VLASTNOSTI, VÝSKYT A STANOVENÍ PERFLUOROVANÝCH LÁTEK V PROSTŘEDÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "VLASTNOSTI, VÝSKYT A STANOVENÍ PERFLUOROVANÝCH LÁTEK V PROSTŘEDÍ"

Transkript

1 MASARYKOVA UNIVERZITA Přírodovědecká fakulta Centrum pro výzkum toxických látek v prostředí VLASTNOSTI, VÝSKYT A STANOVENÍ PERFLUOROVANÝCH LÁTEK V PROSTŘEDÍ Pavlína Karásková Bakalářská práce Vedoucí: Ing. Jitka Bečanová Brno, Česká republika, rok 2010

2 Prohlašuji, že jsem bakalářskou práci vypracovala samostatně pod vedením Ing. Jitky Bečanové a že jsem použila pouze uvedenou literaturu a experimentální výsledky dosažené v laboratořích Centra pro výzkum toxických látek v prostředí.. datum. Pavlína Karásková

3 Děkuji své školitelce Ing. Jitce Bečanové za odborné vedení mé bakalářské práce, její účast a cenné rady při experimentech. Dále děkuji Centru pro výzkum toxických látek v prostředí za poskytnutí laboratoří a materiálu.

4 ANOTACE Cílem této práce bylo zmonitorovat výskyt perfluorovaných látek v životním prostředí a míru kontaminace těmito látkami. PFCs se vyskytují ve všech matricích životního prostředí včetně bioty. Jednou z nich je vzduch, se kterým jsou lidé v přímém kontaktu. Člověk je ovšem vystaven působení nejen okolního prostředí, ale i pracovního prostředí, potažmo domácnosti. Naším cílem bylo popsat kontaminaci domácího prachu těmito látkami a jejich analytické stanovení. Během stanovení perfluorovaných látek dochází ke kontaminaci vzorku prostředím laboratoře a použitými technikami. Praktická část této práce byla zaměřená na zjištění pozaďové kontaminace běžně používaných extrakčních technik (ultrazvuk spojen s SPE). Pro tuto extrakční metodu proběhlo testování pozaďové koncentrace PFCs během jednotlivých kroků úpravy vzorku. ANNOTATION The aim of this work is the monitoring of perfluorinated compounds (PFCs) in the environment and the level of contamination by these substances. PFCs are present in all matrices, including biota. Air is one on these matrices directly surrounding people. Not only the natural environment but also indoor environment, including household, affects human body. Contamination of the house dust by these substances and their analytical determination was the aim of this study. The background contamination of analysed sample during extraction and determination is a problem. This study was designed to detect background contamination commonly used extraction techniques (ultrasound combined with SPE). For this extraction method was carried out testing of background concentrations of PFCs during sample preparation steps.

5 OBSAH I. ÚVOD A CÍLE PRÁCE... 7 II. TEORETICKÁ ČÁST STRUKTURA PERFLUOROVANÝCH SLOUČENIN (PFCs) NOMENKLATURA PFCs FYZKÁLNÍ A CHEMICKÉ VLASTNOSTI Fyzikální a chemické vlastnosti fluoru Fyzikální a chemické vlastnosti PFCs SYNTÉZA PFCs Elektrochemická fluorace (ECF) Telomerace (TM) PRŮMYSLOVÉ VYUŽITÍ PFCs Povrchová úprava tkanin Obalové materiály Vodní hasicí pěny (AFFF) Pokovování Fotolitografie a polovodiče Fotografický průmysl Další použití VÝSKYT V ŽIVOTNÍM PROSTŘEDÍ DEGRADACE V PROSTŘEDÍ TOXIKOLOGICKÉ VLASTNOSTI Toxikologické studie Studie toxicity na zvířatech Obecná populační studie vývojová toxicita u novorozenců Toxikologická studie zaměstnanců METODY EXTRAKCE, SEPARACE A DETEKCE Extrakční techniky Vysoce účinná kapalinová chromatografie (HPLC) Hmotnostní spektrometrie (MS) Princip MS Ionizace Ionizace elektrosprejem (ESI)... 21

6 9.3.4 Hmotnostní analyzátory Kvadrupólový analyzátor (Q) Hybridní analyzátor QTRAP Hmotnostní spektrum Multiple reaction monitoring (MRM) Spojení HPLC-MS/MS pro stanovení PFCs v prachu a vzduchu III. EXPERIMENTÁLNÍ ČÁST PŘÍSTROJE A POMŮCKY CHEMIKÁLIE PŘÍPRAVA VZORKŮ A EXTRAKCE Měření pozaďových kontaminací stříkačkových filtrů Úprava designu solid-liquid extrakce Opakovatelnost extrakční techniky Podmínky analytického stanovení VÝSLEDKY IV. ZÁVĚR V. SEZNAM POUŽITÝCH ZKRATEK VI. SEZNAM PŘÍLOH VII. LITERATURA... 40

7 I. ÚVOD A CÍLE PRÁCE Perfluorované látky (PFCs) patří z environmentálního hlediska mezi persistentní organické polutanty (POPs) a jako takové jsou monitorovány světovými organizacemi (UNECE - United Nations Economic Commission for Europe; OECD - Organisation for Economic Co-operation and Development; UNEP - United Nations Environment Programme program OSN). Jejich výroba a použití jsou limitovány několika mezinárodními úmluvami (Stockholm Convention on persistent organic pollutant; CLRTAP - Convention on Long-Range Transboundary Air Pollution). Pro Evropskou unii a tím i Českou Republiku je zavazující směrnice Evropského parlamentu a rady 2006/122/ES ze dne 12. prosince PFCs jsou poměrně nové sloučeniny. Ačkoliv jsou průmyslově vyráběny teprve od 50. let 20. století, díky jejich hojnému používání dochází k výrazné kontaminaci životního prostředí. Díky atomům fluoru v molekule se jedná o látky velmi stabilní. Jsou odolné vůči chemickému, fotochemickému, termickému a biochemickému rozkladu. Mají potenciál k dálkovému transportu, jsou proto přítomny i v oblastech, kde nebyly nikdy vyráběny ani používány. Tento aspekt umocňuje i schopnost bioakumulace v živočišných tkáních. Z tohoto důvodu mohou být koncentrace PFCs v organismech na vrcholech potravních pyramid i několikanásobně vyšší než u organismů na nižších potravních stupních. Cílem této práce bylo zmonitorovat výskyt PFCs v životním prostředí a míru kontaminace těmito látkami. Najít matrici, ve které se perfluorované látky vyskytují a která je v přímém kontaktu s člověkem, nebo s prostředím, v němž se nachází. Jednou z matric, kterou je člověk neustále obklopen je vzduch. Proto bylo našim cílem monitorovat kontaminace vzduchu a částic ve vzduchu PFCs. Protože je člověk ovšem vystaven působení nejen okolního prostředí, ale i pracovního prostředí, potažmo domácnosti, bylo naším cílem popsat kontaminaci domácího prachu těmito látkami. S problémem stanovení perfluorovaných látek je spojen i problém pozaďových kontaminací. PFCs se vyskytují téměř ve všech matricích, proto je těžké se jim vyhnout i při vlastním analytickém stanovení. Pokud tedy chceme měřit koncentrace PFCs v reálných matricích, je potřeba nejdříve zjistit úroveň kontaminace laboratoře, přístrojového vybavení a všech stupňů přípravy vzorku. Jednou z možných cest kontaminace stanovovaných látek může být extrakční technika. Tato práce byla zaměřená na zjištění pozaďové kontaminace běžně používaných extrakčních technik (ultrazvuk spojen s SPE). Pro tuto extrakční metodu proběhlo testování pozaďové koncentrace PFCs během jednotlivých kroků úpravy vzorku. 7

8 II. TEORETICKÁ ČÁST 1. STRUKTURA PERFLUOROVANÝCH SLOUČENIN (PFCs) Polyfluorované látky jsou sloučeniny obsahující hydrofobní alkylový řetězec s proměnlivým počtem uhlíku (obvykle C4 až C16) a hydrofilní část, která může být zcela nebo částečně fluorovaná. Je-li hydrofilní část zcela fluorována jsou pak molekuly nazývány jako perfluorované (PFCs) [1]. U látek, které mají jen částečně fluorovanou hydrofilní část molekuly určuje její vlastnosti pozice a počet fluorů [2]. Molekuly, které obsahují mezi hydrofilní částí a zbylým plně fluorovaným uhlíkatým řetězcem nefluorovanou skupinu CH 2 -CH 2 - se nazývají telomery. Ty jsou považovány za prekurzory polyfluorovaných alkylsloučenin PFASs vyskytujících se v prostředí [1]. Hydrofobní část molekuly může být substituována různými funkčními skupinami, podle jejichž povahy se mohou vyskytovat v iontové i neiontové formě. Iontové surfaktanty mohou být ve vodných roztocích disociovány na ionty (kladné i záporné). Existují i sloučeniny, které ve své molekule obsahují jak kladně tak záporně nabité skupiny. Na základě přítomnosti nabitých skupin se PFCs dělí do čtyř skupin [2]: aniontové PFCs hydrofobní část je aniont (př. R f COO - Na + ) kationtové PFCs hydrofobní část je kationt (př. C 7 F 15 CONH(CH 2 ) 3 N + (CH 3 ) 3 I - ) amfoterní PFCs v izoelektrickém bodě mají jednu kationtovou a jednu aniontovou skupinu neiontové PFCs nedisociují na ionty (C 7 F 15 CH 2 CH 2 O(CH 2 CH 2 O) n H) PFCs zahrnují několik základních skupin sloučenin. Jsou to perfluoroalkylkarboxylové kyseliny (PFCAs), perfluoroalkylsulfonáty (PFASs), telomerní alkoholy (FTOHs), nasycené a nenasycené telomerní kyseliny (FTAs a FTUAs), jejichž struktura je vyobrazena na obr.1 [3]. Obr. 1: Struktura základních skupin PFCs [3] 8

9 2. NOMENKLATURA PFCs Aby bylo možné se o dané struktuře vyjadřovat přesně, je potřeba ujasnit názvosloví. Jelikož jsou perfluorované sloučeniny nové polutanty, není ještě zcela vyvinuto české názvosloví. Z angličtiny pochází zkratka PFC perfluorinated compound, PFAC perfluoroalkyl compound nebo PFAS poly- nebo perfluorinated alkyl substance. V češtině je obecně používána zkratka PFOS perfluorované organické sloučeniny. Zkratka PFOS však v angličtině určuje již danou sloučeninu a to perfluorooktansulfonan. V této práci bude užito pro obecný název perfluorované sloučeniny zkratka PFCs a jednotlivé názvy sloučenin budou určeny zkratkami z angličtiny. Tabulky 1, 2 a 3 obsahují seznam sloučenin, které jsou studovány v této práci, jejich anglické zkratky, sumární vzorce a molekulové hmotnosti. Jedná se o 12 perfluoroalkylkarbo-xylových kyselin (PFCAs), z nichž jedna je izotopicky značená, 6 perfluoroalkylsulfonanů (PFASs) taktéž s jedním izotopicky značeným a 5 fluorotelomerních alkoholů (FTOHs) s jedním značeným. Tabulka 1:Perfluoroalkylkarboxylové kyseliny (PFCAs) [3] název zkratka vzorec M r perfluorobutanová kyselina PFBA C 4 HF 7 O 2 214,0396 perfluoropentanová kyselina PFPeA C 5 HF 9 O 2 264,0474 perfluorohexanová kyselina PFHxA C 6 HF 11 O 2 314,0552 perfluoroheptanová kyselina PFHpA C 7 HF 13 O 2 364,0603 perfluorooktanová kyselina PFOA C 8 HF 15 O 2 414,0708 značená perfluorooktanová kyselina PFOA [M+4] 13 C 12 4 C 4 HF 15 O 2 418,0402 perfluorononanová kyselina PFNA C 9 HF 17 O 2 464,0786 perfluorodekanová kyselina PFDA C 10 HF 19 O 2 514,0864 perfluoroundekanová kyselina PFUnDA C 11 HF 21 O 2 564,0942 perfluorododekanová kyselina PFDoDA C 12 HF 23 O 2 614,1020 perfluorotridekanová kyselina PFTrDA C 13 HF 25 O 2 664,1098 perfluorotetradekanová kyselina PFTeDA C 14 HF 27 O 2 714,1176 9

