RADIOANALYTICKÉ METODY V. Neaktivační interakční metody

Rozměr: px
Začít zobrazení ze stránky:

Download "RADIOANALYTICKÉ METODY V. Neaktivační interakční metody"

Transkript

1 RADOAALYTCKÉ METODY V. eaktivační interakční metody J. John (s využitím podkladů doc. RDr. Adolfa Zemana, CSc.) Elektronická verze připravena s podporou

2 Třídění ndikátorové metody. ndikátorová analýza a. Analýza přirozeně rad. látek. zotopová zřeďovací analýza 3. Radioreagenční metody 3a. Radiometrické titrace nterakční metody Aktivační 4. Aktivační analýza eaktivační 5. Metody založené na absorpci a rozptylu jad. záření 6. Emisní metody

3 3 Absorpce se řídí vztahy: Absorpce b d A Z k x A Z k A l d d x e e A Z n e e e m l l ~ Pro konstantní.x závisí zeslabení pouze na Z/A. Z/A = 0,4 0,5 pro všechny prvky kromě vodíku (absorbuje nejsilněji). Využití: Stanovení poměru H : C u uhlovodíků d p p i i m m C C m H H m i e p ) ( 0

4 Absorpce b () Uhlovodíky stanovení H : C je kompletní analýza. Detektor Zdroj Filtr Pro stejný objem vzorku třeba znát, lepší stejné množství ( stejné d není třeba měřit ). Zářič 90 Sr. Místo 0 měříme 0 po absorpci ve standardním filtru ( 0 = 0.e.x ). Přesnost ± 0, % vodíku. Vliv dalších prvků jako O, či S je malý. apř. při analýze minerálních olejů % O nebo způsobí chybu 0,07 %, respektive 0,04 % H. Obráceně: Známe H : C stanovujeme. Přesnost až ± 0,000 g/cm 3. 4

5 Absorpce g Stejný vztah jako pro b: 0 e l d 0 e d m Využití pro měření hmotnosti, hustoty, tloušťky i chemického složení. ejsilnější závislost m na E při převládající interakci fotoefektem. μ m [cm ρ - ] 0,0 0, Fe Al H O C Pb ~ 0,3 MeV 0,0 0,0 0,05 0, 0,5,0 E γ [MeV] E < 300 kev (převládá fotoefekt): 0 e 4 Z k f ( E) d A E < 0,7 MeV (převládá Comptonův rozptyl): 0 e Z k d A (uplatní se jen zvýšená absorpce H). 5

6 Absorpce g () Příklady použití: Analýza uhlovodíků (zdroj 60 Co, výhody není třeba korigovat na O a S, lze měřit i v nádobě, nevýhoda stínění, velké vzorky). Stanovení vlhkosti betonu (zdroj 0m Ag měření v Comptonově oblasti). Popelnatost uhlí: Uhlí nízká Z (C, H, O, ) Popel vyšší Z (Si, Al, Fe, Ca, Mg.) ízkoenergetické záření ( 70 Tm 9 d, b, P, E g = 84 kev) Detektor Kalibrace přímo v % popelnatosti. Přesnost až 0,4 % popelnatosti. γ 6

7 Absorpce g (3) Praktické použití:. S tvrdým gama zářičem: Měření tloušťky x při konstantním Z/A a. Měření plošné hmotnosti x při konstantním Z/A, případně, pokud je konstantní i x.. S měkkým gama zářičem: Určení Z/A při konstantní plošné hmotnosti x. Použití v praxi: Stanovení vlhkosti Koncentrace roztoků Analýza slitin Popelnatost uhlí e e Z k d A 4 Z k f ( E) d A 7

8 Absorpce g (4) Použití v technické praxi: problém dodržení stejné vrstvy materiálu (např. na pásovém dopravníku). Metoda g g (měření s měkkým a tvrdým zdrojem gama současně). Tvrdý zdroj malý vliv Z/A stanovení x. Měkký zdroj po korekci na x stanovení Z/A ze závislosti Z 4 /A. D D měkké γ tvrdé γ [Z 4 /A] [ρx] 8

9 Absorpce záření X Výhodné pouze fotoefekt, absorpce závisí na Z 4 /A. Zdroj: rentgenky nebo radionuklidové např. 55 Fe EZ 55 Mn h ( E 6 kev ) Použití:. Stanovení S v kapalných uhlovodících (v ropě) S: m = 00 cm.g C: m = 0 cm.g H: m = 0,5 cm.g Pokud známe přibližně poměr C : H a, lze stanovit až 0,0 % S.. Analýza slitin blízkých prvků Př.: Analýza slitiny Cu s i pomocí 67 Ga EZ 67 Zn h ( E 8,7 kev ) i: silná absorpce (K abs = 8,4 kev) Cu: slabá absorpce (K abs = 9 kev) 9

10 Zpětný rozptyl b Důsledek interakce b s obaly i jádry atomů. Popis: Koeficient zpětného rozptylu R. R je funkcí složení látky, síly vrstvy, energie záření a geometrického uspořádání β + - R% R% r 00 az b R Ar 0 e Kr Xe Z Perioda Z a b -0,3 -, , ,476 V , ,556 V , ,664 V ,65 +,396 0

11 Zpětný rozptyl b () Sloučeniny (směsi) střední Z. Více možností výpočtu, např. Z Z i p p Z i A Z i p A Z M Z A Z H anomální chování (velká absorpce b negativní ovlivnění rozptylu). Možné korekce: R Z l H max [ cm, az b 7,434 E 3 max 0 MeV, p 0,38x g cm 3 ] k H p Z k i p Z i k i l l i P / / Tm 3 A A i i 70 / Al / Al 0m 900m

12 Zpětný rozptyl b (3) E ODR max, 0,38 0 Z E DOP max Al (Z = 3) Pb (Z = 8) Tl 04 Z = 6 (Fe) Z = 46 (Pd) detektor detektor detektor γ Θ = 80 ODR Θ pro γ = 0, Z > 0 Z

13 Zpětný rozptyl b (4) Z Z > Z Z E max E E E max / d [mg/cm ] V DSK 3

14 Zpětný rozptyl g Komplikovanější než pro b. změna směru Comptonovým rozptylem, ale pak fotoefekt. Závislost na energii záření R Co-60 Cr-5,7,33 MeV 0,3 MeV Z 4

