouzdra (šířka x výška x hloubka) Připojení. Provozní teplota -25 C až +55 C. Skladovací teplota -25 C až +85 C Výstup 24 Vss, negativní logika, 0,5 A, 2 body Modul slouží pro výstup digitálních signálů 24 Vss. Specifikace modulu Rozměry pouzdra (šířka x výška x hloubka) Připojení 12,2 mm x 120 mm x 71,5 mm dvou-,

Více

R129A - Multimetr MS8269 MASTECH

R129A - Multimetr MS8269 MASTECH Vážení zákazníci, R129A - Multimetr MS8269 MASTECH děkujeme Vám za Vaši důvěru a za nákup tohoto produktu. Tento návod k obsluze je součástí výrobku. Obsahuje důležité pokyny k uvedení výrobku do provozu

Více

Hardware. Roman Bartoš

Hardware. Roman Bartoš Hardware Roman Bartoš Copyright istudium, 2005, http://www.istudium.cz Žádná část této publikace nesmí být publikována a šířena žádným způsobem a v žádné podobě bez výslovného svolení vydavatele. Produkce,

Více

PSBS 3512C v.1.0 PSBS 13,8V/3A/17Ah Záložní impulzní napájecí zdroj. Charakteristika záložního zdroje:

PSBS 3512C v.1.0 PSBS 13,8V/3A/17Ah Záložní impulzní napájecí zdroj. Charakteristika záložního zdroje: Napáječ série PSBS Záložní impulzní napájecí zdroj 13,8V/DC, bez automatické kontroly práce Pulsar KÓD: NAZEV: PSBS 3512C v.1.0 PSBS 13,8V/3A/17Ah Záložní impulzní napájecí zdroj CZ Charakteristika záložního

Více

Systém solárního osvětlení Uživatelský manuál

Systém solárního osvětlení Uživatelský manuál Systém solárního osvětlení Uživatelský manuál Poznámka: Před použitím tohoto výrobku si prosím pozorně přečtěte návod k obsluze. 1.Úvod Tento systém solárního osvětlení využívá mikroprocesor a speciální

Více

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE

INFORMAČNÍ A KOMUNIKAČNÍ TECHNOLOGIE Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Ing. Hana Šmídová Název materiálu: VY_32_INOVACE_12_HARDWARE_S1 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

6. ELEKTRICKÉ PŘÍSTROJE Doc. Ing. Stanislav Kocman, Ph.D , Ostrava Stýskala, 2002

6. ELEKTRICKÉ PŘÍSTROJE Doc. Ing. Stanislav Kocman, Ph.D , Ostrava Stýskala, 2002 6. ELEKTRICKÉ PŘÍSTROJE Doc. Ing. Stanislav Kocman, Ph.D. 2. 2. 2009, Ostrava Stýskala, 2002 Osnova předn p ednáš ášky Funkce přístrojů a jejich stavba Elektrický oblouk a jeho zhášení Spínací přístroje

Více

Základnová stanice SyM² ZMK400 Technická data

Základnová stanice SyM² ZMK400 Technická data 1 Elektroměry podle IEC / MID Průmyslové a komerční Základnová stanice SyM² ZMK400 Technická data ZMK400CE základnový modul představuje novou řadu synchronních elektroměrů doplněných o modulární koncepci

Více

Kategorie Ž1. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení!

Kategorie Ž1. Test. U všech výpočtů uvádějte použité vztahy včetně dosazení! Krajské kolo soutěže dětí a mládeže v radioelektronice, Vyškov 2009 Test Kategorie Ž1 START. ČÍSLO BODŮ/OPRAVIL U všech výpočtů uvádějte použité vztahy včetně dosazení! 1 Proč se pro dálkový přenos elektrické

Více

genio dual maxi 1:1 3,3 10 kva; jednofázový UPS zdroj (USDD)

genio dual maxi 1:1 3,3 10 kva; jednofázový UPS zdroj (USDD) genio dual maxi : 3,3 0 kva; jednofázový UPS zdroj (USDD) 3: 6 0 kva; 3f/f UPS zdroj (USDD*TM) záruka 2 roky USDD hlavní přednosti Snadná instalace Volba provozu Vysoce kvalitní výstupní napětí Vysoká

Více

Interakce ve výuce základů elektrotechniky

Interakce ve výuce základů elektrotechniky Střední odborné učiliště, Domažlice, Prokopa Velikého 640, Místo poskytovaného vzdělávaní Stod, Plzeňská 245 CZ.1.07/1.5.00/34.0639 Interakce ve výuce základů elektrotechniky TRANSFORMÁTORY Číslo projektu

Více

AD1M14VE2. Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz. Speciální aplikace výkonové elektroniky + řízení pohonů

AD1M14VE2. Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz. Speciální aplikace výkonové elektroniky + řízení pohonů AD1M14VE2 Přednášející: Ing. Jan Bauer Ph.D. bauerja2(at)fel.cvut.cz Obsah: Speciální aplikace výkonové elektroniky + řízení pohonů Harmonogram: 7+ soustředění Literatura: Skripta Výkonová elektronika

Více

G3PB. Struktura číselného značení modelů. Informace pro objednávání. Relé SSR (jednofázová) Legenda číselného označení modelu.

G3PB. Struktura číselného značení modelů. Informace pro objednávání. Relé SSR (jednofázová) Legenda číselného označení modelu. Relé SSR (jednofázová) G3PB Kompaktní polovodičové úzkého profilu s chladičem pro řízení topných těles pro jmenovité napětí 48 V AC Kompaktní konstrukce díky optimálnímu tvaru chladiče. Možná montáž na

Více

KRAJSKÝ ÚŘAD ZLÍN VÝMĚNA UPS KÚ1 a KÚ2 SILNOPROUDÁ ELEKTROTECHNIKA TECHNICKÁ ZPRÁVA

KRAJSKÝ ÚŘAD ZLÍN VÝMĚNA UPS KÚ1 a KÚ2 SILNOPROUDÁ ELEKTROTECHNIKA TECHNICKÁ ZPRÁVA KRAJSKÝ ÚŘAD ZLÍN VÝMĚNA UPS KÚ1 a KÚ2 SILNOPROUDÁ ELEKTROTECHNIKA TECHNICKÁ ZPRÁVA OBSAH 1. Všeobecná část... 2 1.1. Základní údaje... 2 1.2. Rozsah... 2 1.3. Použité podklady... 2 1.4. Předpisy a normy...

Více

Základní pojmy z oboru výkonová elektronika

Základní pojmy z oboru výkonová elektronika Základní pojmy z oboru výkonová elektronika prezentace k přednášce 2013 Projekt ESF CZ.1.07/2.2.00/28.0050 Modernizace didaktických metod a inovace výuky technických předmětů. výkonová elektronika obor,

Více

Procesor. Hardware - komponenty počítačů Procesory

Procesor. Hardware - komponenty počítačů Procesory Procesor Jedna z nejdůležitějších součástek počítače = mozek počítače, bez něhož není počítač schopen vykonávat žádné operace. Procesor v počítači plní funkci centrální jednotky (CPU - Central Processing

Více

Generátor impulsu GRIG2

Generátor impulsu GRIG2 Generátor impulsu GRIG2 GRIG2 je generátor definované délky proudového impulsu po stisku tlačítka. Generátor byl vyvinut na zakázku pro měření zdvihu jádra solenoidu u smontovaného vstřikovače Common Rail.

Více