10 Tabulka 2:Perfluoroalkylsulfonany (PFASs) [3] název zkratka vzorec M r perfluorobutansulfonan draselný KPFBS C 4 F 9 SO 3 K 338,1901 perfluorohexansulfonan sodný NaPFHxS C 6 F 13 SO 3 Na 422,0972 perfluoroheptansulfonan sodný NaPFHpS C 7 F 15 SO 3 Na 472,1050 perfluorooktansulfonan draselný KPFOS C 8 F 17 SO 3 K 538,2214 značený perfluorooktansulfonan sodný NaPFOS [M+4] 13 C 12 4 C 4 F 17 SO 3 Na 526,0823 perfluorodekansulfonan sodný NaPFDS C 10 F 21 SO 3 Na 622,1285 Tabulka 3: Fluorotelomerní alkoholy (FTOHs) [3] název zkratka vzorec M r perfluorobutylethanol (4:2* FTOH) FBET C 6 H 5 F 9 O 264,0907 perfluorohexylethanol (6:2 FTOH) FHET C 8 H 5 F 13 O 364,1063 perfluorooktylethanol (8:2 FTOH) FOET C 10 H 5 F 17 O 464,1220 perfluorodecylethanol (10:2 FTOH) FDET C 12 H 5 F 21 O 564,1376 značený perfluorodecylethanol FDET [M+4] 13 C 12 2 C 2 10 H 2 H 3 F 21 O 568,1344 * u fluorotelomerních alkoholů jsou uváděny poměry 4:2, 6:2, 8:2 a 10:2, přičemž první číslo udává počet plně fluorovaných atomů uhlíku a druhé číslo je počet nefluorovaných uhlíků sousedících s hydroxylovou skupinou [4]. 3. FYZKÁLNÍ A CHEMICKÉ VLASTNOSTI Pro pochopení vlastností perfluorovaných látek je potřeba se nejprve podívat na vlastnosti samotného fluoru. Fluor má totiž některé specifické vlastnosti, kterými se odlišuje od ostatních halogenů nebo dokonce všech prvků periodické soustavy, a tím dává charakteristické vlastnosti fluorovaným látkám [2]. 3.1 Fyzikální a chemické vlastnosti fluoru V přírodě se fluor vyskytuje pouze ve sloučeninách (např. v zemské kůře je 544 ppm fluoru) a jeho hlavními přírodními zdroji fluoru jsou minerály kazivec (fluorit) CaF 2, kryolit Na 3 [AlF 6 ] a fluorapatit Ca 5 (PO 4 ) 3 [5]. Tabulka 4 uvádí některé důležité vlastnosti fluoru, které se mohou podílet na specifických vlastnostech PFCs. 10

11 Tabulka 4: Vybrané atomové a fyzikální vlastnosti fluoru [6] Atomová vlastnost číselná hodnota Fyzikální vlastnost číselná hodnota atomové číslo 9 teplota tání [ C] -218,6 počet stabilních izotopů 1 teplota varu [ C] -188,1 atomová hmotnost 18, hustota [g.cm -3 ] 1,513 ionizační energie [kj.mol -1 ] 1680,6 ΔH tání [kj.mol] 0,51 elektronová afinita [kj.mol -1 ] 332,6 ΔH výp. [kj.mol] 6,54 iontový poloměr F - [pm] 133 oxidační potenciál [V] 2,65 van der Waalsův poloměr [pm] 135 elektronegativita 4,0 vzdálenost F-F v F 2 [pm] 143 Pro strukturu perfluorovaných látek jsou nejvýznamnější vysoké hodnoty ionizační energie, redox potenciálu, elektronové afinity, elektronegativity fluoru a jeho obtížná polarizovatelnost [2]. 3.2 Fyzikální a chemické vlastnosti PFCs Fluor je v iontové formě jeden z nejreaktivnějších prvků. Vázaný je však velmi stabilní. Z tohoto důvodu jsou plně fluorované uhlovodíky na vzduchu stálé (dokonce při teplotách převyšujících 150 C), nehořlavé, odolné vůči působení silných kyselin, zásad, oxidačních činidel a fotolýze [2]. Díky vysoké ionizační energii a nízké polarizovatelnosti fluoru jsou inter- a intramolekulární interakce velmi slabé. To má za následek nízké teploty varu PFCs oproti uhlíkatým homologům (T V C 8 F 18 = 97 C; T V C 8 H 18 = 125 C) a vyšší teploty tání [7]. PFCs jsou obecně látky těkavé. Tlak vodní páry klesá se rostoucí délkou uhlíkatého řetězce a molekulovou hmotností [8]. PFCs jsou oleofobní i hydrofobní povahy. Tato vlastnost se hojně využívá u ochranných nátěrů, povrchové úpravě tkanin, koberců či obalových materiálů na potraviny [7]. 11

12 4. SYNTÉZA PFCs 4.1 Elektrochemická fluorace (ECF) První z možností výroby PFCs, elektrochemická fluorace (ECF), byla detailně popsána Josephem H.Simonsem, který tuto metodu v roce 1937 vynalezl a patentoval [9]. ECF je založena na reakci mezi organickou surovinou např. 1-oktansulfonylfluoridem (C 8 H 17 SO 2 F) a bezvodým fluorovodíkem (HF) při napětí 5-7 V. Elektrický proud způsobí, že vodíkové atomy z uhlíkové kostry jsou nahrazeny atomy fluoru [2] jak je znázorněno na obr.2. Obr.2: Přiklad procesu elektrochemické fluorace [10] Výsledným produktem je látka se strukturou obdobnou výše uvedenému perfluoroktansulfonyl fluoridu (POSF). Během procesu ECF může docházet k fragmentaci a přeskupení uhlíkového skeletu. To vede ke vzniku různě dlouhých plně fluorovaných uhlíkových řetězců a směsi lineárních, rozvětvených a cyklických izomerů. Typicky 70-85% ze směsi tvoří lineární a 15-30% rozvětvené izomery [2]. 4.2 Telomerace (TM) Druhá možnost výroby PFCs,telomerace, byla původně vyvinuta Haszeldinem v roce Poté byla tato metoda přizpůsobena společností Du Pont Company pro radikálovou polymeraci ethylenu [10]. Komerčně se využívá reakce tetrafluoroethylenu s pentafluoroethyljodidem [2]. Produktem reakce je směs látek lišících se v délce uhlíkatého řetězce. Na rozdíl od ECF, u TM vznikají pouze lineární produkty, které však nejsou plně fluorovány, ale mají perfluorovaný lineární alkylový řetězec [2]. 12

13 5. PRŮMYSLOVÉ VYUŽITÍ PFCs Největším výrobce perfluorovaných látek byla a je společnost 3M Company (Minnesota Mining and Manufacturing Company). 3M produkuje jak finální komerční výrobky, tak i produkty, které jsou prodány jiným společnostem pro další zpracovávání Povrchová úprava tkanin Sloučeniny příbuzné perfluorooktansulfonátu (PFOS) jsou využívány jako ochranné vrstvy tkanin (koberce, textil, kůže) proti nečistotám jako je mastnota, voda a špína [11]. Díky aplikaci perfluorované látky na povrch perfluorovaným řetězcem orientovaným směrem od povrchu (obr.3) dojde ke snížení povrchového napětí a tím i ochraně povrchů před nečistotami [10]. Obr. 3: Povrchová úprava tkanin [10] 5.2 Obalové materiály U obalových materiálů dochází s využitím stejného mechanismus ochrany jako u ochrany tkanin ke zvýšení jejich odolnosti vůči smáčení tekutinami. Proto jsou tyto matriály hojně využívány při obalování potravin (sáčky, krabičky, papírové talíře apod.) a jako průmyslové obaly [12]. 13

14 5.3 Vodní hasicí pěny (AFFF) Hasící pěny obsahující fluor byly vyvinuty pro hašení hořlavých tekutin. Samotná voda má při hasebním zásahu tendenci klesnout pod hořící látku a není tak příliš účinná [12]. Hlavními složkami těchto pěn jsou kromě vody (69-71%), butyl carbitol (20%), amfoterní deriváty fluoroalkylamidu (1-5%), alkylsulfáty (1-5%), perfluoroalkylsulfonáty (0,5-1,5%), triethanolamin (0,5-1,5%) a tolyltriazol (0,05%) [13]. 5.4 Pokovování Látky příbuzné PFOS se používají ke snížení povrchového napětí pokovovacích roztoků. Přídavek perfluorované látky zabraňuje úniku aerosolu, který může obsahovat potenciálně škodlivé látky, z vany, kde pokovování probíhá [11]. Perfluorované látky našly uplatnění zejména při chromování, anodickém a kyselém moření [14]. 5.5 Fotolitografie a polovodiče Fotolitografie je nejdůležitějším krokem při výrobě polovodičů. Díky tomuto procesu dochází k minimalizaci polovodičových součástek, které jsou tak levnější, rychlejší a tím podporují rozvoj elektrotechniky [14]. 5.6 Fotografický průmysl Ve fotografickém průmyslu jsou PFCs aplikovány jako ochranná vrstva fotografických filmů, papírů a tiskových desek [14]. Zde působí perfluorované látky jako antistatická činidla, redukují tření, čímž zdokonalují přenos ve foto-zařízeních (kamerách, tiskárnách, projektorech) [11]. 5.7 Další použití PFCs jsou dále součástí průmyslových a domácích čistících prostředků, nátěrových hmot a aditiv, hydraulických kapalin pro letecký průmysl, pesticidů, retardátorů hoření a adheziv. Jsou známy i aplikace v lékařství a hornictví [14]. 14

15 6. VÝSKYT V ŽIVOTNÍM PROSTŘEDÍ Malé množství látek obsahujících fluor se přirozeně vyskytují v biosféře jako produkty biologických a geochemických procesů. Některé druhy zelených rostlin produkují monofluorooctovou kyselinu (CH 2 FCOOH). Všechny fluorované látky produkovány biologicky však obsahují pouze jeden atom fluoru [15]. PFCs jsou látky antropogenního původu tzn. že se do prostředí dostávají pouze lidskou činností [16]. Zbytky perfluorokarboxylových kyselin mohou být emitovány do ovzduší pomocí přímých a nepřímých zdrojů. Mezi přímé zdroje patří především výroba a používání PFCAs, zatímco nepřímé zdroje jsou dány chemickými reakcemi v prostředí, které vedou ke vzniku těchto látek, nebo jejich degradaci (obr.4) [17]. APFO perfluorooktanoát amonný, APFN perfluorononanoát amonný, AFFF vodní hasící pěna (aqueous fire-fighting foam) Obr. 4: Nepřímé a přímé emisní zdroje PFCs [17] Perfluorované látky mají potenciál k dálkovému transportu, jsou tak nalézány i v místech, kde se nevyrábí ani nepoužívají [14] a to i v arktických oblastech [18-21]. Díky svým vlastnostem se dostávají do všech složek životního prostředí. Existují mnohé studie stanovení těchto látek ve vodě [18, 22-28], vzduchu [23, 26, 29-34], půdě [35] a hlavně v tělech různých živočišných druhů [19-21, 36-39] včetně člověka [40-42]. Příklady stanovení PFCs v jednotlivých složkách životního prostředí jsou uvedeny v příloze I-III. 15