15 5 Rutherford Back Scattering (RBS). Zpětný rozptyl a J J α, M, E α, M, E Θ M M, E 3 E > E 80, sin cos M M M M E E M M M M M E E

16 Rutherford Back Scattering () high energy particles directed toward a sample bombarding particles are detected Energy Angle technique used for determining depth distributions of elements based on the energy of the backscattered particle He+ or H+ particles are used at energies in the order of 00 kev to MeV backscattered energy related to the mass of the target element number of backscattered ions proportional to the square of Z heavy target (W) backscattered energy is high, almost as high as the incident energy light target atoms (O) backscattered energy is low, less than 5% of the incident energy» Relationship kinematic factor» M is scatter K E E M cos M M sin 0 M M 6

17 Rutherford Back Scattering (3) 7

18 Zpětný rozptyl a () ZDROJ E /E,0 A 0,8 0,6 0, , Θ a) DETEKTOR VAKUUM resp. H VZOREK < 00 μg/cm b) Pro Θ = 60, E = 6 MeV, Z =, σ = 0-3 m Z < 5: (α,α ) (α,p) : [B,, F, a, Mg, Al, Si] 4 Cm Au-filtr 8

19 Absorpce a rozptyl neutronů PRVEK σ ABS σ ROZPT. PRVEK σ ABS σ ROZPT. [0-8 m ] [0-8 m ] [0-8 m ] [0-8 m ] H 0,33 38,0 K,97,0 Li 70, Ca 0,43 3, B 753 4,4 Mn,6,0 C 0,0045 5,5 Fe,43,8,78,4 Cd 400 O 0-4 4,4 n 90 a 0,49 3,6 Sm 5500 Mg 0,06 3,7 Eu 4600 Al 0,,5 Gd Si 0,3,4 Dy 00 P 0,9 3,6 Hg 380 S 0,49, Pb 0,7,4 Cl 3,6 5 r 430 Hf 05 9

20 Absorpce a rozptyl neutronů () Obsah prvků ekvivalentní 0, % B: PRVEK Li Cl Mn Cd Hg n TR-GD OBSAH [%] 0,6 6,8 7 0,3 3,4 4 0,0 n x 0 e n m M A R.Z. PARAF roztok H 3 BO 3 L D = 50 mg/l Cd D Cd VZ D Z PARAF 0

21 Absorpce a rozptyl neutronů (3) 3 Cd PARAF Det (n t ) 4 Registrace rychlých neutronů D VZ Cd ZDROJ n Fe ~ 0 cm 5 Registrace rychlých neutronů ZDROJ n rychlých D PARAF 6 VZ Cd Fe Cd ZDROJ n rychlých n D VZ

22 Třídění ndikátorové metody. ndikátorová analýza a. Analýza přirozeně rad. látek. zotopová zřeďovací analýza 3. Radioreagenční metody 3a. Radiometrické titrace nterakční metody Aktivační 4. Aktivační analýza eaktivační 5. Metody založené na absorpci a rozptylu jad. záření 6. Emisní metody

23 Rentgenfluorescenční analýza ) Rentgenová spektrální emisní analýza ) Rentgenová spektrální analýza sekundární emisí = Rentgenfluorescenční analýza (X-ray Fluorescence Analysis, XRF) 3

24 Rentgenfluorescenční analýza () WLDXRF = wawelenght dispersive X-ray spectrometry: GM kruh goniometru RTG φ φ kolimátor KRYSTAL λ = d sin φ EDXRF = energy dispersive X-ray spektrometry: AALYZÁTOR RTG DETEKTOR VZOREK 4

25 V V V V Rentgenfluorescenční analýza () β β γ 4f 7/ 4f 5/ 4d 5/ 4d 3/ 4p 3/ 4p / 4s / M V V β β 3 α β α M-série 3d 5/ 3d 3/ 3p 3/ 3p / 3s / L K α α K-série L-série p 3/ p / s / s / j = l + ½ l = ± m = l + j = l ½ j = 0, (l+) 5

26 Rentgenfluorescenční analýza (3) Kα : Kα : Kβ : Kβ = 00 : 50 : 5 : 5 Lα : Lα : Lβ : Lβ : Lγ = 00 : 0 : 80 : 60 : 40 PRO STEJÉ λ Kα : Lα = 0 : PRO K-serii: Eβ > Eβ > Eα > Eα EK ~ 7-8 krát EL EK α : Al (,487 kev) U (98,48 kev) 6

27 7 Rentgenfluorescenční analýza (4) MOSELEY: ) 3 ( ) ( ) ( ) ( ) ( k Z R Z R c a Z A L k a - vlnočet

28 Rentgenfluorescenční analýza (5) DRASLÍK K α vlnová disperze rozlišení 3 ev (KRYSTAL.) Cd L α energetická disperze rozlišení 50 ev (Si/Li) E a(tl) rozlišení 60 kev!!! 8

29 Rentgenfluorescenční analýza (6) W q b i n n x i = fluorescenční účinnost Z Pro K-serii: b k Z 4 4 Z 34, 4 9

30 Rentgenfluorescenční analýza (7) XRF měření vzorku uspořádání: a) na průchod R.. VZ b) na odraz VZ detektor R.. detektor VZOREK VZOREK 30

31 Rentgenfluorescenční analýza (8) γ DVOUSTUPŇOVÉ BUZEÍ VZOREK X X γ - ROZPTÝLEÉ Z. X: minimum při 90 - MATRCOVÝ EFEKT 3

32 Rentgenfluorescenční analýza (9) ZÁŘČE PRO XRF A) X a měkké γ B) γ tvrdé T ½ záření EERGE [kev] 55 Fe,7 r X ( 55 Mn) 5,7 09 Cd 470 d X ( 09 Ag) γ 87,5 4 Am 470 r X (p) 7,7 γ 6,4 γ 59,6 70 Tm 7 d BREMS až 000 γ Co 70 d γ 4,, 36 9 r 74,5 d γ 308, 468, Cs 33 r X (Ba) 3, γ (Ba) 66 3

33 Rentgenfluorescenční analýza (0) ZÁŘČE PRO XRF C) čisté β T ½ záření EERGE [kev] 3 H,3 r β - 8 *) (Ti, Zr, Sc, Zr, BREMS) 47 Pm,6 r β 30 **) (Al, Ag, BREMS) *) E = 4,50 kev (Ti)K α E =,04 kev (Zr)L α **) 47 Pm/Al pro Z =

34 Rentgenfluorescenční analýza () APOLLO 5 (Měsíc) 7 kanál 0,5,75 kev 5,5 kev Al : Si VEĚRA 3, 4 AAL. CHEM 54, 957A (98) 450 C, ~ 90 atm (~ 9 MPa) D proporc. dat. (4x) (90 % Kr + 0 % CO ) 55 Fe D 3 D D 38 Pu 56-kanál 9 W, 8 kg, 8 kev Mg-Fe x X VZOREK 34

35 Rentgenfluorescenční analýza () % (Veněra 4) MgO 8, ± 3,3 Al O 3 7,9 ±,6 SiO 48,7 ± 3,6 K O 0, ± 0,07 CaO 0,3 ±, TiO,5 ± 0,4 MnO 0,6 ± 0,08 FeO 9, ±,9 ~ 96 % 35

36 FLTR Rentgenfluorescenční analýza (3) μ μ log μ m μ E E K(f) E E 36

37 Rentgenfluorescenční analýza (4) PRO MĚŘEÍ V OBLAST E f e e d d + F F + F E E E E E E 37

38 Rentgenfluorescenční analýza (5) DFERECÁLÍ VYVÁŽEÉ FLTRY (ROSSOVY) μ E K E K F F AALYTCKÁ LKA E K < E a < E K (F ) (F ) E E a E E 38

39 39 Rentgenfluorescenční analýza (6) MĚŘEÍ: ) ( ) ( ) ( ) ( ) ( ) ( d E d E a d E d E d E a d E a a e e e e e e F : F : μ (E )d = μ (E )d μ (E )d = μ (E )d VYVÁŽEÍ k k e e a a d E d E a a a ) ( ) ( ) (

40 Rentgenfluorescenční analýza (7) RXE RADOACTVE MPLAT DUCED X-RAY EMSSO apř.: 57 Co, 67 Ga, 99m Tc, n, 5, 0 Tl se inkorporuje do analyzovaného vzorku - stanovení kovů v orgánech in vivo budící radionuklid ve formě radiofarmaka J. RADOAALYTCAL AD UCLEAR CHEMSTRY Articles 48 Vol. (99)

41 Particle nduced X-Ray Emission (PXE) Particle-induced x-ray emission (PXE) Observing and detecting fluorescent x-rays charged particles from an accelerator hits a thin sample in a vacuum chamber typically -4 MeV protons particles collide with the electrons in the material nner shell electrons ejected Faraday cup is used to collect the charge deposited by the particle Determine beam current characteristic x-rays from the sample are detected 4

42 PXE () uspořádání (Harvard PXE system) 4

43 PXE (3) spektra spectrum consists of discrete x-ray peaks superimposed on a continuous bremsstrahlung spectrum K a and K b lines of lighter elements from the filling of the K shell vacancies L lines of the heavier elements peaks corresponding to a given element are integrated to provide peak areas amounts of element obtained from * knowledge of the absolute ionization cross sections * fluorescence yields * beam current geometry comparison to the results obtained from a thin elemental standard Elemental not isotopic composition Sensitivity 0 to 00 ppm 43

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am.

1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 1 Pracovní úkoly 1. Proveďte energetickou kalibraci gama-spektrometru pomocí alfa-zářiče 241 Am. 2. Určete materiál několika vzorků. 3. Stanovte závislost účinnosti výtěžku rentgenového záření na atomovém

Více

ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY

ACH 02 VZÁCNÉPLYNY. Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY VZÁCNÉPLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY 1 VZÁCNÉ PLYNY 2 Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII VIII s 2 p

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D.

Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Analytické metody využívané ke stanovení chemického složení kovů. Ing.Viktorie Weiss, Ph.D. Rentgenová fluorescenční spektrometrie ergiově disperzní (ED-XRF) elé spektrum je analyzováno najednou polovodičovým

Více

NITON XL3t GOLDD+ Nový analyzátor

NITON XL3t GOLDD+ Nový analyzátor Nový analyzátor NITON XL3t GOLDD+ Ruční rentgenový analyzátor NITON XL3t GOLDD+ je nejnovější model od Thermo Fisher Scientific. Navazuje na úspěšný model NITON XL3t GOLDD. Díky špičkovým technologiím

Více

Rentgenfluorescenční analýza, pomocník nejen při studiu památek

Rentgenfluorescenční analýza, pomocník nejen při studiu památek Rentgenfluorescenční analýza, pomocník nejen při studiu památek Ondřej Vrba (vrba.ondrej@gmail.com) Do Hoang Diep - Danka(dohodda@gmail.com) Verča Chadimová (verusyk@email.cz) Metoda využívající RTG záření

Více

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec

Fotoelektronová spektroskopie Instrumentace. Katedra materiálů TU Liberec Fotoelektronová spektroskopie Instrumentace RNDr. Věra V Vodičkov ková,, PhD. Katedra materiálů TU Liberec Obecné schéma metody Dopad rtg záření emitovaného ze zdroje na vzorek průnik fotonů několik µm

Více

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika

Fotonásobič. fotokatoda. typicky: - koeficient sekundární emise = počet dynod N = zisk: G = fokusační elektrononová optika Fotonásobič vstupní okno fotokatoda E h fokusační elektrononová optika systém dynod anoda e zesílení G N typicky: - koeficient sekundární emise = 3 4 - počet dynod N = 10 12 - zisk: G = 10 5-10 7 Fotonásobič

Více

Metodický postup stanovení kovů v půdách volných hracích ploch metodou RTG.