16 7. DEGRADACE V PROSTŘEDÍ Perfluorované látky jsou z environmentálního hlediska řazeny mezi persistentní organické polutanty (POP). V roce 2009 byly na konferenci v Ženevě přidány na seznam látek Stockholmské úmluvy. Základními ekotoxikologickými POP charakteristikami jsou schopnost k dálkovému transportu, toxicita, persistence a bioakumulace viz. tabulka 5 [14]. Tabulka 5: POP charakteristiky pro PFOS [14] kritérium potenciál k dálkovému atmosférickému transportu toxicita persistence bioakumulace shoda s kritériem ANO/NE ANO ANO ANO ANO poznámka tlak páry = 3, Pa atmosférický poločas života > 2 dny odhadovaná hodnota vycházející z fotolytického poločasu života > 3,7 let subchronická expozice: úmrtnost u opic při dávce 4,5 mg/kg/den reproduktivní toxicita: úmrtnost u štěňat při dávce 1,6 mg/kg/den akutní toxicita u ryb: LC 50 * = 4,7 mg/l extrémně persistentní, nedegrabilní při chemických a biologických testech nalezeny vysoce zvýšené koncentrace u predátorů hypoteticky spočítaný BMF** = BCF*** u ryb = *LC 50 - Lethal Concentration - letální dávka - koncentrace látky ve vdechovaném vzduchu, která po stanovené době způsobí smrt daného procenta (50) určeného druhu zvířat **BMF - Biomagnification factor - bioobohacovací faktor - poměr koncentrace chemické látky v predátorovi a jeho kořisti nejčastěji vztaženo na obsah lipidů ***BCF - Bioconcentration factor- biokoncentrační faktor - poměr koncentrace chemické látky v biotě vůči koncentraci v zevním prostředí Transformace a degradace perfluorovaných látek v životním prostředí jsou řízeny různými fyzikálními, chemickými a biologickými mechanismy. Ty mohou být jak abiotické např. hydrolýza a fotolýza, tak biotické, zejména mikrobiálními transformace [20]. V životním prostředí jsou dnes PFCs a zejména PFOS a PFCAs všudypřítomné. Dříve nebyly zdroje znečištění zcela známé [20]. Dnes jsou za prekurzory považovány hlavně fluorotelomerní alkoholy [4, 20]. PFOS je sice málo těkavý, některé jeho prekurzory jsou však značně volatelní: N-ethyl perfluorooktansulfonamidoethanol (N-EtFOSE), N-methyl perflurooktansulfonamidoethanol 16

17 (N-MeFOSE), methyl perfluorooktansulfonamid (MeFOSA), ethyl perfluorooktansulfonamid (EtFOSA) a heptadekafluorooktansulfonamid (FOSA). Tyto látky se pak mohou vypařovat do atmosféry, kde dochází k jejich degradaci [16]. Rychlost reakce těchto prekurzorů v atmosféře závisí především na jejich fotochemické reaktivitě (reakce s hydroxylovými ionty). Konečným produktem degradace je při aerobních podmínkách PFOA a při anaerobních PFOS viz. obr. 5 [4, 20, 43]. Obr.5: Schéma mikrobiální degradace N-EtFOSE v odpadním kalu [43] 8. TOXIKOLOGICKÉ VLASTNOSTI S ohledem na chemické a fyzikální vlastnosti a průmyslové využití se jako potenciální látky s toxikologickými účinky jeví perfluorooktanová kyselina (PFOA) a perfluorooktansulfonan (PFOS). Toxicitu těchto látek významně ovlivňuje jejich osud v prostředí a transportní mechanismy [44], přesto přesný mechanismus toxického účinku není dosud zcela znám [10]. 8.1 Toxikologické studie Existuje několik toxikologických studií perfluorovaných látek, které jsou zaměřeny na různé druhy toxicity (akutní, subchronická, chronická, dermální). Jako pokusná zvířata při testech toxicity jsou používáni potkani [45-50], myši [46], králíci [48] a opice [51, 52]. Význam mají i toxikologické studie u lidí, a to jak u běžné populace tak u pracovníků, kteří přicházeli s PFCs do styku během výkonu povolání [53-55]. 17

18 První zpráva o přítomnosti organického fluoru u lidí byla podána Tavesem a jeho spolupracovníky v roce V roce 1976 se poprvé prokázalo, že fluor se v lidském těle vyskytuje ve formě perfluorooktanové kyseliny (PFOA) nebo perfluorosulfonanu (PFOS), toto bylo poté několikrát potvrzeno [42, 56-62] Studie toxicity na zvířatech Souhrnné studie toxicity dávají podrobné informace o letálních dávkách a nepříznivých účincích na různé organismy [16, 63]. Testy akutní toxicity byly prováděny na hlodavcích (potkani, myši, morčata), subchronická toxicita byla zkoumána u opic rodu Cynomolgus a míra podráždění kůže a očí byla studována zejména u králíků albínů, ale i u potkanů. Podle výsledků studií jsou PFOS a PFOA přednostně distribuovány do krevního séra, ledvin a zejména jater [64]. Hodnoceny byly taktéž perfluoroalkylkarboxylové kyseliny (PFCAs) a podíl jejich toxicity na celkové toxicitě PFCs. PFCAs s delšími řetězci jsou méně eliminovány močí, a tím jsou potenciálně toxičtější. Na rychlost jejich vylučování z organismu má vliv i hladina testosteronu. Vykastrováním samců a samic docházelo k vylučování PFCAs rychleji [49] Obecná populační studie vývojová toxicita u novorozenců Díky všudypřítomnému výskytu, persistenci a bioakumulačním vlastnostem jsou PFOS a PFOA nalézány v krvi běžné populace po celém světě. Existuje celá řada studií, které se zabývají zejména přechodem PFCs z matky na plodu [56-62]. Většina studií má obdobné výsledky. Prozatím nejsou zcela potvrzena spojení mezi koncentrací PFCs a účinkem na plod (porodní váha a délka, motorický a mentální vývoj apod.). Avšak Midash dokázal, že PFOS i PFOA jsou schopny průchodu přes placentu [61] Toxikologická studie zaměstnanců Jak bylo uvedeno v kapitole 4, PFCs jsou látky průmyslově vyráběné. Z tohoto důvodu jsou nejvíce exponovány osoby, které se přímo na výrobě těchto sloučenin podílí, nebo PFCs zpracovávají na konečné produkty. Dotazníkové studie u zaměstnanců zhodnotily výskyt různých zdravotních obtíží (rakovinová bujení, onemocnění jater, žaludeční vředy, žlučové kameny, zánět žlučníku a močového měchýře apod.) ve spojení s expozicí PFCs [53-55]. Klinické testy však neprokázaly výrazné změny v parametrech hematologických, jaterních, štítné žlázy a moči u exponovaných osob [53]. Žádná výše uvedená studie neprokázala, že by expozice PFCs ovlivnila vznik benigních či maligních nádorových onemocnění [53-55]. 18

19 9. METODY EXTRAKCE, SEPARACE A DETEKCE 9.1 Extrakční techniky Extrakčních technik při stanovení PFCs je velká řada, liší se zejména dle použité matrice a druhu stanovaných PFCs. Využití jednotlivých extrakčních technik v závislosti na matrici je přehledně znázorněno na obrázku 6. Obr. 6: Extrakční a čistící metody pro stanovení PFCs v environmentálních a lidských matricích [65] Pro extrakci PFCs z pevných matric (především prachu) se využívá zejména extrakce ultrazvukem s následnou filtrací [31, 34]. Jako extrakční činidlo je většinou použit methanol (acetonitril) v kombinaci s kyselinou mravenčí. Navážka prachu se převede do centrifugační nádobky, kam se přidá odpovídající množství extrakčních rozpouštědel a roztok se vloží do ultrazvuku [34]. Po uplynutí doby extrakce je vzorek buď centrifugován nebo filtrován přes prázdnou SPE kolonku opatřenou filtrem [31] nebo přímo měřen [34]. Nelze však vyloučit i jiné postupy např. tlakovou extrakci rozpouštědlem (PSE) [66] nebo extrakci podle Soxhleta [67]. 19

20 Další možností pro extrakci perfluorovaných látek z tuhých matric (především bioty) je použití tzv. ion-pair extrakce [38, 68-70], poprvé popsané Hansenem [71]. Tento postup je založen na iontové reakci řetězce perfluorované látky s tetrabutyl ammonium hydrogensulfátem v alkalickém prostředí (ph 10). Vzniklý objemný iontový pár je buď vytřepáním, nebo ultrazvukem převeden do nepolárního methyl-terc-butyl etheru. Po centrifugaci je odebrána alikvotní část organického rozpouštědla a postup opakován (2-3x). Tento typ extrakce byl využit i při extrakci PFCs ze sedimentů [72] a ukazuje se být univerzálním extrakčním postupem pro extrakci PFCs z pevných matric bez nutnosti čištění. Příprava vzorku, extrakce a prekoncentrace PFCs by měla obsahovat co nejmenší počet kroků. Stanovení perfluorovaných látek je totiž velmi náchylné na vnější kontaminaci ze vzduchu, laboratorního skla, přístrojů i z oděvu pracovníka. Aby se eliminoval vliv vnějšího znečištění na výsledné koncentrace PFCs, je zapotřebí znát pozaďové kontaminace (blank) každé z používaných metod. Tímto krokem určíme míru kontaminace během přípravy vzorků, jejich extrakci a během vlastního analytického stanovení. 9.2 Vysoce účinná kapalinová chromatografie (HPLC) HPLC se separační chromatografická metoda. K separaci látek dochází mezi dvěmi fázemi, v případě HPLC je stacionární fází sorbent vázaný na koloně a mobilní kapalina proudící kolonou. Při styku stacionární a mobilní fáze s analytem dochází k vzájemným interakcím, které jsou předpokladem pro separaci látek [73]. 9.3 Hmotnostní spektrometrie (MS) Hmotnostní spektrometrie je separační metoda, která převádí vzorek na ionizovanou plynnou fázi a vzniklé ionty jsou separovány dle hodnoty podílu jejich hmoty a náboje m/z. MS tak stanovuje relativní četnost iontů dle m/z. Jedná se o destrukční metodu Princip MS Základní procesy této techniky: odpaření vzorku ionizace separace iontů hmotnostním filtrem detekce iontů 20

21 9.3.2 Ionizace Ionizace je proces, při kterém se z elektricky neutrálního atomu, molekuly nebo radikálu stává iont dodáním dostatečného množství energie [74]. Existuje celá řada ionizačních technik, z nichž dnes mají největší praktický význam [75]: ESI (ionizace elektrosprejem), APCI (chemická ionizace za atmosférického tlaku, APPI (fotoionizace za atmosférického tlaku) pro spojení HPLC-MS ESI, MALDI (ionizace laserem za účasti matrice) pro analýzu biomolekul EI (elektronová ionizace) pro spojení GC-MS V experimentální části této práce je využívána ionizace elektrosprejem, proto je dále podrobněji popsána Ionizace elektrosprejem (ESI) Ionizace elektrosprejem patří mezi tzv. měkké ionizační techniky. To znamená, že při ionizaci nedochází ke fragmentaci molekuly, ale pouze k jejímu nabití. Analyt vystupující z chromatografické kolony, při spojení HPLC-MS, je kontinuálně přiváděn do iontového zdroje kovovou kapilárou. Na tuto kapiláru je vkládáno vysoké napětí 1-5 kv, které vytváří elektrostatické pole. Na výstupu z kapiláry vznikají kapičky, které jsou odpařovány sušícím plynem (nejčastěji dusík), čímž dojde ke zvýšení povrchové hustoty náboje. Podle povahy vkládaného napětí tak vznikají protonované molekulární ionty nebo deprotonované molekulární ionty. Vzniklé ionty jsou vtahovány systémem potenciálů vložených na elektrody do analyzátoru s vysokým vakuem. Obr.7: Ionizace elektrosprejem [76] 21