Metodický postup stanovení kovů v půdách volných hracích ploch metodou RTG. Strana : 1 1) Význam a použití: Metoda je používána pro stanovení prvků v půdách volných hracích ploch. 2) Princip: Vzorek je po odběru homogenizován, je stanovena sušina, ztráta žíháním. Suchý vzorek

Více

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto

Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Gymnázium Vysoké Mýto nám. Vaňorného 163, 566 01 Vysoké Mýto Periodická soustava prvků Chemické prvky V současné době známe 104 chemických prvků. Většina z nich se vyskytuje v přírodě. Jen malá část byla

Více

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie

Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Spektroskopie subvalenčních elektronů Elektronová mikroanalýza, rentgenfluorescenční spektroskopie Metody charakterizace nanomateriálů I RNDr. Věra Vodičková, PhD. rentgenová spektroskopická metoda k určen

Více

Aplikace jaderné fyziky (několik příkladů)

Aplikace jaderné fyziky (několik příkladů) Aplikace jaderné fyziky (několik příkladů) Pavel Cejnar Ústav částicové a jaderné fyziky MFF UK pavel.cejnar@mff.cuni.cz Příklad I Datování Galileiho rukopisů Galileo Galilei (1564 1642) Všechny vázané

Více

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin.

1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 1 Pracovní úkoly 1. Ze zadané hustoty krystalu fluoridu lithného určete vzdálenost d hlavních atomových rovin. 2. Proměřte úhlovou závislost intenzity difraktovaného rentgenového záření při pevné orientaci

Více

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata

Vzdělávací oblast: Člověk a příroda. Vyučovací předmět: Chemie. Třída: tercie. Očekávané výstupy. Poznámky. Přesahy. Žák: Průřezová témata Vzdělávací oblast: Člověk a příroda Vyučovací předmět: Chemie Třída: tercie Očekávané výstupy Uvede příklady chemického děje a čím se zabývá chemie Rozliší tělesa a látky Rozpozná na příkladech fyzikální

Více

INTERAKCE IONTŮ S POVRCHY II.

INTERAKCE IONTŮ S POVRCHY II. Úvod do fyziky tenkých vrstev a povrchů INTERAKCE IONTŮ S POVRCHY II. Metody IBA (Ion Beam Analysis): pružný rozptyl nabitých částic (RBS), detekce odražených atomů (ERDA), metoda PIXE, Spektroskopie rozptýlených

Více

Praktikum III - Optika

Praktikum III - Optika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum III - Optika Úloha č. 13 Název: Vlastnosti rentgenového záření Pracoval: Matyáš Řehák stud.sk.: 13 dne: 3. 4. 2008 Odevzdal

Více

Svazek pomalých pozitronů

Svazek pomalých pozitronů Svazek pomalých pozitronů pozitrony emitované + zářičem moderované pozitrony střední hloubka průniku Příklad: 0 z P z dz 1 Mg: -1 =154 m Al: -1 = 99 m Cu: -1 = 30 m z pravděpodobnost, p že pozitron pronikne

Více

RTG difraktometrie 1.

RTG difraktometrie 1. RTG difraktometrie 1. Difrakce a struktura látek K difrakci dochází interferencí mřížkou vychylovaných vln Když dochází k rozptylu vlnění na různých atomech molekuly či krystalu, tyto vlny mohou interferovat

Více

Chemie a fyzika pevných látek l

Chemie a fyzika pevných látek l Chemie a fyzika pevných látek l p2 difrakce rtg.. zářenz ení na pevných látkch,, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie

Více

Elektronová mikroskopie a mikroanalýza-2

Elektronová mikroskopie a mikroanalýza-2 Elektronová mikroskopie a mikroanalýza-2 elektronové dělo elektronové dělo je zařízení, které produkuje elektrony uspořádané do svazku (paprsku) elektrony opustí svůj zdroj katodu- po dodání určité množství

Více

REFERENČNÍ MATERIÁLY

REFERENČNÍ MATERIÁLY I. REFEREČÍ MATERIÁLY, CERTIFIKOVAÉ Českým metrologickým institutem : C, S, v ocelích a litinách OCELI s certifikovanými obsahy C, S, resp. balení 250 g * Sada nízkolegovaných ocelí CRM CZ 2003 A 8 A CERTIFIKOVAÉ

Více

Měření absorbce záření gama

Měření absorbce záření gama Měření absorbce záření gama Úkol : 1. Změřte záření gama přirozeného pozadí. 2. Změřte záření gama vyzářené gamazářičem. 3. Změřte záření gama vyzářené gamazářičem přes absorbátor. 4. Naměřené závislosti

Více

VZÁCNÉ PLYNY ACH 02. Katedra chemie FP TUL

VZÁCNÉ PLYNY ACH 02. Katedra chemie FP TUL VZÁCNÉ PLYNY ACH 02 Katedra chemie FP TUL www.kch.tul.cz VZÁCNÉ PLYNY VZÁCNÉ PLYNY Xenon Radon Vzácné plyny 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 I II III IV V VI VII VIII I II III IV V VI VII

Více

Detekce a spektrometrie neutronů

Detekce a spektrometrie neutronů Detekce a spektrometrie neutronů 1. Pomalé neutrony a) aktivní detektory, b) pasivní detektory, c) mechanické monochromátory 2. Rychlé neutrony a) detektory používající zpomalování neutronů b) přímá detekce

Více

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita

10/21/2013. K. Záruba. Chování a vlastnosti nanočástic ovlivňuje. velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita Chování a vlastnosti nanočástic ovlivňuje velikost a tvar (distribuce) povrchové atomy, funkční skupiny porozita stabilita K. Záruba Optická mikroskopie Elektronová mikroskopie (SEM, TEM) Fotoelektronová

Více

Rentgenová difrakce a spektrometrie

Rentgenová difrakce a spektrometrie Rentgenová difrakce a spektrometrie RNDr.Jaroslav Maixner, CSc. VŠCHT v Praze Laboratoř rentgenové difraktometrie a spektrometrie Technická 5, 166 28 Praha 6 224354201, 24355023 Jaroslav.Maixner@vscht.cz

Více

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál

Úvod do fyziky tenkých vrstev a povrchů. Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál Úvod do fyziky tenkých vrstev a povrchů Spektroskopie Augerových elektron (AES), elektronová mikrosonda, spektroskopie prahových potenciál ty i hlavní typy nepružných srážkových proces pr chodu energetických

Více

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS

2. FYZIKÁLNÍ ZÁKLADY ANALYTICKÉ METODY RBS RBS Jaroslav Král, katedra fyzikální elektroniky FJFI, ČVUT. ÚVOD Spektroskopie Rutherfordova zpětného rozptylu (RBS) umožňuje stanovení složení a hloubkové struktury tenkých vrstev. Na základě energetického

Více

é č í é ě í ž ý í Ú á í ž ý í ý Á í ÁŘ É Á ý á ář é í á í ž ý í Ř ú á á č ý š á í š í řá ě č á í í é ář é á é é č á ú í ář é á á ů ě ž é é č é é ě ý ží á ý ý í ář é á ě ž é ří é ď ý é ě í í č í č íčá é

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné

Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné Otázka: Obecná chemie Předmět: Chemie Přidal(a): ZuzilQa Základní pojmy v chemii, periodická soustava prvků Chemie = přírodní věda zkoumající složení a strukturu látek a jejich přeměny v látky jiné -setkáváme

Více

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm

Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Rtg. záření: Rentgenová spektrální analýza Elektromagnetické záření s vlnovou délkou 10-2 až 10 nm Vznik rtg. záření: 1. Rtg. záření se spojitým spektrem vzniká při prudkém zabrzdění urychlených elektronů.