22 9.3.4 Hmotnostní analyzátory Hmotnostní analyzátory jsou zařízení, které rozlišují ionty podle jejich m/z. Běžné typy hmotnostních analyzátorů [77]: time-of-flight (TOF) kvadrupólový analyzátor (Q) lineární iontová past (LIT) kvadrupólová iontová past (QIT) V současné době se při stopových analýzách environmentálních vzorků přechází k používání trojitých kvadrupólů Kvadrupólový analyzátor (Q) Kvadrupólový analyzátor si lze představit jako čtyři hyperbolické nebo válcovité rovnoběžné tyčové elektrody, na které je přiváděno stejnosměrné napětí a složka radiofrekvenčního pole. Protilehlé elektrody mají vždy stejné potenciály. Napětí vložená na tyčové elektrody jsou zvolena v daném čase tak, aby mezi tyčemi proletěly jen ionty o určité hodnotě m/z nebo s hodnotami m/z v určitém intervalu [74, 77] Hybridní analyzátor QTRAP Hybridní analyzátor spojuje výhody kvadrupólu a lineární iontové pasti. Jedná se v podstatě o trojitý kvadrupól, kde třetí kvadrupól (Q3) může pracovat jako lineární iontová past. V prvním kvadrupólu (Q1) dojde k izolaci prekurozorového iontu. Ve druhém kvadrupólu (Q2), který zastává funkci kolizní cely, nastane disociace prekurzorového iontu, vzniká tak široké spektrum produktových iontů. Produktové ionty putují z Q2 do Q3, který může pracovat jako lineární iontová past (LIT), nebo opět jako kvadrupól. LIT akumuluje produktové ionty a po optimálním naplnění pasti jsou všechny zachycené ionty skenovány na detektoru. Většina matrice je odstraněna v Q1, nedochází tak k zanášení LIT. Použitím hybridního analyzátoru se tak výrazně zvýší citlivost [78, 79]. Obr. 8: Hybridní trojitý kvadrupól / lineární iontová past QTRAP [78] 22

23 9.3.7 Hmotnostní spektrum Hmotnostní spektrum je záznam relativní četnosti iontových druhů v závislosti na m/z [74]. Obecně platí, že nejintenzivnější pík je nazýván hlavní (base peak) a jeho intenzita je považována za 100%. K tomuto píku jsou vztaženy intenzity ostatních píků ve spektru. Druhým významným píkem ve spektru je pík molekulární. Svou polohou naznačuje jaká je molární hmotnost zkoumané látky. U měkkých ionizačních technik tzn. i u ESI je nejvýznamnějším píkem právě pík molekulární, neboť zde nedochází k fragmentaci mateřské molekuly Multiple reaction monitoring (MRM) Pro zlepšení detekčních limitů jsou využívány dva přístup: SIM (selected ion monitoring) a MRM (multiple reaction monitoring). V SIM módu je nepřetržitě monitorován jediný iont, ostatní ionty nejsou detekovány. Je využívaný v případě, že je k dispozici pouze jednoduchý MS, nebo v případě, že látka se není schopna v kolizní cele štěpit na dceřiné ionty. Pokud je látka lehce štěpitelná, využíváme tzv. multiple reaction monitoring. Ten již vyžaduje použití MS/MS techniky [80]. MRM jako kvantitativní technika obecně poskytuje vyšší selektivitu než SIM mód. U MRM je předem zvolen jeden nebo více prekurzorových iontů. Pro každý prekurzorový iont je vybrán jeden specifický produktový iont a tomu je umožněno projít do další analyzační etapy a poté být detekován [81]. Poměr intenzit prekurzorového a produktového iontu je právě zmiňovaný multiple reaction monitoring. 9.4 Spojení HPLC-MS/MS pro stanovení PFCs v prachu a vzduchu Z příloh I-III je patrné, že ke stanovení PFCs ve vzduchu je častěji používána plynová chromatografie (GC) ve spojení s hmotnostní spektrometrií (MS) [29, 30, 33, 34, 82]. To vyplývá z povahy vzorku. Takto se stanovují PFCs, které jsou těkavé a jako takové je snazší je vnášet do GC než do LC. Přesto jsou známa i stanovení PFCs ve vzduchu, ale především v prachu pomocí HPLC-MS/MS. Dinglasan ve své práci použil jak GC/MS pro stanovení těkavých produktů transformace a telomerní alkoholy, tak LC-MS/MS pro netěkavé metabolity (PFOA). Při využití LC- MS/MS použil ionizaci ESI v negativním módu, napětí kapiláry 2,9 kv a trojitý kvadrupól jako analyzátor. Jednalo se však o stanovení biodegradace flurotelomerů, nicméně telomerní alkoholy jsou těkavé a je možné předpokládat jejich přítomnost ve vzduchu [4]. 23

24 Murakami podal první zprávu o kontaminaci pouličního prachu perfluorovanými sloučeninami. Analýze byl podroben pouliční prach z Tokya. Analyty byly z prachu vyextrahovány tlakovou extrakcí rozpouštědlem (PLE). Separace probíhala pomocí HPLC, gradientovou elucí. Jako mobilní fáze byly použity acetonitril a destilovaná voda s přídavkem octan amonného. Jako detekční metody byla zvolena MS/MS s použitá ESI v negativním módu. Teplota kapiláry byla 350 C. Ve vzorcích prachu byla detekována přítomnost pěti PFCs PFOS, PFOA, PFNA, PFDA, PFUdA [66]. Stěžejní prací pro praktickou část této práce byl článek publikován Katem. Analyzoval prach z domácností vysoce výkonnou metodou on-line SPE-HPLC-MS/MS. Prach byl extrahován methanolem a kyselinou octovou v ultrazvukové lázni. Separace byla prováděna HPLC gradientovou elucí vody a acetonitrilu s přídavkem octanu amonného (ph=4). Ionizační technikou byl rozžhaveným elektrosprejem (HESI) v negativním módu. Napětí kapiláry bylo nastaveno na hodnotu V a teplota kapiláry na 285 C. Hmotnostní spektrometr pracoval v SIM módu a detekoval přítomnost 17 PFCs, přičemž limit kvantifikace byl < 4 ng/g [31]. 24

25 III. EXPERIMENTÁLNÍ ČÁST 10. PŘÍSTROJE A POMŮCKY systém na přípravu ultračisté vody SIMPLICITY 185; Millipore (USA) váhy PL202-S2 METTLER TOLEDO (Švýcarsko) vortex typ classic VELP SCIENTIFICA (Itálie) ultrazvuková lázeň PS03000A; Powersonic (USA) kapalinový chromatograf Agilent 1100 (USA) (obr.9a) hmotnostní spektrometr QTRAP5500, AB SCIEX (USA)(obr.9B) stříkačkové filtry (tabulka 6) Tabulka 6: Označení použitých stříkačkových filtrů označení filtru materiál průměr velikost pórů objem [mm] [μm] vzorku [ml] N nylon 25 0,45 ~ <137 C nylon 25 0, <137 B nylon 30 0,45 ~ ~ S PES 30 0,22 ~ <30 Z nylon 13 0, <30 zádržný objem [μl] Obr. 9A: Kapalinový chromatograf Agilent 1100 [83] Obr 9B: - AB SCIEX QTRAP 5500 [84] 11. CHEMIKÁLIE octan amonný CH 3 COONH 4 - SIGMA ALDRICH (Německo) kyselina mravenčí HCOOH - SIGMA ALDRICH (Německo) methanol (MeOH) - SIGMA ALDRICH (Německo) redestilovaná voda 25

26 12. PŘÍPRAVA VZORKŮ A EXTRAKCE 12.1 Měření pozaďových kontaminací stříkačkových filtrů Z důvodu předpokládané kontaminace během extrakčních technik bylo nutné změřit pozaďové kontaminace každého stupně přípravy vzorku. Pro tento účel byla vybrána vata, jako simulace stanovované matrice (domácího prachu). Byly měřeny koncentrace 16 perfluorovaných látek. Vzorky byly připraveny do centrifugačních zkumavek následujícím postupem. V první fázi bylo postupováno podle publikace uveřejněné Katem. Bylo odváženo 300 mg nečištěné vaty, přidány 2 ml 0,1M kyseliny mravenčí (HCOOH) a 2 ml MeOH (SIGMA ALDRICH). Zkumavka byla uzavřena zátkou a promíchána na vortexu po dobu 10 s. Následně byly zkumavky vloženy do ultrazvukové lázně na 10 minut. Směs ze zkumavky byla přesunuta do injekční stříkačky opatřené filtrem a směs byla přefiltrována. K analýze na HPLC byl do minivialek odebrán 1 ml extraktu. Tímto postupem byly připraveny dvě paralelní sady vzorků za využití pěti různých stříkačkových filtrů s různým typem membrán, velikostí, zádrží vzorku s označením N,C,B,S,Z (Tab. 6) tzn. celkem 10 vzorků a dva paralelní blanky pro zjištění potenciální kontaminace z vaty (vzorky sady _01). Blanky obsahovaly pouze MeOH a HCOOH a prošly stejným postupem. Po analýze této sady vzorků byl vyloučen filtr s označením Z (dle tabulky 6), neboť měl malý průměr a nedocházelo tak ke kvantitativnímu převedení vzorku za zkumavky do stříkačky Úprava designu solid-liquid extrakce Další sada vzorků (091015_02) byla připravena výše uvedeným postupem, přičemž byla použita přečištěná vata (označení typ filtru + vata). Tento postup extrakce však nebyl příliš efektivní. Byl zde problém s kvantitativním převedením směsi ze zkumavky do stříkačky. Proto byla další sada vzorků připravena přímo ve stříkačce. Ústí stříkačky byla utěsněna u jedné sady vzorků parafilmem (označení typ filtru + parafilm), u druhé byly použity kohouty na SPE kolonky (označení typ filtru + kohout). Parafilm dobře netěsnil, proto byl z dalších experimentů vyloučen. Po analýze těchto vzorků (sada _2) a jejich porovnáním s blanky byla vyhodnocena pozaďová kontaminace filtrů a nejlepší design experimentu. Jako vyhovující byly označeny filtry značeny písmeny B a N (dle tabulky 6). Za použití těchto filtrů byla připravena další sadu vzorků (označení ). 26

27 12.3 Opakovatelnost extrakční techniky Poslední sada vzorků (označením ) posloužila k ověření správnosti dat naměřených v předchozích krocích. Zde byly použity pouze dva filtry, které se vykazovaly nejnižší kontaminaci a paralelním měřením 7 vzorků bylo zjištěno, zda je kontaminace filtrů náhodná, či přetrvávající Podmínky analytického stanovení Vzorky byly analyzovány na přístroji Agilent Pro analýzu byla využita gradientová eluce mobilní fáze pomocí binární pumpy. První minutu protékala systémem pouze směs 55% MeOH a 45% 5mmol octanového pufru, u které nebylo upravováno ph. Hodnota ph pufru tak byla 7. Od druhé do 11 minuty tvořilo mobilní fázi ze 70% MeOH a z 30% směs 55% MeOH a 45% 5mmol octanového pufru. Program poté pokračoval promýváním směsi MeOH a pufru po dobu 7 minut, aby došlo k opětovnému ustanovení rovnováhy na koloně. Průtok mobilní fáze byl nastaven na 200 μl/min. Nástřik na kolonu byl 5 μl. Pro separaci byla vybrána kolona SYNERGI 4u Vision RP 80A o rozměrech 50 x 2 mm (Phenomenex, USA). Teplota kolony byla 20 C. Po separaci na koloně kapalinového chromatografu vstupovaly separované složky do hmotnostního spektrometru. Napětí na kapiláře v iontovém zdroji mělo hodnotu 4500 V a teplota v iontovém zdroji dosahovala teploty 450 C. Dále bylo potřeba nastavit parametry dusíku, který je vpouštěn do iontového zdroje i kolizní cely. Jako detektor byl použit elektronásobič, jehož napětí bylo nastaveno na 2000 V. 13. VÝSLEDKY Pro identifikaci perfluorovaných sloučenin byla použita zoptimalizovaná chromatografická metoda a optimální podmínky pro hmotnostní detektor. Jednotlivé MRM přechody 17 analyzovaných látek a jednotlivé parametry hmotnostního detektoru jsou uvedeny v tabulce 7. Tabulka zobrazuje MRM přechody standardů perfluoroalkylkarboxylových kyselin a perfluoroalkylsulfonanů (2 přechody pro každou z látek), jejich deklastrační a vstupní potenciály, kolizní energie a výstupní potenciály na kolizní cele. PFCs v měřených vzorcích byly kvantifikovány na základě změřených kalibračních roztoků (koncentrace 0,1 ng/ml ng/ml) a sestrojené kalibrační závislosti. 27