Více

Chemie a fyzika pevných látek p2

Chemie a fyzika pevných látek p2 Chemie a fyzika pevných látek p2 difrakce rtg. záření na pevných látkch, reciproká mřížka Doporučená literatura: Doc. Michal Hušák dr. Ing. B. Kratochvíl, L. Jenšovský - Úvod do krystalochemie Kratochvíl

Více

Techniky prvkové povrchové analýzy elemental analysis

Techniky prvkové povrchové analýzy elemental analysis Techniky prvkové povrchové analýzy elemental analysis (Foto)elektronová spektroskopie (pro chemickou analýzu) ESCA, XPS X-ray photoelectron spectroscopy (XPS) Any technique in which the sample is bombarded

Více

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy,

Fyzika (učitelství) Zkouška - teoretická fyzika. Čas k řešení je 120 minut (6 minut na úlohu): snažte se nejprve rychle vyřešit ty nejsnazší úlohy, Státní bakalářská zkouška. 9. 05 Fyzika (učitelství) Zkouška - teoretická fyzika (test s řešením) Jméno: Pokyny k řešení testu: Ke každé úloze je správně pouze jedna odpověď. Čas k řešení je 0 minut (6

Více

Využití metod atomové spektrometrie v analýzách in situ

Využití metod atomové spektrometrie v analýzách in situ Využití metod atomové spektrometrie v analýzách in situ Oto Mestek Úvod Termínem in situ označujeme výzkum prováděný na místě původního výskytu analyzovaného vzorku nebo jevu (opakem je analýza ex situ,

Více

METODY ANALÝZY POVRCHŮ

METODY ANALÝZY POVRCHŮ METODY ANALÝZY POVRCHŮ (c) - 2017 Povrch vzorku 3 definice IUPAC: Povrch: vnější část vzorku o nedefinované hloubce (Užívaný při diskuzích o vnějších oblastech vzorku). Fyzikální povrch: nejsvrchnější

Více

Pozitron teoretická předpověď

Pozitron teoretická předpověď Pozitron teoretická předpověď Diracova rovnice: αp c mc x, t snaha popsat relativisticky pohyb elektronu x, t ˆ i t řešení s negativní energií vakuum je Diracovo moře elektronů pozitrony díry ve vaku Paul

Více

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Radioterapie. X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie X31LET Lékařská technika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Radioterapie je klinický obor využívající účinků ionizujícího záření v léčbě jak zhoubných, tak nezhoubných nádorů

Více

Proč by se průmysl měl zabývat výzkumem nanomateriálů

Proč by se průmysl měl zabývat výzkumem nanomateriálů Proč by se průmysl měl zabývat výzkumem nanomateriálů Měření velikost částic Jak vnímat nanomateriály Pigmenty x nanopigmenty Nové vlastnosti? Proč se věnovat studiu nanomateriálů Velikost (cm) 10-1000

Více

Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 2012

Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 2012 Odhad zdrojů atmosférického aerosolu v městském obvodu Ostrava-Radvanice a Bartovice v zimě 212 CENATOX, GAČR P53/12/G147 P. Pokorná 1, J. Hovorka 1, Jan Bendl 1, Alexandra Baranová 1, Martin Braniš 1

Více

ALTERNATIVNÍ METODY STANOVENÍ HLOUBKOVÉ DISTRIBUCE

ALTERNATIVNÍ METODY STANOVENÍ HLOUBKOVÉ DISTRIBUCE ALTERNATIVNÍ METODY STANOVENÍ HLOUBKOVÉ DISTRIBUCE Mgr. Hana Bártová Katedra dozimetrie a aplikace ionizujícího záření FJFI ČVUT v Praze XRF metody ve výzkumu památek 31.5.2017 2 Stanovení hloubkové distribuce

Více

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ

ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ ZÁKLADNÍ ČÁSTI SPEKTRÁLNÍCH PŘÍSTROJŮ (c) -2008, ACH/IM BLOKOVÉ SCHÉMA: (a) emisní metody (b) absorpční metody (c) luminiscenční metody U (b) monochromátor často umístěn před kyvetou se vzorkem. Části

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 09.04.2013 Číslo DUMu: VY_32_INOVACE_02_Ch_ACH

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 09.04.2013 Číslo DUMu: VY_32_INOVACE_02_Ch_ACH Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 09.04.2013 Číslo DUMu: VY_32_INOVACE_02_Ch_ACH Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Anorganická

Více

Relativistická dynamika

Relativistická dynamika Relativistická dynamika 1. Jaké napětí urychlí elektron na rychlost světla podle klasické fyziky? Jakou rychlost získá při tomto napětí elektron ve skutečnosti? [256 kv, 2,236.10 8 m.s -1 ] 2. Vypočtěte

Více

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI

VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI VYBRANÉ DOSIMETRICKÉ VELIČINY A VZTAHY MEZI NIMI Přehled dosimrických veličin: Daniel KULA (verze 1.0), 1. Aktivita: Definice veličiny: Poč radioaktivních přeměn v radioaktivním materiálu, vztažený na

Více

13. Spektroskopie základní pojmy

13. Spektroskopie základní pojmy základní pojmy Spektroskopicky významné OPTICKÉ JEVY absorpce absorpční spektrometrie emise emisní spektrometrie rozptyl rozptylové metody Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ

LEPTONY. Elektrony a pozitrony a elektronová neutrina. Miony a mionová neutrina. Lepton τ a neutrino τ LEPTONY Elektrony a pozitrony a elektronová neutrina Pozitronium, elektronové neutrino a antineutrino Beta rozpad nezachování parity, měření helicity neutrin Miony a mionová neutrina Lepton τ a neutrino

Více

Typy interakcí. Obsah přednášky

Typy interakcí. Obsah přednášky Co je to inteligentní a progresivní materiál - Jaderné analytické metody-využití iontových svazků v materiálové analýze Anna Macková Ústav jaderné fyziky AV ČR, Řež 250 68 Obsah přednášky fyzikální princip

Více

TÜV NOPRD Czech, s.r.o., Laboratoře a zkušebny Seznam akreditovaných zkoušek včetně aktualizovaných norem LPP 1 (ČSN EN 10351) LPP 2 (ČSN EN 14242)

TÜV NOPRD Czech, s.r.o., Laboratoře a zkušebny Seznam akreditovaných zkoušek včetně aktualizovaných norem LPP 1 (ČSN EN 10351) LPP 2 (ČSN EN 14242) 1 Stanovení prvků metodou (Al, As, B, Bi, Cd, Ce, Co, Cr, Cu, Fe, La, Mg, Mn, Mo, Nb, Nd, Ni, P, Pb, S, Sb, Se, Si, Sn, Ta, Te, Ti, V, W, Zn, Zr) 2 Stanovení prvků metodou (Ag, Al, Be, Bi, Cd, Ce, Co,

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Geochemie endogenních procesů 1. část

Geochemie endogenních procesů 1. část Geochemie endogenních procesů 1. část geochemie = použití chemických nástrojů na studium Země a dalších planet Sluneční soustavy počátky v 15. století spjaté zejména s kvalitou vody a půdy rozmach a první

Více

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_01_Ch_ACH

Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_01_Ch_ACH Jméno autora: Mgr. Ladislav Kažimír Datum vytvoření: 08.04.2013 Číslo DUMu: VY_32_INOVACE_01_Ch_ACH Ročník: I. Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Chemie Tematický okruh: Anorganická

Více

TÜV NORD Czech, s.r.o. Laboratoře a zkušebny Brno Olomoucká 7/9, Brno

TÜV NORD Czech, s.r.o. Laboratoře a zkušebny Brno Olomoucká 7/9, Brno Laboratoř je způsobilá aktualizovat normy identifikující zkušební postupy. Laboratoř poskytuje odborná stanoviska a interpretace výsledků zkoušek. Zkoušky: 1 Stanovení prvků metodou (Al, As, B, Bi, Cd,

Více

Využití radionuklidové rentgenfluorescenční analýzy při studiu památek

Využití radionuklidové rentgenfluorescenční analýzy při studiu památek Využití radionuklidové rentgenfluorescenční analýzy při studiu památek V. Klevarová, T. Kráčmerová, V. Vítek Gymnásium Matyáše Lercha Gymnásium Václava Hraběte Gymnásium Bystřice nad Pernštejnem veronika.klevarova@centrum.cz,

Více

ZESLABENÍ PRONIKAVÉHO IONIZUJÍCÍHO ZÁŘENÍ V NOVĚ VYVÍJENÝCH MATERIÁLECH STÍNÍCÍCH VRSTEV PRO OCHRANNÉ ODĚVY

ZESLABENÍ PRONIKAVÉHO IONIZUJÍCÍHO ZÁŘENÍ V NOVĚ VYVÍJENÝCH MATERIÁLECH STÍNÍCÍCH VRSTEV PRO OCHRANNÉ ODĚVY ZESLABENÍ PRONIKAVÉHO IONIZUJÍCÍHO ZÁŘENÍ V NOVĚ VYVÍJENÝCH MATERIÁLECH STÍNÍCÍCH VRSTEV PRO OCHRANNÉ ODĚVY ATTENUATION OF PENETRATING IONISING RADIATION IN SHIELDING LAYERS OF NEWLY DEVELOPED PERSONAL

Více

2. Spektrální metody pro prvkovou analýzu léčiv rentgenová fluorescenční analýza

2. Spektrální metody pro prvkovou analýzu léčiv rentgenová fluorescenční analýza Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 2. Spektrální metody pro prvkovou analýzu léčiv rentgenová fluorescenční analýza Pavel Matějka pavel.matejka@vscht.cz pavel.matejka@gmail.com

Více

Zpráva o analýze. Černý Kmječ MikroAnalytika, Čelákovice J. Zacha 786/11, 250 88 Čelákovice. Jan Turský (e-mail: jantursky@seznam.

Zpráva o analýze. Černý Kmječ MikroAnalytika, Čelákovice J. Zacha 786/11, 250 88 Čelákovice. Jan Turský (e-mail: jantursky@seznam. Černý Kmječ MikroAnalytika, Čelákovice J. Zacha 786/11, 250 88 Čelákovice (+420) 608 002 454, www.mikroanalytika.cz ( mikroanalytika@firemni.cz) Čelákovice, Pro: Jan Turský (e-mail: jantursky@seznam.cz)

Více

VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ

VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ VY_52_INOVACE_08_II.1.23_TABULKA, PERIODICKÁ SOUSTAVA PRVKŮ TABULKA PERIODICKÁ SOUSTAVA PRVKŮ PERIODICKÁ SOUSTAVA PRVKŮ 8. TŘÍDA PERIODICKÝ ZÁKON FYZIKÁLNÍ A CHEMICKÉ VLASTNOSTI PRVKŮ JSOU PERIODICKOU

Více

Úloha 5: Studium rentgenových spekter Mo a Cu anody

Úloha 5: Studium rentgenových spekter Mo a Cu anody Úloha 5: Studium rentgenových spekter Mo a Cu anody FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 22.2.2010 Jméno: František Batysta Pracovní skupina: 5 Ročník a kroužek: 2. ročník, pond. odp. Spolupracovník:

Více

Základy výpočetní tomografie

Základy výpočetní tomografie Základy výpočetní tomografie Doc.RNDr. Roman Kubínek, CSc. Předmět: lékařská přístrojová technika Základní principy výpočetní tomografie Výpočetní tomografie - CT (Computed Tomography) CT je obecné označení