28 Tabulka 7: MRM přechody pro jednotlivé perfluorované látky Q1 Q3 ID DP EP CE CXP Q1 Q3 ID DP EP CE CXP 212,8 169,1 PFBA ,1 80,2 PFBS ,8 59,1 PFBA ,1 99,1 PFBS ,8 218,8 PFPA ,1 79,9 PFHxS ,8 140,8 PFPA ,1 99 PFHxS ,7 269 PFHxA ,7 79,9 PFHpS ,7 119 PFHxA ,7 99 PFHpS PFHpA ,7 79,8 PFOS ,8 PFHpA ,7 99,1 PFOS PFOA ,9 79,8 PFDS ,8 PFOA ,9 99 PFDS ,8 PFNA ,8 PFNA ,9 469 PFDA ,9 218,8 PFDA ,9 519 PFUnDA ,9 268,8 PFUnDA PFDoDA ,8 PFDoDA ,9 619 PFTrDA ,9 168,8 PFTrDA PFTeDA ,8 PFTeDA Q1 - MRM přechod na prvním kvadrupólu - kvantifikační Q3 - MRM přechod na třetím kvadrupólu kvalifikační Time - čas skenu jednoho MRM přechodu [ms] DP - declustering potential (deklastrační potenciál) [V] EP - entrance potential - vstupní potenciál [V] CE - collision energy - kolizní energie [V] CXP - collision cell exit potential - výstupní potenciál na kolizní cele [V] Obrázek 10 znázorňuje separaci perfluoro-alkylkarboxylových kyselin a perfluoroalkylsulfonanů dle délky jejich alkylového řetězce. Barvy v chromatogramu odlišují jednotlivé MRM přechody. Pro kvantifikaci jednotlivých látek v měřených vzorcích byly použity pouze první z dvojice MRM přechodů pro danou sloučeninu s vyšší intenzitou (v tabulce 7 zvýrazněné žlutou barvou). Pro optimalizaci podmínek separace bylo připraveno 7 kalibračních vzorků standardů v rozmezí koncentrací 0,1-100 ng/ml. Tyto vzorky byly proměřeny a kalibrační křivky byly analyzovány pomocí lineární regrese (Grafy 1 a 2). Limity detekce (LOD) a kvantifikace (LOQ) byly vypočítány dle Grahamovy metody z kalibračních diagramů. Srovnání MRM 28

29 módů a limitů detekce s poměrem signál/šum (S/N) byly zpracováno softwarem Analyst 3.1. Tato data jsou uvedena v tabulce e6 1.00e6 8.00e5 A Intensity, cps 6.00e5 4.00e e Time, min XIC of -MRM (12 pairs): Exp 2, 299.1/80.2 Da ID: PFBS from Sample 12 (kalibrace 10 ng/ml) of wiff (Turbo Spray) Max. 5.1e5 cp 6.6e5 6.0e5 5.0e5 B 1.71 Intensity, cps 4.0e5 3.0e5 2.0e5 1.0e Time, min Obr 10: A Standardy perfluoroalkylkarboxylových kyselin (PFCAs) B Standardy perfluoroalkylsulfonanů (PFASs) Graf 1: Kalibrační graf perfluoroalkylkarboxylových kyselin (PFCAs) plocha píku 6,00E+07 5,00E+07 4,00E+07 3,00E+07 2,00E+07 1,00E+07 0,00E+00 Kalibrační graf perfluoroalkylkarboxylových kyselin c [ng/ml] PFBA PFPA PFHxA PFHpA PFOA PFNA PFDA PFUnDA PFDoDA PFTrDA PFTeDA 29

30 Graf 2: Kalibrační graf perfluoroalkylsulfonanů (PFASs) Kalibrační graf perfluoroalkylsulfonanů 1,00E+08 9,00E+07 plocha píku 8,00E+07 7,00E+07 6,00E+07 5,00E+07 4,00E+07 3,00E+07 2,00E+07 1,00E+07 0,00E+00 PFBS PFHxS PFHpS PFOS PFDS c [ng/ml] Tabulka 8: Regresní koeficienty, limity detekce a kvantifikace a poměr signál/šum pro jednotlivé perfluorované látky látka regresní koeficient LOD - limit of detection - limit detekce LOQ - limit of quantification - limit kvantifikace S/N - poměr signál/šum LOD LOQ S/N (1ng/ml) PFBA 0,9961 0,108 0,329 42,6 PFPA 0,9995 0,135 0,48 46,3 PFHxA 0,999 0,201 0,684 63,1 PFHpA 0,9997 0,132 0,413 38,1 PFOA 0,9838 0,086 0, ,6 PFNA 0,9678 0,147 0, PFDA 0,9653 0,189 0, PFUnDA 0,9468 0,269 0, ,9 PFDoDA 0,8974 0,203 0, ,4 PFTrDA 0,9467 0,214 0,53 426,3 PFTeDA 0,9935 0,242 0, ,8 PFBS 0,9863 0,112 0, ,7 PFHxS 0,9918 0,091 0, ,8 PFHpS 0,9517 0,043 0, ,5 PFOS 0,9504 0,017 0, PFDS 0,9524 0,051 0, ,9 30

31 Výsledky v tabulce 9 shrnují výsledky extrakcí nečištěné vaty. Tato sada vzorků sloužila především ke zvýšení manuální zručnosti při přípravě vzorků a procesu extrakce. Tabulka 9:Koncentrace perfluorovaných sloučeni u sady vzorků _01 látka koncentrace [ng/ml] blank 1 blank 2 N1 N2 C1 C2 B1 B2 S1 S2 Z1 Z2 PFBA ND ND ND ND ND ND ND ND ND ND ND ND PFPA ND ND ND ND < LOD ND ND ND ND ND ND ND PFHxA ND ND ND ND ND ND ND ND ND ND ND ND PFHpA ND ND ND ND ND ND ND ND ND ND ND ND PFOA < LOD < LOD < LOD < LOD < LOD ND < LOD < LOD ND ND ND ND PFNA < LOD < LOD < LOD < LOD < LOD < LOD ND ND < LOD < LOD ND ND PFDA ND ND ND ND ND ND ND ND < LOD < LOD ND ND PFUnDA < LOD < LOD ND ND ND ND ND ND ND ND ND ND PFDoDA < LOD < LOD ND ND ND ND ND ND ND ND ND ND PFTrDA ND ND ND ND ND ND ND ND ND ND 0,0215 ND PFTeDA ND ND ND ND ND ND ND ND ND ND ND ND PFBS ND ND < LOD ND < LOD < LOD ND ND < LOD ND ND ND PFHxS ND ND ND ND ND ND ND ND ND ND ND ND PFHpS ND ND < LOD ND < LOD < LOD ND < LOD ND ND ND ND PFOS ND 0, , , , ,0042 ND ND ND ND ND ND PFDS ND ND 0,0182 0,0182 0,0181 0,018 ND ND ND ND ND ND ND - not detected - nedetekováno <LOD - <limit of detection - pod limitem detekce Nicméně již výsledky z tabulky 9 ukazují na kontaminaci vzorků perfluorovanými látkami (PFCs). Cílem této fáze bylo zjistit, jak se jednotlivé složky (vata, použitý filtr) podílejí na pozaďové kontaminaci extrakční techniky. Z důvodu pravděpodobných ztrát během extrakce, bylo nutné změnit designu experimentu. Pro další měření byly vybrány filtry s označením N,C,B s S. Filtr s označením Z byl vyloučen z důvodu malé kapacity a průměru (13 mm). Výsledky analýz sady vzorků označené _02 jsou uvedeny v tabulce 10. Na základě těchto výsledků byl nalezen nejlepší design experimentu, při kterém nedocházelo k únikům mimo extrakční nádobky a mohlo být provedeno vyhodnocení kontaminace používaných filtrů. Filtry s označením B a N ukázaly, že mají nejmenší pozaďovou kontaminaci, proto byly použity pro další experimety (sada vzorků ). Ty měly ukázat, zda je kontaminace filtrů náhodná, nebo jde o přetrvávající stav. Vybrané chromatogramy (obrázek 11 a12) znázorňují záznam separace perfluorovaných látek při extrakci ve zkumavce a následné filtraci přes filtr označený písmenem C (obrázek 11A,B) a při extrakci přímo ve stříkačce, jejíž ústí bylo uzavřeno parafilmem a filtrace proběhla taktéž 31

32 přes filtr C (obrázek 12A,B). Chromatogram s označením A je analyzován metodou pro perfluoroalkylkarboxylové kyselinya záznam B pro perfluoroalkylsulfonany. Z chromatogramu je vidět, jaká je úroveň pozaďové kontaminace při jednotlivých modifikacích extrakcí a jaká je úroveň šumu. Na pozaďové kontaminace se podílí především použitý filtr, protože ve změřených blancích rozpouštědel je kontaminace minimální. Sada vzorků se označením již měla ukázat, zda je kontaminace filtrů PFCs měřena opakovaně. Pro tuto sadu vzorků byly vybrány filtry N a B, které v předchozích analýzách dosahovaly nejlepších výsledků. Z výsledků je vidět, že kontaminace těchto filtrů je skutečně nízká a po opakování měření zůstává přibližné konstantní. Některé z látek jsou ovšem pod limitem detekce, což znamená, že byly nalezeny a mohou ovlivňovat naměřené koncentrace v reálných vzorcích. 32

33 Tabulka 10:Koncentrace perfluorovaných sloučenin u sady vzorků _02 látka blank MeOH+HCOOH blank MeOH+HCOOH koncentrace [ng/ml] N1+vata N2+vata C1+vata C2+vata B1+vata B2+vata S1+vata S2+vata N1+parafilm N2+parafilm PFBA ND ND ND ND ND ND ND ND ND ND ND ND PFPA ND ND ND ND ND ND ND ND ND ND < LOD ND PFHxA ND ND ND ND ND ND ND ND ND ND ND ND PFHpA ND ND ND ND ND ND ND ND ND ND ND ND PFOA < LOD < LOD < LOD < LOD < LOD ND < LOD < LOD ND ND ND ND PFNA ND ND ND ND < LOD < LOD ND < LOD ND < LOD ND ND PFDA ND ND ND ND ND ND ND ND ND ND ND ND PFUnDA ND ND ND ND ND ND ND ND ND ND < LOD < LOD PFDoDA ND ND ND ND ND ND ND ND ND ND ND ND PFTrDA ND ND ND ND ND ND ND ND ND ND ND ND PFTeDA ND ND ND ND ND ND ND ND ND ND ND ND PFBS ND ND < LOD < LOD < LOD < LOD < LOD < LOD 0, < LOD 0,00271 < LOD PFHxS ND ND ND ND ND ND ND ND ND ND ND ND PFHpS ND ND < LOD ND < LOD ND ND ND ND ND ND ND PFOS ND ND 0,0046 0, , ,0084 0,0055 0, ,0506 0,0375 ND ND PFDS ND ND 0,0187 ND ND ND ND ND ND ND ND ND látka koncentrace [ng/ml] C1+parafilm C2+parafilm B1+parafilm B2+parafilm S1+parafilm S2+parafilm N1+kohout N2+kohout C1+kohout C2+kohout B1+kohout B2+kohout PFBA ND ND ND ND ND ND ND ND ND ND ND ND PFPA ND ND ND ND ND ND ND ND ND ND ND ND PFHxA ND ND ND ND ND ND ND ND ND ND ND ND PFHpA ND ND ND ND ND ND ND ND ND ND ND ND PFOA ND < LOD < LOD ND < LOD < LOD ND ND ND ND ND ND PFNA ND ND ND ND ND ND ND < LOD ND ND ND ND PFDA < LOD < LOD < LOD < LOD < LOD < LOD < LOD < LOD ND < LOD < LOD < LOD PFUnDA < LOD < LOD < LOD ND ND < LOD ND ND < LOD < LOD ND ND PFDoDA ND ND ND ND ND ND ND ND ND ND ND ND PFTrDA ND ND ND ND ND ND ND ND ND ND ND ND PFTeDA ND ND ND ND ND ND ND ND ND ND ND ND PFBS 0, , < LOD ND 0,0223 0,0126 ND ND < LOD < LOD ND ND PFHxS ND ND ND ND ND ND ND ND ND ND ND ND PFHpS ND ND ND ND ND ND < LOD < LOD ND ND ND ND PFOS ND ND ND 0,00451 ND ND 0, ,00488 ND ND ND 0,00456 PFDS ND 0,0186 ND ND 0,02 ND ND ND 0,018 ND ND 0,