Více

Kvantitativní fázová analýza

Kvantitativní fázová analýza Kvantitativní fázová analýza Kvantitativní rentgenová (fázová) analýza Založena na měření intenzity charakteristických linií. Intenzita je ovlivněna: strukturou minerálu a interferencemi uspořádáním aparatury

Více

Úvod do spektrálních metod pro analýzu léčiv

Úvod do spektrálních metod pro analýzu léčiv Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Úvod do spektrálních metod pro analýzu léčiv Pavel Matějka, Vadym Prokopec pavel.matejka@vscht.cz pavel.matejka@gmail.com Vadym.Prokopec@vscht.cz

Více

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami

Aplikovaná optika. Optika. Vlnová optika. Geometrická optika. Kvantová optika. - pracuje s čistě geometrickými představami Aplikovaná optika Optika Geometrická optika Vlnová optika Kvantová optika - pracuje s čistě geometrickými představami - zanedbává vlnovou a kvantovou povahu světla - elektromagnetická teorie světla -světlo

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA

Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA Směsi Látky a jejich vlastnosti Předmět a význam chemie Vzdělávací oblast: Člověk a příroda Vzdělávací obor (předmět): Chemie - ročník: PRIMA Téma Učivo Výstupy Kódy Dle RVP Školní (ročníkové) PT K Předmět

Více

Možnosti rtg difrakce. Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI)

Možnosti rtg difrakce. Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI) Možnosti rtg difrakce Jan Drahokoupil (FZÚ) Zdeněk Pala (ÚFP) Jiří Čapek (FJFI) AdMat 13. 3. 2014 Aplikace Struktura krystalických látek Fázová analýza Mřížkové parametry Textura, orientace Makroskopická

Více

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3

Balmerova série. F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Balmerova série F. Grepl 1, M. Benc 2, J. Stuchlý 3 Gymnázium Havlíčkův Brod 1, Gymnázium Mnichovo Hradiště 2, Gymnázium Šumperk 3 Grepl.F@seznam.cz Abstrakt: Metodou dělených svazků jsme určili lámavý

Více

Ch - Stavba atomu, chemická vazba

Ch - Stavba atomu, chemická vazba Ch - Stavba atomu, chemická vazba Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl

Více

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL

nano.tul.cz Inovace a rozvoj studia nanomateriálů na TUL Inovace a rozvoj studia nanomateriálů na TUL nano.tul.cz Tyto materiály byly vytvořeny v rámci projektu ESF OP VK: Inovace a rozvoj studia nanomateriálů na Technické univerzitě v Liberci Experimentální

Více

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra

Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jak se pozorují černé díry? - část 3. Astrofyzikální modely pro rentgenová spektra Jiří Svoboda Astronomický ústav Akademie věd ČR Vybrané kapitoly z astrofyziky, Astronomický ústav UK, prosinec 2013 Osnova

Více

CMI900. Rychlé a ekonomicky výhodné stanovení tloušťky povlaků a jejich prvkového složení metodou XRF. Robustní / Snadno ovladatelný / Spolehlivý

CMI900. Rychlé a ekonomicky výhodné stanovení tloušťky povlaků a jejich prvkového složení metodou XRF. Robustní / Snadno ovladatelný / Spolehlivý COATINGS Rychlé a ekonomicky výhodné stanovení tloušťky povlaků a jejich prvkového složení metodou XRF Robustní / Snadno ovladatelný / Spolehlivý CMI9 : Garantovaná kvalita a snížené náklady Elektronika

Více

Úloha 21: Studium rentgenových spekter

Úloha 21: Studium rentgenových spekter Petra Suková, 3.ročník 1 Úloha 21: Studium rentgenových spekter 1 Zadání 1. S využitím krystalu LiF jako analyzátoru proveďte měření následujících rentgenových spekter: a) Rentgenka s Cu anodou. proměřte

Více

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu

Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Studium produkce neutronů v tříštivých reakcích a jejich využití pro transmutaci jaderného odpadu Pouze budoucnost může rozhodnout, jestli jsme vybrali právě tu jedinou správnou cestu a nalezli to nejlepší

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Složení látek a chemická vazba Číslo variace: 1

Složení látek a chemická vazba Číslo variace: 1 Složení látek a chemická vazba Číslo variace: 1 Zkoušecí kartičku si PODEPIŠ a zapiš na ni ČÍSLO VARIACE TESTU (číslo v pravém horním rohu). Odpovědi zapiš na zkoušecí kartičku, do testu prosím nepiš.

Více

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC)

3. Radioaktivita. Při radioaktivní přeměně se uvolňuje energie. X Y + n částic. Základní hmotnostní podmínka radioaktivity: M(X) > M(Y) + M(ČÁSTIC) 3. Radioaktivita >2000 nuklidů; 266 stabilních radioaktivita samovolná přeměna na jiný nuklid (neplatí pro deexcitaci jádra) pro Z 20 N / Z 1, poté postupně až 1,52 pro 209 Bi, přebytek neutronů zmenšuje

Více

Jiří Oswald. Fyzikální ústav AV ČR v.v.i.

Jiří Oswald. Fyzikální ústav AV ČR v.v.i. Jiří Oswald Fyzikální ústav AV ČR v.v.i. I. Úvod Polovodiče Zákládní pojmy Kvantově-rozměrový jev II. Luminiscence Si nanokrystalů III. Luminiscence polovodičových nanostruktur A III B V IV. Aplikace Pásová

Více

Úloha 5: Spektrometrie záření α

Úloha 5: Spektrometrie záření α Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.

Více

Externí detektory k monitoru kontaminace CoMo 170

Externí detektory k monitoru kontaminace CoMo 170 Externí detektory k monitoru kontaminace CoMo 170 γ - sonda pro měření nízkých dávek NaI 25D38 Druh záření: γ a RTG záření Jmenovitý rozsah energie fotonů: 25 kev 1.3 MeV, max. chyba měření ±50 % krystal

Více

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová

SPEKTROMETRIE. aneb co jsem se dozvěděla. autor: Zdeňka Baxová SPEKTROMETRIE aneb co jsem se dozvěděla autor: Zdeňka Baxová FTIR spektrometrie analytická metoda identifikace látek (organických i anorganických) všech skupenství měříme pohlcení IČ záření (o různé vlnové

Více

Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy

Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy Petra Suková, 3.ročník 1 Úloha 4: Totální účinný průřez interakce γ záření absorpční koeficient záření gama pro některé elementy 1 Zadání 1. UrčeteabsorpčníkoeficientzářenígamaproelementyFe,CdaPbvzávislostinaenergii

Více

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9.

Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Učební osnovy Vzdělávací oblast: Člověk a příroda Vzdělávací obor: Chemický kroužek ročník 6.-9. Školní rok 0/03, 03/04 Kapitola Téma (Učivo) Znalosti a dovednosti (výstup) Počet hodin pro kapitolu Úvod

Více

MIKROELEMENTY 79. ZE Xlil.SEMINÄRE 0 METODICE STANOVENÍ A VÝZNAMU STOPOVÝCH PRVKO V BIOLOGICKÉM MATERIÁLU

MIKROELEMENTY 79. ZE Xlil.SEMINÄRE 0 METODICE STANOVENÍ A VÝZNAMU STOPOVÝCH PRVKO V BIOLOGICKÉM MATERIÁLU MIKROELEMENTY 79 SBORNÍK PŘEDNÁŠEK ZE Xlil.SEMINÄRE 0 METODICE STANOVENÍ A VÝZNAMU STOPOVÝCH PRVKO V BIOLOGICKÉM MATERIÁLU if? Pracovní skupine pro miärocleasiity Cdoorné skupiny pre potravinářskou a a^r

Více

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu 1911 změřil náboj elektronu Pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty

Více

Analýza vrstev pomocí elektronové spektroskopie a podobných metod

Analýza vrstev pomocí elektronové spektroskopie a podobných metod 1/23 Analýza vrstev pomocí elektronové a podobných metod 1. 4. 2010 2/23 Obsah 3/23 Scanning Electron Microscopy metoda analýzy textury povrchu, chemického složení a krystalové struktury[1] využívá svazek

Více

Katalog rentgenových spekter měřených polovodičovým CdTedetektorem. Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4

Katalog rentgenových spekter měřených polovodičovým CdTedetektorem. Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4 Katalog rentgenových spekter měřených polovodičovým CdTedetektorem. Dana Kurková SÚRO,v.v.i, Bartoškova 28, Praha 4 Katalog navazuje na katalog spekter vytvořený vústavu hygieny a epidemiologie vroce 1991

Více

IDENTIFIKACE A ODHAD PODÍLU ZDROJŮ NA ZNEČIŠTĚNÍ OVZDUŠÍ METODOU PMF

IDENTIFIKACE A ODHAD PODÍLU ZDROJŮ NA ZNEČIŠTĚNÍ OVZDUŠÍ METODOU PMF IDENTIFIKACE A ODHAD PODÍLU ZDROJŮ NA ZNEČIŠTĚNÍ OVZDUŠÍ METODOU PMF Jan Hovorka, Petra Pokorná, Martin Braniš Laboratoř pro měření kvality ovzduší, Ústav pro životní prostředí, Přírodovědecká fakulta

Více

EVROPSKÁ STANDARDIZACE TUHÝCH ALTERNATIVNÍCH PALIV. Ing. Jan Gemrich

EVROPSKÁ STANDARDIZACE TUHÝCH ALTERNATIVNÍCH PALIV. Ing. Jan Gemrich EVROPSKÁ STANDARDIZACE TUHÝCH ALTERNATIVNÍCH PALIV Ing. Jan Gemrich Agregované údaje - spotřeba tepla na výpal slínku Agregované údaje - palivová základna cementářského průmyslu Agregované údaje - emise

Více

Využití iontových svazků pro analýzu materiálů

Využití iontových svazků pro analýzu materiálů Využití iontových svazků pro analýzu materiálů A. Macková, J. Bočan, P. Malinský Skupina jaderných analytických metod, Ústav jaderné fyziky AV ČR, Řež u Prahy, 250 68 Mackova@ujf.cas.cz. Úvod Počátek rozvoje

Více

Náboj a hmotnost elektronu

Náboj a hmotnost elektronu 1911 určení náboje elektronu q pomocí mlžné komory q = 1.602 177 10 19 C Náboj a hmotnost elektronu Elektrický náboj je kvantován Každý náboj je celistvým násobkem elementárního náboje (elektronu) z hodnoty

Více

Doklady slévání barevných kovů ve středověkém Brně na základě nálezů tyglíků z náměstí Svobody 9

Doklady slévání barevných kovů ve středověkém Brně na základě nálezů tyglíků z náměstí Svobody 9 Doklady slévání barevných kovů ve středověkém Brně na základě nálezů tyglíků z náměstí Svobody 9 Martin Hložek, Petr Holub, Lenka Sedláčková, Tomáš Trojek Nedestruktivní rentgen fluorescenční analýze bylo

Více

RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission)

RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission) RBS (Rutherford Backscattering Spectrometry) + ERDA (Elastic Recoil Detection) PIXE (Particle Induced X-ray Emission) V ČR lze tyto a další metody používat na AV v Řeži u Prahy odkud je také většina v

Více

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý

VLASTNOSTI KOVŮ. Autor: Mgr. Stanislava Bubíková. Datum (období) tvorby: 12. 10. 2012. Ročník: osmý Autor: Mgr. Stanislava Bubíková VLASTNOSTI KOVŮ Datum (období) tvorby: 12. 10. 2012 Ročník: osmý Vzdělávací oblast: Člověk a příroda / Chemie / Částicové složení látek a chemické prvky 1 Anotace: Žáci

Více

XRF analýza produktů spalování uhlí. Bc. Lucie Zapletalová

XRF analýza produktů spalování uhlí. Bc. Lucie Zapletalová XRF analýza produktů spalování uhlí Bc. Lucie Zapletalová Diplomová práce 2008 ABSTRAKT Byla vypracována a ověřena kalibrace energiově-dispersního rentgenového fluorescenčního spektrometru ElvaX pro

Více

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno

Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno 1 Přednášky z lékařské biofyziky Biofyzikální ústav Lékařské fakulty Masarykovy univerzity, Brno Struktura

Více

Glass temperature history

Glass temperature history Glass Glass temperature history Crystallization and nucleation Nucleation on temperature Crystallization on temperature New Applications of Glass Anorganické nanomateriály se skelnou matricí Martin Míka

Více