34 A B Obr. 11: Extrakce PFCs ve zkumavce a následná filtrace přec filtr C A B Obr. 12: Extrakce ve stříkačce s parafilmem a následná filtrace přes filtr C 34

35 Tabulka 11: Koncentrace perfluorovaných sloučenin u sady vzorků látka blank 1 MeOH+ HCOOH blank 2 MeOH+ HCOOH blank 1 MeOH+ HCOOH blank 2 MeOH+ HCOOH koncentrace [ng/ml] B1 B2 B3 B4 B5 B6 B7 N1 N2 N3 N4 N5 N6 N7 PFBA ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFPA ND ND ND ND ND < LOD < LOD < LOD 0, ,0206 ND 0, ,0129 0,0457 0,0242 ND ND ND PFHxA ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFHpA ND ND 0,0196 ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFOA ND ND 0,0105 < LOD ND ND ND ND ND ND ND ND ND ND < LOD ND ND ND PFNA ND ND < LOD < LOD ND ND ND ND ND ND ND < LOD ND ND ND < LOD < LOD < LOD PFDA ND ND < LOD < LOD ND ND ND ND ND ND ND < LOD ND ND ND < LOD < LOD < LOD PFUnDA ND ND < LOD ND ND ND ND ND < LOD < LOD ND ND ND < LOD < LOD ND ND ND PFDoDA ND ND < LOD < LOD ND ND ND ND < LOD ND ND ND < LOD ND ND ND ND ND PFTrDA ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFTeDA ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFBS ND ND ND ND 0,02 0,0222 0,0042 0,0074 0, ,0194 < LOD 0,0419 0,0479 0,0544 0,0549 0,0304 0,0391 0,0402 PFHxS ND ND ND ND ND 0,0132 ND ND ND ND ND ND ND ND ND ND ND ND PFHpS ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND PFOS ND ND ND ND 0,00472 ND ND ND ND ND ND ND ND 0,0042 ND ND ND ND PFDS ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND ND 35

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie

Klinická a farmaceutická analýza. Petr Kozlík Katedra analytické chemie Klinická a farmaceutická analýza Petr Kozlík Katedra analytické chemie e-mail: kozlik@natur.cuni.cz http://web.natur.cuni.cz/~kozlik/ 1 Spojení separačních technik s hmotnostní spektrometrem Separační

Více

P. Martinková, D. Pospíchalová, R. Jobánek, M. Jokešová. Stanovení perfluorovaných organických látek v elektroodpadech

P. Martinková, D. Pospíchalová, R. Jobánek, M. Jokešová. Stanovení perfluorovaných organických látek v elektroodpadech P. Martinková, D. Pospíchalová, R. Jobánek, M. Jokešová Stanovení perfluorovaných organických látek v elektroodpadech Perfluorované a polyfluorované uhlovodíky (PFC,PFAS) Perfluorované - všechny vodíky

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MELAMINU A KYSELINY KYANUROVÉ METODOU LC-MS 1 Rozsah a účel Postup je určen pro stanovení obsahu melaminu a kyseliny kyanurové v krmivech. 2 Princip

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU NEPOVOLENÝCH DOPLŇKOVÝCH LÁTEK METODOU LC-MS 1 Účel a rozsah Tato metoda specifikuje podmínky pro stanovení nepovolených doplňkových látek Zn-bacitracinu,

Více

Jednotné pracovní postupy analýza půd STANOVENÍ OBSAHU PERFLUOROALKYLOVÝCH SLOUČENIN (PFAS) METODOU LC-MS/MS

Jednotné pracovní postupy analýza půd STANOVENÍ OBSAHU PERFLUOROALKYLOVÝCH SLOUČENIN (PFAS) METODOU LC-MS/MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU PERFLUOROALKYLOVÝCH SLOUČENIN (PFAS) METODOU LC-MS/MS 1 Rozsah a účel Postup je určen pro analýzu perfluoroalkylových sloučenin v půdách, sedimentech,

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE MASS SPECTROMETRY (MS) Alternativní názvy (spojení s GC, LC, CZE, ITP): Hmotnostně spektrometrický (selektivní) detektor Mass spectrometric (selective) detector (MSD) Spektrometrie

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - FUMONISIN B 1 A B 2 1 Rozsah a účel Metoda je vhodná pro stanovení fumonisinů B 1 a B 2 v krmivech. 2 Princip Fumonisiny

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU LC-MS - aflatoxin B1, B2, G1 a G2 1 Rozsah a účel Metoda je vhodná pro stanovení aflatoxinů B1, B2, G1 a G2 v krmivech. 2 Princip

Více

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS Strana 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS 1 Účel a rozsah Postup specifikuje podmínky pro stanovení diclazurilu, halofuginonu, lasalocidu, maduramicinu, monensinu, narasinu, nikarbazinu, robenidinu,

Více

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie

LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Použití GC-MS spektrometrie LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) C Použití GC-MS spektrometrie Vedoucí práce: Doc. Ing. Petr Kačer, Ph.D., Ing. Kamila Syslová Umístění práce: laboratoř 79 Použití GC-MS spektrometrie

Více

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv Vydání 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU KOKCIDIOSTATIK METODOU LC-MS 1 Účel a rozsah Postup specifikuje podmínky pro stanovení diclazurilu, halofuginonu, lasalocidu, maduramicinu, monensinu,

Více

NOVÉ ORGANOHALOGENOVANÉ KONTAMINANTY VE VODNÍM EKOSYSTÉMU

NOVÉ ORGANOHALOGENOVANÉ KONTAMINANTY VE VODNÍM EKOSYSTÉMU NOVÉ ORGANOHALOGENOVANÉ KONTAMINANTY VE VODNÍM EKOSYSTÉMU Marek Papež, Ondřej Lacina, Darina Lanková, Jana Pulkrabová, Jana Hajšlová Ústav chemie a analýzy potravin, Fakulta potravinářské a biochemické

Více

INTERPRETACE HMOTNOSTNÍCH SPEKTER

INTERPRETACE HMOTNOSTNÍCH SPEKTER INTERPRETACE HMOTNOSTNÍCH SPEKTER Hmotnostní spektrometrie hmotnostní spektrometrie = fyzikálně chemická metoda založená na rozdělení hmotnosti iontů v plynné fázi podle jejich poměru hmotnosti a náboje

Více

No. 1- určete MW, vysvětlení izotopů

No. 1- určete MW, vysvětlení izotopů No. 1- určete MW, vysvětlení izotopů ESI/APCI + 325 () 102 (35) 327 (33) 326 (15) 328 (5) 150 200 250 300 350 400 450 500 ESI/APCI - 323 () 97 (51) 325 (32) 324 (13) 326 (6) 150 200 250 300 350 400 450

Více

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním

HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním HMOTNOSTNÍ SPEKTROMETRIE - kvalitativní i kvantitativní detekce v GC a LC - pyrolýzní hmotnostní spektrometrie - analýza polutantů v životním prostředí - farmakokinetické studie - kvantifikace proteinů

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU DEKOCHINÁTU METODOU HPLC 1 Rozsah a účel Tato metoda specifikuje podmínky pro stanovení dekochinátu metodou vysokoúčinné kapalinové chromatografie

Více

Hmotnostní spektrometrie. Historie MS. Schéma MS

Hmotnostní spektrometrie. Historie MS. Schéma MS Hmotnostní spektrometrie MS mass spectrometry MS je analytická technika, která se používá k měření poměru hmotnosti ku náboji (m/z) u iontů původně studium izotopového složení dnes dynamicky se vyvíjející

Více

Úvod do strukturní analýzy farmaceutických látek

Úvod do strukturní analýzy farmaceutických látek Úvod do strukturní analýzy farmaceutických látek Garant předmětu: doc. Ing. Bohumil Dolenský, Ph.D. A28, linka 4110, dolenskb@vscht.cz Hmotnostní spektrometrie II. Příprava předmětu byla podpořena projektem

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC Strana 1 STANOVENÍ OBSAHU SEMDURAMICINU METODOU HPLC 1 Rozsah a účel Postup specifikuje podmínky pro stanovení obsahu semduramicinu v krmivech metodou vysokoúčinné kapalinové chromatografie (HPLC) v koncentračním

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VITAMÍNU D METODOU LC/MS 1 Účel a rozsah Tento postup specifikuje podmínky pro stanovení vitamínu D3 v krmivech metodou LC/MS. 2 Princip Zkušební

Více

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip

Separační metody v analytické chemii. Plynová chromatografie (GC) - princip Plynová chromatografie (GC) - princip Plynová chromatografie (Gas chromatography, zkratka GC) je typ separační metody, kdy se od sebe oddělují složky obsažené ve vzorku a které mohou být převedeny do plynné

Více

Hmotnostní spektrometrie - Mass Spectrometry (MS)

Hmotnostní spektrometrie - Mass Spectrometry (MS) Hmotnostní spektrometrie - Mass Spectrometry (MS) Další pojem: Hmotnostně spektrometrický (selektivní) detektor - Mass spectrometric (selective) detector (MSD) Spektrometrie - metoda založená na interakci

Více

jako markeru oxidativního

jako markeru oxidativního Monitoring koncentrace 8-isoprostanu jako markeru oxidativního stresu v kondenzátu vydechovaného vzduchu Lukáš Chytil Ústav organické technologie Úvod Cíl: - nalezení vhodného analytické metody pro analýzu

Více

Indentifikace molekul a kvantitativní analýza pomocí MS

Indentifikace molekul a kvantitativní analýza pomocí MS Indentifikace molekul a kvantitativní analýza pomocí MS Identifikace molekul snaha určit molekulovou hmotnost, sumární složení, strukturní části molekuly (funkční skupiny, aromatická jádra, alifatické

Více

OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI

OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI Středoškolská technika 212 Setkání a prezentace prací středoškolských studentů na ČVUT OPTIMALIZACE METODY ANODICKÉ ROZPOUŠTĚCÍ VOLTAMETRIE PRO ANALÝZU BIOLOGICKÝCH VZORKŮ S OBSAHEM RTUTI Eliška Marková

Více

ÚSTAV CHEMIE A ANALÝZY POTRAVIN

ÚSTAV CHEMIE A ANALÝZY POTRAVIN VYSOKÁ ŠKOLA CHEMICKO-TECHNOLOGICKÁ V PRAZE ÚSTAV CHEMIE A ANALÝZY POTRAVIN Technická 5, 166 28 Praha 6 tel./fax.: + 420 220 443 185; jana.hajslova@vscht.cz LABORATOŘ Z ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

Více

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253

Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Příprava materiálu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Část 16 Iontová chromatografie Iontová chromatografie je speciální technika vyvinutá pro separaci anorganických iontů a organických

Více

Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie

Diagnostika bronchiálního. ho astmatu HPLC/MS analýzou. Kamila Syslová Ústav organické technologie Diagnostika bronchiálního ho astmatu HPLC/MS analýzou Kamila Syslová Ústav organické technologie Bronchiální astma Civilizační onemocnění rostoucí počet případů snižující se věková hranice prvních projevů

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Princip: 1. Ze vzorku jsou tvořeny ionty na úrovni molekul, nebo jejich zlomků (fragmentů), nebo až volných atomů dodáváním energie, např. uvolnění atomů ze vzorku nebo přímo rozštěpení

Více

Zjišťování toxicity látek

Zjišťování toxicity látek Zjišťování toxicity látek 1. Úvod 2. Literární údaje 3. Testy in vitro 4. Testy na zvířatech in vivo 5. Epidemiologické studie 6. Zjišťování úrovně expozice Úvod Je známo 2 10 7 chemických látek. Prostudování

Více

L 54/116 CS Úřední věstník Evropské unie

L 54/116 CS Úřední věstník Evropské unie L 54/116 CS Úřední věstník Evropské unie 26.2.2009 8. Výsledky kruhových testů V rámci ES byly provedeny kruhové testy, při nichž až 13 laboratoří zkoušelo čtyři vzorky krmiva pro selata, včetně jednoho

Více

HMOTNOSTNÍ SPEKTROMETRIE

HMOTNOSTNÍ SPEKTROMETRIE HMOTNOSTNÍ SPEKTROMETRIE A MOŽNOSTI JEJÍHO SPOJENÍ SE SEPARAČNÍMI METODAMI SEPARACE chromatografie CGC, GC x GC HPLC, UPLC, UHPLC, CHIP-LC elektromigrační m. CZE, CITP INTERFACE SPOJENÍ x ROZHRANÍ GC vyhřívaná

Více

Hmotnostní spektrometrie

Hmotnostní spektrometrie Hmotnostní spektrometrie Podstatou hmotnostní spektrometrie je studium iontů v plynném stavu. Tato metoda v sobě zahrnuje tři hlavní části:! generování iontů sledovaných atomů nebo molekul! separace iontů

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku

Iontové zdroje II. Iontový zdroj. Data. Vzorek. Hmotnostní analyzátor. Zdroj vakua. Iontové zdroje pracující za sníženého tlaku Iontové zdroje II. Iontové zdroje pracující za sníženého tlaku Elektronová/chemická ionizace Iontové zdroje pro spojení s planárními separacemi Ionizace laserem za účasti matrice Ambientní ionizační techniky

Více

CS Úřední věstník Evropské unie L 54/89

CS Úřední věstník Evropské unie L 54/89 26.2.2009 CS Úřední věstník Evropské unie L 54/89 c) při vlnové délce mezi 230 a 320 nm se nesmí spektrum vzestupné části, vrcholu a sestupné části píku zkoušeného vzorku lišit od ostatních částí spektra

Více

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně

Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně Analytická technika HPLC-MS/MS a možnosti jejího využití v hygieně Šárka Dušková 24. září 2015-61. konzultační den Hodnocení expozice chemickým látkám na pracovištích 1 HPLC-MS/MS HPLC high-performance

Více

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR

Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR Benzo(g,h,i)pe rylen Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E PRTR H a P věty Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na

Více

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS)

Laboratoř ze speciální analýzy potravin II. Úloha 3 - Plynová chromatografie (GC-MS) 1 Úvod... 1 2 Cíle úlohy... 2 3 Předpokládané znalosti... 2 4 Autotest základních znalostí... 2 5 Základy práce se systémem GC-MS (EI)... 3 5.1 Parametry plynového chromatografu... 3 5.2 Základní charakteristiky

Více

Zajištění správnosti výsledků analýzy kotininu a kreatininu

Zajištění správnosti výsledků analýzy kotininu a kreatininu Zajištění správnosti výsledků analýzy kotininu a kreatininu Š.Dušková, I.Šperlingová, L. Dabrowská, M. Tvrdíková, M. Šubrtová duskova@szu.cz sperling@szu.cz Oddělení pro hodnocení expozice chemickým látkám

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MADURAMICINU A SEMDURAMICINU METODOU HPLC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení maduramicinu a semduramicinu v krmivech a premixech.

Více

Data o výskytu emergentních polutantů ve vybraných složkách prostředí

Data o výskytu emergentních polutantů ve vybraných složkách prostředí Specializované mapy s odborným obsahem (Nmap) Data o výskytu emergentních polutantů ve vybraných složkách prostředí Název organizace: Masarykova univerzita, Přírodovědecká fakulta, Centrum pro výzkum toxických

Více

Hmotnostní detekce v separačních metodách

Hmotnostní detekce v separačních metodách Hmotnostní detekce v separačních metodách MC230P83 2/1 Z+Zk 4 kredity doc. RNDr. Josef Cvačka, Ph.D. Mgr. Martin Hubálek, Ph.D. Ústav organické chemie a biochemie AVČR, v.v.i. Flemingovo nám. 2, 166 10

Více

Chromatografie. Petr Breinek

Chromatografie. Petr Breinek Chromatografie Petr Breinek Chromatografie-I 2012 Společným znakem všech chromatografických metod je kontinuální dělení složek analyzované směsi mezi dvěma fázemi. Pohyblivá fáze (mobilní), eluent Nepohyblivá

Více

P. Martinková, R. Jobánek, D. Pospíchalová. Stanovení vybraných léčiv v čistírenském kalu

P. Martinková, R. Jobánek, D. Pospíchalová. Stanovení vybraných léčiv v čistírenském kalu P. Martinková, R. Jobánek, D. Pospíchalová Stanovení vybraných léčiv v čistírenském kalu PPCP Pharmaceutical and Personal Care Products (farmaka a produkty osobní potřeby) Do životního prostředí se dostávají

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU MYKOTOXINŮ METODOU HPLC - OCHRATOXIN A 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení ochratoxinu A v krmivech. 1 Ochratoxin A patří mezi

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS 1 Rozsah a účel Postup je určen pro analýzu reziduí účinných látek přípravků na ochranu rostlin v obilovinách,

Více

Analýza kofeinu v kávě pomocí kapalinové chromatografie

Analýza kofeinu v kávě pomocí kapalinové chromatografie Analýza kofeinu v kávě pomocí kapalinové chromatografie Kofein (obr.1) se jako přírodní alkaloid vyskytuje v mnoha rostlinách (např. fazolích, kakaových bobech, černém čaji apod.) avšak nejvíce je spojován

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ STANOVENÍ BIOLOGICKY AKTIVNÍCH LÁTEK POMOCÍ VYSOKOÚČINNÉ CHROMATOGRAFIE VE SPOJENÍ S HMOTNOSTNÍ SPEKTROMETRIÍ (LC-MS) Garant úlohy: Ing. Vojtěch Hrbek 1

Více

Stanovení sacharidů ve vybraných přírodních matricích pomocí kapalinové chromatografie s odpařovacím detektorem rozptylu světla (HPLC-ELSD)

Stanovení sacharidů ve vybraných přírodních matricích pomocí kapalinové chromatografie s odpařovacím detektorem rozptylu světla (HPLC-ELSD) Stanovení sacharidů ve vybraných přírodních matricích pomocí kapalinové chromatografie s odpařovacím detektorem rozptylu světla (HPLC-ELSD) A) Ultrazvuková extrakce Ultrazvuková extrakce je významnou extrakční

Více

HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice

HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice HPLC/MS tělních tekutin nový rozměr v medicinální diagnostice Lukáš Chytil Ústav organické technologie VŠCHT Praha Medicinální diagnostika a hmotnostní spektrometrie Medicinální diagnostika: - Klasické

Více

Analytické nástroje pro analýzu iontů v prostředí. Analytical tools for environmental metal ions determination

Analytické nástroje pro analýzu iontů v prostředí. Analytical tools for environmental metal ions determination Název: Analytické nástroje pro analýzu iontů v prostředí Analytical tools for environmental metal ions determination Školitel: Datum: Marie Konečná 6.6.2014 Reg.č.projektu: CZ.1.07/2.3.00/20.0148 Název

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: Ing. Jaromír Hradecký, Ph.D. 1 OBSAH Základní

Více

Kapalinová chromatografie ve spojení s hmotnostní detekcí ( LC-MS )

Kapalinová chromatografie ve spojení s hmotnostní detekcí ( LC-MS ) Úloha do laboratorního cvičení - Speciální metody Kapalinová chromatografie ve spojení s hmotnostní detekcí ( LC-MS ) Analýza bílého vína: stanovení organických kyselin Teoretická část úlohy: Chemické

Více

CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS)

CRH/NPU I - Systém pro ultraúčinnou kapalinovou chromatografii (UHPLC) ve spojení s tandemovým hmotnostním spektrometrem (MS/MS) ODŮVODNĚNÍ VEŘEJNÉ ZAKÁZKY v souladu s 156 zákona č. 137/2006, Sb., o veřejných zakázkách, ve znění pozdějších předpisů Nadlimitní veřejná zakázka na dodávky zadávaná v otevřeném řízení v souladu s ust.

Více

Analýza stanovení obsahu vybraných persistentních organických polutantů (POP) v ovzduší na území Karlovarského kraje (RECETOX)

Analýza stanovení obsahu vybraných persistentních organických polutantů (POP) v ovzduší na území Karlovarského kraje (RECETOX) Analýza stanovení obsahu vybraných persistentních organických polutantů (POP) v ovzduší na území Karlovarského kraje (RECETOX) Sledované látky Sledované látky byly vybrány s ohledem na platnou legislativu,

Více

EXTRAKČNÍ METODY. Studijní materiál. 1. Obecná charakteristika extrakce. 2. Extrakce kapalina/kapalina LLE. 3. Alkalická hydrolýza

EXTRAKČNÍ METODY. Studijní materiál. 1. Obecná charakteristika extrakce. 2. Extrakce kapalina/kapalina LLE. 3. Alkalická hydrolýza Studijní materiál EXTRAKČNÍ METODY 1. Obecná charakteristika extrakce 2. Extrakce kapalina/kapalina LLE 3. Alkalická hydrolýza 4. Soxhletova extrakce 5. Extrakce za zvýšené teploty a tlaku PLE, ASE, PSE

Více

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice.

UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie. Nám. Čs. Legií 565, Pardubice. UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Nám. Čs. Legií 565, 532 10 Pardubice 15. licenční studium INTERAKTIVNÍ STATISTICKÁ ANALÝZA DAT Semestrální práce VYUŽITÍ TABULKOVÉHO

Více

Stanovení esterů steroidů v krevním séru

Stanovení esterů steroidů v krevním séru Stanovení esterů steroidů v krevním séru Ústav pro státní kontrolu veterinárních biopreparátů a léčiv (ÚSKVBL) Brno, Hudcova 56a Mgr. Martina Rejtharová Ing. Katarína Čačková rejtharova@uskvbl.cz cackova@uskvbl.cz

Více

Perzistentní organické polutanty (POPs) ve vodách, zeminách a v odpadních materiálech

Perzistentní organické polutanty (POPs) ve vodách, zeminách a v odpadních materiálech Perzistentní organické polutanty (POPs) ve vodách, zeminách a v odpadních materiálech Václav Šístek, Eva Hudečková, Radek Vyhnánek, Jaroslav Jurenka Right Solutions Right Partner www.alsglobal.cz 1 Right

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ. Stanovení těkavých látek LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ Stanovení těkavých látek (metoda: plynová chromatografie s hmotnostně spektrometrickým detektorem) Garant úlohy: doc. Ing. Jana Pulkrabová, Ph.D. 1 OBSAH

Více

Typy molekul, látek a jejich vazeb v organismech

Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Typy molekul, látek a jejich vazeb v organismech Organismy se skládají z molekul rozličných látek Jednotlivé látky si organismus vytváří sám z jiných látek,

Více

Danica Pospíchalová. Stanovení nelegálních drog a jejich metabolitů v odpadních vodách

Danica Pospíchalová. Stanovení nelegálních drog a jejich metabolitů v odpadních vodách Danica Pospíchalová Stanovení nelegálních drog a jejich metabolitů v odpadních vodách Stanovované látky: Kokainy: kokain (CO) benzoylecgonin (BE) kokaethylen (COE) Sloučeniny podobné amfetaminu: amfetamin

Více

Perfluorouhlovodíky (PFC)

Perfluorouhlovodíky (PFC) Perfluorouhlovodíky (PFC) Základní informace Ohlašovací prahy pro úniky a přenosy pro ohlašování do IRZ/E-PRTR Základní charakteristika Použití Zdroje úniků Dopady na životní prostředí Dopady na zdraví

Více

Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms)

Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms) Přímá analýza reálných vzorků hmotnostní spektrometrií s využitím nanodesorpčního elektrospreje (nano-desi-ms) Teorie: Desorpční elektrosprej (DESI) byl popsán v roce 2004 Zoltánem Takátsem. Jedná se o

Více

L 54/80 CS Úřední věstník Evropské unie

L 54/80 CS Úřední věstník Evropské unie L 54/80 CS Úřední věstník Evropské unie 26.2.2009 7.1.2 Detektor diodového pole Výsledky jsou posuzovány podle následujících kritérií: a) při vlnové délce maximální absorpce vzorku i standardu musí být

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU REZIDUÍ POLÁRNÍCH PESTICIDŮ METODOU LC-MS 1 Rozsah a účel Postup je určen pro analýzu reziduí účinných látek přípravků na ochranu rostlin v obilovinách,

Více

Ultrastopová laboratoř České geologické služby

Ultrastopová laboratoř České geologické služby Ultrastopová laboratoř České geologické služby Jitka Míková Česká geologická služba Praha - Barrandov Laboratorní koloběh Zadavatel TIMS Analýza vzorku Vojtěch Erban Jakub Trubač Lukáš Ackerman Jitka Míková

Více

STANOVENÍ ANTIOXIDAČNÍ KAPACITY METODOU FOTOCHEMILUMINISCENCE NA PŘÍSTROJI PHOTOCHEM

STANOVENÍ ANTIOXIDAČNÍ KAPACITY METODOU FOTOCHEMILUMINISCENCE NA PŘÍSTROJI PHOTOCHEM STANOVENÍ ANTIOXIDAČNÍ KAPACITY METODOU FOTOCHEMILUMINISCENCE NA PŘÍSTROJI PHOTOCHEM ANTIOXIDAČNÍ KAPACITA RŮZNÝCH DRUHŮ MASA (drůbeží, rybí) Princip metodiky: Analyzátor Photochem je určen pro stanovení

Více

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin

Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními prin Autoři: Pavel Zachař, David Sýkora Ukázky spekter k procvičování na semináři: Tento soubor je pouze prvním ilustrativním seznámením se základními principy hmotnostní spektrometrie a v žádném případě nezahrnuje

Více

CS Úřední věstník Evropské unie L 54/85

CS Úřední věstník Evropské unie L 54/85 26.2.2009 CS Úřední věstník Evropské unie L 54/85 F. STANOVENÍ DICLAZURILU 2,6-dichlor-alfa-(4-chlorofenyl)-4-(4,5-dihydro-3,5-dioxo-1,2,4-triazin-2-(3-H)yl)benzenacetonitril 1. Účel a rozsah Tato metoda

Více

STANOVENÍ VYBRANÝCH PERFLUOROALKYLOVÝCH SLOUČENIN V KOMPLEXNÍCH MATRICÍCH

STANOVENÍ VYBRANÝCH PERFLUOROALKYLOVÝCH SLOUČENIN V KOMPLEXNÍCH MATRICÍCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA CHEMICKÁ ÚSTAV CHEMIE A TECHNOLOGIE OCHRANY ŽIVOTNÍHO PROSTŘEDÍ FACULTY OF CHEMISTRY INSTITUTE OF CHEMISTRY AND TECHNOLOGY OF ENVIRONMENTAL

Více

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie

10. Tandemová hmotnostní spektrometrie. Princip tandemové hmotnostní spektrometrie 10. Tandemová hmotnostní spektrometrie Princip tandemové hmotnostní spektrometrie Informace získávané při tandemové hmotnostní spektrometrii Možné způsoby uspořádání tandemové HS a/ scan fragmentů vzniklých

Více

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD

VYUŽITÍ A VALIDACE AUTOMATICKÉHO FOTOMETRU V ANALÝZE VOD Citace Kantorová J., Kohutová J., Chmelová M., Němcová V.: Využití a validace automatického fotometru v analýze vod. Sborník konference Pitná voda 2008, s. 349-352. W&ET Team, Č. Budějovice 2008. ISBN

Více

6) Zátěž české populace POPs

6) Zátěž české populace POPs 6) Zátěž české populace POPs Polychlorované bifenyly (PCB) jsou směsí 209 kongenerů, z nichž u 36 byl popsán jejich výskyt v prostředí, asi 15 je detekováno v lidském organismu a 12 kongenerů odpovídá

Více

Jednotné pracovní postupy zkoušení krmiv MULTIREZIDUÁLNÍ METODA STANOVENÍ MYKOTOXINŮ METODOU LC-MS/MS

Jednotné pracovní postupy zkoušení krmiv MULTIREZIDUÁLNÍ METODA STANOVENÍ MYKOTOXINŮ METODOU LC-MS/MS Národní referenční laboratoř Strana 1 MULTIREZIDUÁLNÍ METODA STANOVENÍ MYKOTOXINŮ METODOU LC-MS/MS 1 Rozsah a účel Postup je určen pro analýzu širokého spektra mykotoxinů v obilovinách, krmných surovinách

Více

L 54/76 CS Úřední věstník Evropské unie 26.2.2009

L 54/76 CS Úřední věstník Evropské unie 26.2.2009 L 54/76 CS Úřední věstník Evropské unie 26.2.2009 7. Opakovatelnost Rozdíl mezi výsledky dvou paralelních stanovení provedených na stejném vzorku týmž laborantem nesmí překročit: 5 mg/kg v absolutní hodnotě

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice STAVEBNÍ MATERIÁLY, JAKO ZDROJ TOXICKÝCH LÁTEK Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu

Více

SPE je metoda vhodná pro rychlou přípravu vzorků, která užívá

SPE je metoda vhodná pro rychlou přípravu vzorků, která užívá Extrakce na pevné fázi (SPE) Příprava předmětu byla podpořena projektem OPPA č. CZ.2.17/3.1.00/33253 Extrakce na pevné fázi (SPE) (Solid Phase Extraction) SPE je metoda vhodná pro rychlou přípravu vzorků,

Více

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC

Jednotné pracovní postupy zkoušení krmiv Stanovení obsahu celkového a volného tryptofanu metodou HPLC Strana 1 STANOVENÍ OBSAHU CELKOVÉHO A VOLNÉHO TRYPTOFANU METODOU HPLC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení obsahu celkového a volného tryptofanu v krmivech metodou vysokoúčinné kapalinové

Více

LABORATOŘE OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE

LABORATOŘE OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘE OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) Z Technologie prekurzorů léčiv onkologických onemocnění Vedoucí práce: Ing. Jan Svoboda Umístění práce: AS58 1 1 ÚVOD Platinová cytostatika tvoří nejvýznamnější

Více

Látky, jejich vlastnosti, skupenství, rozpustnost

Látky, jejich vlastnosti, skupenství, rozpustnost - zná zásady bezpečné práce v laboratoři, poskytne první pomoc a přivolá pomoc při úrazech - dokáže poznat a pojmenovat chemické nádobí - pozná skupenství a jejich přeměny - porovná společné a rozdílné

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU 5-VINYL - 2-THIOOXAZOLIDONU (GOITRINU) METODOU GC 1 Rozsah a účel Metoda specifikuje podmínky pro stanovení vinylthiooxazolidonu (dále VOT) v krmivech.

Více

BEZPEČNOSTNÍ LIST. Brzdová kapalina ATE - DOT 4 ( Super Blue Racing)

BEZPEČNOSTNÍ LIST. Brzdová kapalina ATE - DOT 4 ( Super Blue Racing) BEZPEČNOSTNÍ LIST Datum vydání: 20.2.1997 Strana: 1 Datum revize: Název výrobku: Brzdová kapalina ATE - DOT 4 ( Super Blue Racing) 1. Identifikace látky nebo přípravku a výrobce nebo dovozce 1.1 Chemický

Více

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod

Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Radiační odstraňování vybraných kontaminantů z podzemních a odpadních vod Václav Čuba, Viliam Múčka, Milan Pospíšil, Rostislav Silber ČVUT v Praze Centrum pro radiochemii a radiační chemii Fakulta jaderná

Více

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU A A VITAMÍNU E METODOU HPLC

Jednotné pracovní postupy zkoušení krmiv STANOVENÍ OBSAHU VITAMÍNU A A VITAMÍNU E METODOU HPLC Národní referenční laboratoř Strana 1 STANOVENÍ OBSAHU VITAMÍNU A A VITAMÍNU E METODOU HPLC 1 Účel a rozsah Postup specifikuje podmínky pro stanovení vitamínu A a vitamínu E v krmivech a premixech. 2 Princip

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Animovaná chemie Top-Hit Analytická chemie Analýza anorganických látek Důkaz aniontů Důkaz kationtů Důkaz kyslíku Důkaz vody Gravimetrická analýza Hmotnostní spektroskopie Chemická analýza Nukleární magnetická

Více

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ

LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ LABORATOŘ ANALÝZY POTRAVIN A PŘÍRODNÍCH PRODUKTŮ STANOVENÍ SACHARIDŮ METODOU VYSOKOÚČINNÉ CHROMATOGRAFIE VE SPOJENÍ S DETEKTOREM EVAPORATIVE LIGHT SCATTERING (HPLC-ELSD) 1 Základní požadované znalosti

Více

Metody separace. přírodních látek

Metody separace. přírodních látek Metody separace přírodních látek (5) Chromatografie; základní definice a klasifikace ruzných metod; kapalinová chromatografie, plynová chromatografie, přístrojová technika. Chromatografie «F(+)d» 1897

Více

PLYNOVÁ CHROMATOGRAFIE (GC)

PLYNOVÁ CHROMATOGRAFIE (GC) PLYNOVÁ CHROMATOGRAFIE (GC) Dělení látek mezi stacionární a mobilní fázi na základě rozdílů v těkavosti a struktuře (separované látky vykazují rozdílnou chromatografickou afinitu) Metoda vhodná pro látky:

Více

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP.

Chemie - 3. ročník. přesahy, vazby, mezipředmětové vztahy průřezová témata. očekávané výstupy RVP. témata / učivo. očekávané výstupy ŠVP. očekávané výstupy RVP témata / učivo Chemie - 3. ročník Žák: očekávané výstupy ŠVP přesahy, vazby, mezipředmětové vztahy průřezová témata 1.1., 1.2., 1.3., 1.4., 2.1. 1. Látky přírodní nebo syntetické

Více

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda

Zdroje iont používané v hmotnostní spektrometrii. Miloslav Šanda Zdroje iont používané v hmotnostní spektrometrii Miloslav Šanda Ionizace v MS Hmotnostní spektrometrie je fyzikáln chemická metoda, pi které se provádí separace iont podle jejich hmotnosti a náboje m/z

Více

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV

EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV Úloha č. 7 Extrakce a chromatografické dělení (C18 a TLC) a stanovení listových barviv -1 - EXTRAKCE, CHROMATOGRAFICKÉ DĚLENÍ (C18, TLC) A STANOVENÍ LISTOVÝCH BARVIV LISTOVÁ BARVIVA A JEJICH FYZIOLOGICKÝ

Více

Test vlastnosti látek a periodická tabulka

Test vlastnosti látek a periodická tabulka DUM Základy přírodních věd DUM III/2-T3-2-08 Téma: Test vlastnosti látek a periodická tabulka Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý Mgr. Josef Kormaník TEST Test vlastnosti

Více

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství

Pevné lékové formy. Vlastnosti pevných látek. Charakterizace pevných látek ke zlepšení vlastností je vhodné využít materiálové inženýrství Pevné lékové formy Vlastnosti pevných látek stabilita Vlastnosti léčiva rozpustnost krystalinita ke zlepšení vlastností je vhodné využít materiálové inženýrství Charakterizace pevných látek difraktometrie

Více

Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.:

Bezpečnost chemických výrob N Petr Zámostný místnost: A-72a tel.: Bezpečnost chemických výrob N1111 Petr Zámostný místnost: A-72a tel.: 4222 e-mail: petr.zamostny@vscht.cz Rizika spojená s toxickými látkami Toxicita látek Zákonné limity pro práci s toxickými látkami

Více